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At a buffered switch in an ATM (asynchronous transfer mode) network it is
important to know what combinations of different types of traffic can be car-
ried simultaneously without risking more than a very small probability of over-
flowing the buffer. We show that a simple and serviceable measure of effective
bandwidths may be computed for stationary traffic sources. For large buffers
the effective bandwidth of a source is a function only of its mean rate, index
of dispersion, and the size of the buffer.

1. EFFECTIVE BANDWIDTHS

The traffic in an ATM (asynchronous transfer mode) network is packaged in
cells and carried over links between switches in the network. Traffic sources are
bursty, and so for periods of time cells may arrive at a switch faster than they
can be switched to output links. For this reason switches are buffered, and the
problem is to know how much total traffic can be carried while keeping the
probability of buffer overflow and resulting cell loss very smalil.

Suppose that a switch handles M classes of traffic and has capacity to han-
dle ¢ cells per second. A number of authors have described models for which
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a quality of service criterion can be met while the traffic is composed of N;
sources of class i, i = 1,...,M, if and only if

M
Z NBi=c,
i=1

where ; is called the effective bandwidth of a traffic source in class i. Intu-
itively, the bursty character of a source means that its effective bandwidth
should be greater than its average rate. However, because at any moment some
sources will deliver cells to the buffer at above their average rate and other
sources will do so at below their average rate, there is potential for statistical
multiplexing. Thus, 8; need not be as great as the peak rate of source i.

The notion of effective bandwidths is in the mainstream of present think-
ing about ATM traffic. Of course, the motivation for seeking to assign effec-
tive bandwidths to bursty ATM sources is that if this can be done, then
problems of admission control and routing in ATM networks resemble those in
circuit-switched networks. Subsequent research can focus on how ideas from
circuit-switched networks (such as the well-developed theory of trunk reserva-
tion and dynamic routing) can be applied to ATM networks.

This paper builds on the work of Courcoubetis and Walrand [6], De
Veciana, Olivier, and Walrand [7], Gibbens and Hunt [10], and Kelly [11]. Kelly
obtained effective bandwidths for a problem of controlling the average work
seen by a customer arriving to a D/GI/1 queue. Courcoubetis and Walrand
obtained effective bandwidths for a model in which the number of cells that a
source delivers to the buffer at discrete time points is a Gaussian stationary pro-
cess. Asymptotics have been obtained by De Veciana et al. {7} and Gibbens and
Hunt [10] for the frequency of buffer overflow when the source rate is modu-
lated by a continuous-time Markov process. Recently, Kesidis, Walrand, and
Chang [12) and De Veciana and Walrand [8] have also obtained effective band-
widths for a large class of stationary sources under conditions similar to ours.

In Sections 2 and 3 we extend the work of Courcoubetis and Walrand [6]
to non-Gaussian stationary sources and compute an effective bandwidth
- approximation. We argue that the effective bandwidth of a source can be
approximated in a manner that makes sense for large buffers and that is a func-

tion of just two parameters: the source mean rate and index of dispersion. Thus,
the index of dispersion is identified as an appropriate measure of burstiness. Our

effective bandwidths agree with those of Kelly [11], and they agree with the for-
mula obtained by De Veciana et al. [7] and Gibbens and Hunt {10] for a two-
level Markov-modulated fluid when the size of the buffer is large.

2. WHITE NOISE STATIONARY SOURCES

Consider a switch that carries traffic comprised of N; independent sources of
class i, i =1,...,M. Suppose time is discrete and that at each discrete epoch a
source in class i delivers to the buffer a number of cells that is independently
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and identically distributed as X;, a random variable with mean u; and variance
o?. As in Courcoubetis and Walrand [6], we note that the way a buffer can fill
during a busy period is for the sources to produce cells at a mean rate that
exceeds X; N;u; for such time until the buffer fills. Define the logarithmic
moment generating function

vi(0) = log E[exp(6.X;)].

Let P(B,a,n) denote the probability that during n = [B/a] epochs cells
should arrive at an average rate of (¢ + a)n cells per epoch, and so a buffer of
size B that starts empty should be filled during the nth epoch. If the total input
to the buffer in epoch i is Y;, then P(B,a,n) =P(Y;+ -+ + Y, = (c+ a)n)
and this can be estimated from Cramer’s theorem (see Bucklew [2]) as

P(B,a,n) = exp(—g I(c+a) + o(B)),

where 0(B) = 0 as B— oo, and I(-) is the “rate function” defined as

M
I(x) = sup [ﬂx -2 M‘Pi(e)]-
i=1

The probability that the buffer fills during a busy period, say P(B), can be
taken as a surrogate for the cell loss rate. Because we are supposing that the
buffer is large enough that it does not fill during most busy periods, the mean
length of a busy period is nearly independent of B. But if the buffer does fill
during a busy period, the amount of cell loss that then ensues is also nearly inde-
pendent of B. So by a renewal reward calculation in which the start of busy peri-
ods are the renewal times, the cell loss rate is just some constant times P(B).
Now P(B) is the sum of a number of terms, each of which is the probability of
one way it can occur, such as P(B,a,n). If the number of these terms were
finite, then we could say that P(B) has the same asymptotic behavior as the
maximum term. This is simply the argument of Laplace, that

n
El’im (l/B)log[Z exp(—Bni)] = —min 7;.
o i=1 i
However, the number of terms is not finite, and it is only a heuristic that P(B)
can be approximated by the maximum term. Although it is difficult to make this
heuristic rigorous, it is a standard idea in the theory of large deviations that
. when an unlikely event occurs then it occurs in the most likely of the unlikely

ways. The argument will be made with more care in Section 3.

Using this heuristic limg_ (1/B)log P(B) < —éifand onlyif I(c+ a)/a=6
for all @. This occurs if and only if for each « there exists a # such that

M
a(d—0)+ 2 Nipi(0)
=t <c.

6
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The preceding condition is certainly satisfied if it is satisfied for 6 = §, that is, if

T Nigi(8)/8 < c.

This is the effective bandwidth result given by Kelly [11], based on a bound on
the tail of the workload found by a customer arriving to a D/GI/1 queue.
Because when B is large we will be inclined to take 6 small, so that P(B) ~
exp(—4B), it makes sense to expand ¢;(8)/8 in powers of § and ignore terms
that are 0(8). This suggests use of effective bandwidths §; = p; + §¢?/2. With
the motivation of this section, we now turn to the general case.

3. STATIONARY SOURCES

Consider the more realistic case, that from moment to moment there is corre-
lation in the rate at which cells are produced by a source.

3.1. Index of Dispersion and Effective Bandwidth

Suppose that in epoch n a source delivers to the buffer a number of cells that
is distributed as X,, where {X,, X, ...} is a stationary process of correlated
random variables, with mean u. Courcoubetis and Walrand [6] assumed the
sources are stationary Gaussian, and by the argument of Section 1 estimate
P(B,a,n) by P(B,a,n) = exp[— (B/a)I(c + @)]. P(B,a,n) < exp(—94) for all
« if and only if 8 < ¢, where

e W

3=#+H§

and

.1 N
v = /}/Tl ~ var(rgl X,,).

That 8 acts as an effective bandwidth can be seen from the fact that if { X},
is actually the superposition of a number of independent sources, consisting of
N; sources of class i/, having mean u; and asymptotic variance v;, i = 1,...,M,
then = 2; N;p; and v = 2; N;v;. In fact, P(B,a,n) =exp[— (B/a)l(c+ a) +
0(B)], and considering the o(B) term it is more appropriate to adopt the con-
straint limg_ . (1/B) log P(B,a,n) < —4. This leads to 8 = p + &y/2.

The quantity y has an interpretation in terms of the autocovariance struc-
ture of the process that holds even when the processes are not Gaussian. This
interpretation holds under the following assumption.

Assumption A: Suppose the stationary process {X,} has kth order autocovari-
ance y(k), and spectral density function f(w) = 2 e _s v (k)exp(iwk). Sup-
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pose the infinite sum of the autocovariances is absolutely summable and f(-) is
continuous at 0. Then

y=af(0)= 3] y(k),

k==~oo
where v is called the index of dispersion.

For the assumption to hold, we must have y(k) = 0 as k = o and so the
process must be purely nondeterministic, without periodicity or long-term de-
pendencies. It is a technical assumption that is plausible under the assumption
that the numbers of cells produced during epochs that are widely separated in
time are nearly independent. It is easy to show that it is satisfied by Gaussian
stationary sources. It is possible to show that it holds for other processes, such
as the Markov modulated fluids that we discuss in Section 4.

The importance of y can be compared with the finding of Whitt that the
coefficient of diffusion of the arrival process is important in evaluating the
heavy traffic mean queue length for the G/D/1 queue. Note that vy can be esti-
mated from the data by spectral estimation techniques (see, e.g., Chatfield (3]).
It is attractive that effective bandwidths might be estimated from observed data,
because it is unlikely that any theoretical model is rich enough to adequately
model all traffic classes. Estimation of v is an alternative to the on-line estima- -
tion procedure proposed in earlier work [5].

3.2. Pre-Smoothing and Time-Slicing a Source

We shall show in Theorem 2 that 3; N;8; < ¢ can be associated with the guar-
antee of a certain quality of service constraint when 8; = u; + 8v;/2. This for-
mula for effective bandwidths has several attractive properties.

" If the source is pre-smoothed, in a buffer that effects some linear fiitering,
say X, = @oXp + a1 Xooy + -+ + 0, X,_p, taking ap + -+ + @, = 1, 50 that
E[X,] = E[X,] = n. Then to obtain f(0) we multiply f(0) by the transfer
function, to obtain f(0) = | 7(0)|2f(0). Because |T(0)] = | Z;a;| = 1, we have
Y= :

This suggests that Courcoubetis and Walrand’s result for a stationary Gauss-
ian source might be viewed as arising from linear filterings of a Gaussian pro-
cess of uncorrelated random variables. Pre-smoothing, by averaging the inflows
of several epochs, tends to decrease the variance, but it simultaneously increases
higher order autocovariances, and the combined effect is that the effective band-
width is unchanged. This is consistent with what one would expect, because the
effects of pre-smoothing are masked within a very large buffer, and it is large
buffers with which our effective bandwidths are concerned. It is still an open
issue as to how large the buffers of ATM switches should be. Small buffers have
the advantage of allowing less delay. However, as buffers are relatively inex-



290 C. Courcoubetis and R. Weber

pensive, manufacturers may choose to compete by offering switches with large
buffers. :

De Veciana and Walrand [8] commented that if |7(0)| = G < 1, which hap-
pens if the source is thinned, then the bandwidth changes to Gu + G?6v/2.
Thus, bandwidths can be reduced by thinning, but not by smoothing.

A second observation that supports the use of these effective bandwidths
is the fact that we obtain exactly the same condition on (&, ...,Ny) regard-
less of how we define a time epoch. For example, if the definition of an epoch
is changed from 1 to 2 ms, so that the numbers of cells produced by a source
in the epoch labelled n is X5,., + X3,, n =1,2,..., then the effect is the same
as if the process had been smoothed with gy = 0.5, @, = 0.5 and then multiplied
by 2. Because smoothing leaves vy unchanged and the multiplication by 2 dou-
bles it, things are just as they should be, because in the new model, ¢ and p will
also double.

Although we have seen that pre-smoothing is not helpful in reducing the
effective bandwidth of a source, this is because we do an asymptotic analysis
for a large buffer, while fixing the amount of pre-smoothing that is carried out
upstream. There may still be some interesting questions regarding pre-smoothing
that grows at the same time that B increases. A buffer is required to carry out
pre-smoothing, and smoothing over a greater number of epochs requires a larger
buffer. So there may be a trade-off between buffering used for upstream pre-
smoothing (e.g., leaky bucket flow control) and downstream buffering.

3.3. General Stationary Sources

The previous sections have suggested that Eq. (1) states an appropriate measures
of effective bandwidths for stationary sources and that the result of Courcoubetis
and Walrand [6] for Gaussian sources can be applied to general, non-Gaussian,
stationary sources. This is made precise in Theorem 2. To do this we make use
of the Girtner-Ellis theorem, which holds under the following assumptions.

Assumptions of the Gdrtner-Ellis Theorem: Let Z,,Z,, ..., be a sequence of
random vectors in ®?, possibly dependent. Suppose the following.

1. The asymptotic logarithmic moment generating function, defined as

¢(8) = lim n~'log E(exp(nf™ Z,)1,

exists for all 8, possibly as +oo. The set {8: o(8) < k) is closed for every
finite k. '

2. The origin'is in the interior of the effective domain, defined as D, =
[0:0(8) < }.

3. The derivative, V(8), exists in DY, the interior of D, and | Ve(8)|
tends to infinity as 6 approaches the boundary of DJ.
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THEOREM | (Gértner-Ellis): Let P, be the probability distribution of Z,. Then
under the preceding assumptions, P, satisfies a large deviation principle with
good rate function I(x) = supe[07x — ¢(6)].

This means that for any subset of the probability space, A4,

—inf I(x) < lim ! log P,(A°) < Iim 1 log P,(A) < —inf I(x).
xE€A° A=e N n—oo N x€A

Notice that we require separate statements for open and closed sets, here taken

as A° and A, the interior and closure of A, respectively. That I(-), is “a good

rate function” means that {x:/(x) < «) is a compact set for all @ < o. For the

proof see Dembo and Zeitouni [9].

In this section we adopt a different quality of service criterion than that in
Section 2. We pose a constraint in terms of the proportion of time, ®(B), that
a buffer of size B is full. This is the proportion of time that there is cell loss,
and it is clearly linked to sensible measures of quality of service. Section 3.1 of
De Veciana and Walrand [8] established a theorem that is similar to Eq. (2) of
Theorem 2. However, they took as a constraint the proportion of time that a
queue with an infinite buffer contains a workload greater than B. Their proof

showed how one can improve upon the heuristic arguments of Section 2 in this
paper. Theorem 2 now follows a reasoning that is similar, though not identical,

to that in De Veciana and Walrand {8].

THEOREM 2: Suppose X; is the aggregate input in epoch i to a buffer of size B,
where (X\,X;, ...} is a stationary process. Suppose the sequence (Z,}, Z, =
(X, + --- + X,)/n, satisfies the assumptions of the Gdrtner-Ellis theorem,
with asymptotic logarithmic moment generating function ¢(6). Suppose the
buffer is served at the rate of c cells per epoch, with E{X,] < c. Let $(B) be
the proportion of time that the buffer is full. Then

lim (1/B)log ®(B) < — & (8)/5 < c. @)
B—+oo
If the input is the aggregate of N; independent processes, each with mean p;
and index of dispersion v; and each satisfies Assumption A, i=1,...,M, then
¢(6)/8 < c may be written as 2; N;8; < ¢, where
Bi=m,~+§2ﬁ + 0(9). 3)

Proor: Suppose that we observe the contents of the buffer at the ends of
epochs {#;}2_., where ¢t; = i[B/£], for some £ > 0. Suppose the buffer is full
when observed at the start of epoch 0. Then there must have been a last epoch
prior to 0, say s < 0, during which the buffer was empty. Let {_;_, be the
observation point equal to, or just prior to, the epoch containing s. Let S, =
X, + -+ + X,. Between ¢_,_, and 0 the buffer must have received at least
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i[B/£)c + B cells. Thus, for any 8; > 0, the probability that the buffer is full,
say ®(B), satisfies

®(B) < 3} P(S(is1y (8% Z i[B/E]Cc + B)

o

=< EE[CXP(OI"(S(.'H)[Q/U — i[B/E]c — B))]

1 B¢,;
= g: exp(—l[B/E] [0 iC — TTB/E] log Eexp(8;S¢iw1y i) + i[B/£) ])

= iexp(—B[é 6;c+6;— % w(6;) + 6(9,-,3)])’,
i= .

where ¢(6;,B) + 0 as B — . The second mequahty is a Chernoff bound and
the final equality follows from the assumption that ¢(-) exists. Let us define

- fGi8) = go +o—%‘¢w)

Suppose f( j,8;) = inf;5, SUPgs0.f(i,0). It is not hard to see that such a j and 6;
exist..Because EX, < ¢, we can choose some 6, > 0 such that 8¢ — ¢(6,) > 0,
and then note that f(i,8,) — o as i —» . Hence, j < o, and because f(j,6)
is concave 6, is well defined. We can also find & and small 5 > 0 such that

. SfU,8) — f(J.6;) > in for all i > k. Taking 6; = 0, for i > k, these facts are
enough to show

j i + 1
hm L log &(B) < —inf sup[s ! ]

izl >0 E

Because £ is arbitrary, we can let £ — o and obtain

11m - log &(B) < —inf sup[ac +6- (0) ]
a>0 >0 a
In the reverse direction, the probability that the buffer is full somewhere
within any i[B/£] consecutive epochs is at least P(S;g) — i[B/¢lc > B).
Hence, the proportion of epochs in which the buffer is full is at least P(S; g/ /
i[B/t) — ¢ > B/i[B/E))/i{ B/£]). Notice that upon taking the logarithm of this
the denominator gives a term that is o(B). So to this we can apply the Gértner-
Ellis theorem lower bound and again use the fact that £ is arbitrary to get

lim log log $(B) = —inf sup[ +6 - LG)]
B-o a>06>0 | & o
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Thus, limg_.(1/B)log ®(B) exists and is < —4 if and only if

sup inf[a(g - l) + ‘p—(:—)] sc )

a>0 6>0

Suppose a* and 6* are the optimizing values on the left-hand side of Eq. (4). -
The condition for stationarity with respect to a* is /6" — 1 = 0, and hence
6* = 5, implying that the left-hand side of Eq. (4) equals ¢(8)/6.

If Eq. (4) holds with equality then P(B) = exp(—4B + 0(B)), and so when
B is large it makes sense to consider § small, in order to achieve a probability
of overflow that is about exp(—4&B). By the assumptions of the Girtner-Ellis
theorem, ¢(-) is dlfferentlable at 0, so using Assumption A and expanding ¢(8),
¢(6)/8 < ¢, becomes

p.+%7+o(6)50.

Note that because sources are assumed to be independent, p = 3; N; p, and
7= 2 iNivi ’ : : u

4. MARKOV-MODULATED FLUIDS
4.1. A Two-State Fluid

Consider a two-state Markov-modulated fluid source whose rate is controlled
by a Markov process. The state of the Markov process at time ¢ is denoted X (¢);
it alternates between states 1 and 2 and has holding times in these states that are
exponentially distributed with parameters A and p. The rate of the fluid source
is 0 and a as the Markov process is in states 1 and 2, respectively. The process
is in state 2 with probability A/ (X + x). We can compute the index of disper-
sion, v, for this source, either by discretizing the process or by proceeding
directly in continuous time as follows. First, we compute the autocovariance as

fstzran-(e)
‘Y(t)—a{)\_*_ypzz(’) “tn/ )

where the probability the process is in state 2 at time ¢ given that it starts in this
state’ at time O is

. o-O+ax
)\+ AN+ pu ’

and so

_ _Mua? — (O
=€ ‘
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Thus,
* 2\pa?
= Zf N dt = ———
v 0 Y (N + p)?
.and

\a d\pa®
N+p (AN+p)
This makes sense in various ways. It has the right dimensionality properties,
scaling correctly in time and in cells. For small 5, Eq. (5) agrees with Eq. (29)

in De Veciana et al. (7], where for N sources the probability of buffer overflow
is determined to have asymptotic behavior of exp(—BE), where

(A + p)c — Nha
c(Na—=c) )

We can write E > § as the quadratic condition, (c/N )26+ [\ + pn —ad] (¢/N) -
Aa > 0. Thus, we require (¢/N) > B, where 81 is the positive root of the qua-
dratic, namely, _

B'=[—[N+p—ad] + V[N + pu — abd]* + 4\ad ) /25. ®

B= + 0(9). ®)

E=N

The preceding also corresponds to the bandwidth given by Gibbens and Hunt
[10]. Expanding 8 in powers of & gives Eq. (5).

The question arises as to the size of terms neglected in expandmg Eq. (6).
Consider, for example, a model of a voice call source in whlch counting time
in seconds and bits in 1000s, we take @ = 30 Kbps, A\ =2, p =3, and 6 = 10. A
buffer of 200 ATM cells, each of 54 bytes, of 8 bits, is about B = 80. So for
8=}, we find 8 = 17.40 and B' = 17.47. For A = 3, u = 2, 8 = 23.40, and
BT =22.29. For A = 2.5, u = 2.5, 8 = 20.63, and 81 = 20.00. Thus, the approx-
imation of B' by 8 is good. Note that B = 80 corresponds to buffering about
S s of peak rate from a single source. On the basis of these calculations, a 100-
Mbps switch might carry 5700 voice calls of this model class.

4.2. A M/M/o-Modulated Fluid

De Veciana et al. [7] also consider the case of a fluid whose rate is 2 times the
size of an M/M/ queue. In fact, this result follows from that which they
obtained for the two-state Markov-modulated fluid. Simply let the number of
such sources, N, tend to infinity and X tend to zero such that N\ is constant.
The limit is the M/M/o-modulated process. The effective bandwidth is

a?

#z

= 6+ 0(9).

"l:lh
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4.3. An n-State Markov-ModulatedAFIuid

Consider a fluid whose- rates are controlled by an n-state Markov process,
[X(#),t = 0}, with rate matrix Q and stationary probability vector =, satisfy-
ing 77 Q = 0. The rate of the fluid when the process is in state / is a;.
THEOREM 3: The effective bandwidth is

B=a"r+a"[xrT —T(Q+ 177)"]ad + o(d),
where T1 = diag(r). ‘ ‘

Proor: We shall show how to compute the index of dispersion. Without loss
of generality, suppose Q has distinct eigenvalues O,\,, . ..,\,. The covariance
for time lag ¢ is

v(t) = X, mPi(t)aa; — ), miwia;a;

=q [IIP(t) — 7" ]a
‘=4 (IICA()C™! — 77" a
=a [IICA(t)C']a,
where Pj;(t)=P(X(t)=j IHX(O) =/}, and the columns of C and rows of C~! are
the right- and left-hand eigenvectors of Q, respectively, A (¢) =diag(l,exp(A,t),

.. .,exp(Aa1)), and A(7) = diag(0,exp(A2t), . ..,exp(A,t)). Then, taking 4 =
diag(1,0,...,0), and any s # 0,

7=2fm7(t)dt

=0
= —24TIICdiag(0,1/X,,...,A\,)C 'a
= —2a"IIC[(A(0) + s4)~! — (1/5)A]C~'a
=-2a"[I(Q+slx7)" ' — (V/s)nr " )a.

The theorem follows from taking s = 1. We have found that it is sometimes con-
venient to use other values of s. ]

5. CONCLUSIONS

We have shown that effective bandwidths may be associated with stationary
sources. These bandwidths have the advantage that they are simple functions
of the average rate of a source and its index of dispersion. The index of disper-
sion may be estimated from data and evaluated for simple Markov-modulated
fluid models using Theorem 3. In Courcoubetis, Fouskas, and Weber [4], we
presented experimental evidence that in the cases of Markov-modulated and
autoregressive source models the use of these bandwidths can achieve a desired
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quality of service and a good utilization of the switch. Many other issues relate
to the use of effective bandwidths that require investigation. Bean [1] has stud-
ied a number of these, including on-line estimation of effective bandwidths,
trunk reservation, and prioritizing calls with different quality of service re-
quirements.
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