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Items of various types arrive at a bin-packing facility according to random pro-
cesses and are to be combined with other readily available items of different
types and packed into bins using one of a number of possible packings. One
might think of a manufacturing context in which randomly arriving subassem-
blies are to be combined with subassemblies from an existing inventory to as-
semble a variety of finished products. Packing must be done on-line; that is,
as each item arrives, it must be allocated to a bin whose configuration of pack-
ing is fixed. Moreover, it is required that the packing be managed in such a way
that the readily available items are consumed at predescribed rates, correspond-
ing perhaps to optimal rates for manufacturing these items. At any moment,
some number of bins will be partially full. In practice, it is important that the
packing be managed so that the expected number of partially full bins remains
uniformly bounded in time. We present a necessary and sufficient condition for
this goal to be realized and describe an algorithm to achieve it.

1. ON-LINE BIN PACKING WITH RANDOM ARRIVALS
AND INVENTORY

Items of type ctu... ,am arrive at a bin-packing facility according to random
processes with rates X = ( \ 1 , . . . , X m ) . These items are to be combined with
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other readily available items of type bx,..., bn and packed into bins using one
of K possible packings. There are many interesting instances of systems that we
can model by applying a suitable interpretation to type b items. One might
think, for example, of a manufacturing context in which randomly arriving sub-
assemblies, or orders, are to be combined with subassemblies from an existing
inventory to produce K types of finished products. An alternative interpretation
is to consider a finished product as one consisting of a number of parts that ar-
rive according to some random process and a number of operations that must
take place together with those parts to complete the product. In this case, the
parts correspond to the items of type ax am and the operations to the items
of type bx,... ,bn. Packing must be done on-line. That is, as each item arrives,
it must be allocated to a bin whose configuration of packing is fixed. In a man-
ufacturing environment, this corresponds to the case in which arriving parts are
assigned to products immediately when they arrive. When a bin is completely
filled with the type a items it can store, a mechanism fills it with the remaining
type b items and the bin leaves the facility.

At each time, there is some number of type a items that are placed in bins
that are not completely full. A key concept in this article is that the packing
should be managed in such a way that type b items are used at some prede-
scribed rate / = ( / i , . . . , /„) and the number of partially full bins remains
bounded in time average. If this is the case, we say the system is f-stabilizable
and note that this is required if the facility is to be managed without running
out of storage while meeting the above requirements. We present a necessary
and sufficient condition for the system to be/-stabilizable over a large class of
arrival processes and describe an algorithm that achieves this.

An interesting application of the above is to control the rates at which dif-
ferent configurations are used in a bin-packing environment. If one associates
a unique type b item with each possible packing configuration, then controlling
the rate at which type b items are used is equivalent to controlling the rate at
which filled bins with different packing configurations are produced. In a man-
ufacturing context (see, for example, Eaves and Rothblum [6]), the desire to use
type b items at r a t e / might reflect a constraint on the rates at which these items
can be manufactured or a desire to operate the machines that produce the items
at optimal rates. For example, if we associate b\,... ,bx

K with each of the K
finished products, bf,..., bl with the distinct operations needed to fabricate
these products, and the corresponding frequencies are g, for type bj a n d / for
type bf, then/ ,g could be the solution of the linear program

K n

maximize 2 &*«•- E./-C?
i=i /=i

n

ZAjjfjSd,, 1 = 1 , . . . , / ,
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Here, /?, is the reward for producing a type /, product Cf is the cost for an
operation of type /, the matrix A and vector d express constraints on available
resources, and cf. is the number of type k operations needed to manufacture a
typey product. In this paper, we will not be concerned with the details of the
derivation of a particular / ; we will consider it as given.

The class L{\) of arrival processes for type a items we consider is the fol-
lowing. In our model, time proceeds in discrete time steps, ? = 0 , 1 , . . . . Some
integer constant T exists such that if we divide time in blocks of constant length
T, then the following holds. During successive blocks, the number of arrivals
of type a, items are independent and identically distributed with the same dis-
tribution as the random variable An i = 1 , . . . ,m. Each A, has mean X,Tand
finite variance. A further assumption is that the Aj's have distributions that
have exponentially bounded tails, that is, P(Aj > k) < e~"k, for some w > 0,
/ = 1 , . . . , m. A special case is the Bernoulli model in which, at each time /, there
is a probability X, of a type a, arrival. Another interesting case is when the vari-
ance of A-, is zero, which corresponds to deterministic arrivals of item a,.

In this article, we adopt the following convention. We will use superscripts
to denote different row vectors, subscripts to denote components of such vec-
tors, and if v is an m + n vector, then va, vb will denote the vectors correspond-
ing to the projection of v onto its first m and last n components, respectively.

We describe the K possible packing configurations of the a's and b's by row
vectors cj, j = 1 , . . . ,K. Here, cj is a vector of m + n components. Compo-
nents cf and cJ

m+i are the number of occurrences in the packing configuration
cJ of type a, and 6, items, respectively.

Let Xj(t) denote the empty space for type c, items in the partially filled
bins and n(t,j) the number of completely filled bins with configuration j at the
end of the /th time step. We define a system to be stabilizable if, for any arrival
process in L{\), a policy exists under which E[xt(t)] < B < <x> for all times t.
A system is/-stabilizable if for any arrival process in L(X) there exists a policy
that stabilizes it and also under this policy

lim l-Z"(tJ)cJ
b=f. (l.D

t—co t j = \

The model here is the same as that in Refs. [2] and [3] if all items are type
a only and arrivals are Bernoulli. The basic result in Courcoubetis and Weber
[2,3] is that the system is stabilizable if and only if X lies in the interior of the
cone generated by the vectors cJ, j = 1 , . . . ,K, where cf is the number of a,
type items that fit in a bin with configuration cJ. To indicate that it is non-
trivial to decide if a system is/-stabilizable, we provide the following example.
Consider the type of items aua2,a3,bub2, and the packing configurations
c1 = (1,0,1,1,0), c2 = (0,1,1,0,1), c3 = (1,0,0,1,0), c4 = (0,1,0,0,1), where cf,
1 < / < 3, is the number of a, type items and c3^+/, 1 < / < 2, is the number of
b, type items in configuration cK The arrival process for the type a items is
Bernoulli with probabilities X = (1/2,1/2,1/2). Let the desired rate for the type
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b items b e / = (1/2,1/2). First observe that (X,/) is in the cone generated by
the cJ's and that this cone is a halfspace in Rs. Assume first that the type b
items are not readily available, but they arrive randomly as a Bernoulli process
with parameter/. Then it follows by Courcoubetis and Weber [2,3] that the sys-
tem cannot be stabilized since the cone has no interior. On the other hand, one
might suspect that this system is /-stabilizable if the type b items are readily
available since there will be fewer fluctuations in the arrivals to the system. Fur-
thermore, if we ignore type b items, since X is in the interior of cj = (1,0,1),
cl = (0,1,1), Ca = (1,0,0), Ca = (0,1,0), this system can be stabilized. Intui-
tively, if there is enough "flexibility," one could devise a policy that besides be-
ing stabilizing will also consume the type b items at the predetermined rate. The
results in this article show that indeed, this system is /-stabilizable, whereas a
second system that differs from the first since c2 = (0,1,1,1,1) and for which
the same remarks hold is not/-stabilizable.

Besides providing necessary and sufficient conditions for/-stabilizability,
we improve on the results in Refs. 2 and 3 in two directions. First, we allow
more general arrival processes of a renewal type, which includes deterministic
arrivals. This is an important extension since many of the input processes in
manufacturing environments are deterministic. Second, we provide an algorithm
for stabilizing the system that is simpler than those in Courcoubetis and Weber
[2,3] and Courcoubetis and Rothblum [5].

This article is organized as follows. In Section 2 we provide two different
equivalent Conditions 1 and 2 for the system to be/-stabilizable. These condi-
tions are necessary and sufficient. The first condition is a natural candidate as
a sufficient condition for/-stabilizability. From the second condition, it is easy
to derive a simple computational procedure for checking/-stabilizability. This
procedure is described in Section 3. Finally, in Section 4 we discuss some related
work.

2. A NECESSARY AND SUFFICIENT CONDITION
FOR /-STABILIZABILITY

One can think of the system as consisting of the packing facility and an infinite
inventory of empty unconfigured bins. In the packing facility, all bins are al-
ready configured (assigned to particular packing configurations), and as items
arrive, they are placed in these bins. When a bin is filled with all the type a items
its configuration allows, then it immediately is filled with the remaining type b
items and leaves the facility. A partially filled bin is one currently residing in the
packing facility, with space remaining for some items. Note that some partially
full bins might actually be empty, although already assigned to a particular
packing configuration.

A packing policy is used at each time t. It looks at all type a items that ar-
rived during this time step and then decides, first, if new bins have to be brought
in from the inventory and how these will be configured, and second, in which
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bins to place these items. The class of policies we consider consists of policies
that use the past information about the history of the system and are also time-
dependent. In what follows, we provide two conditions that are equivalent and
also necessary and sufficient for the existence of policies that achieve/-stability.
We begin by proving that the first condition is sufficient for/-stabilizability by
constructing a policy that achieves /-stability. Then we prove that the second
condition is a necessary condition for/-stabilizability, and finally we prove that
the second condition implies the first.

Let S be the convex cone spanned by the cJ's in Rm+". The conditions are
the following.

Condition 1: There exist m vectors C 1 , . . . ,Cm in S and positive 7 1 , . . . ,ym

such that C j , . . . ,Ca" are linearly independent and S£Li 7 , C = (A, / ) .

Condition 2: There exists a subset cJl,... ,cJr of the cJ's such that c{\ ... ,cJj
span Rm, and positive au ... ,ar such that £/=i atc

Jl = (X, / ) .

THEOREM 1: Condition 1 implies that the system is f-stabilizable.

PROOF: We will define a packing policy that stabilizes the system and that also
consumes type b items with rate/. The following definitions are needed in our
proof. Let

E= f/3|j3e/?'", )3;6 {1 + e , . . . , l + /we | , € > 0 , and
1 ' , (2.1)
ft* ft for i*j\.

Define A(/J) to be the vector ( A , ^ , . . . ,Am/3m) and assume that e is small
enough so that A (/3) is in the cone generated by the Cl,...,C? for all /? G E.
Let the yj((J)'s be defined by

m

EyA0)Ci = MP), (2.2)

and let the 5jk's be any nonnegative solution of

S 6Jkc
k = CJ. (2.3)

k=\

We define first a mechanism M for introducing and configuring new bins
in the facility. This mechanism takes as input a value /? from E and adds a new
bin in the facility whose configuration has been randomly chosen to be of type
k € /with probability pk(P). These probabilities need to satisfy the equation

y (2.4)
k=\ j=\

where r> is some positive scalar depending on 0. Clearly, such probabilities ex-
ist for all j3 G E, and a possible candidate is
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S
Ar= 1 j=\

Let Z = (Zi , . . . ,Zm) be the empty space for the type a items generated by a
single invocation of M. Then

£[Z] = 2>*(/3)c* = ,X(j8). (2.6)
* = i

Consider the following policy ir. At every step t, this policy assigns the type
a items that arrived during t to partially filled bins if there is some empty space
of the corresponding type available; otherwise, it uses the mechanism M to gen-
erate new space. Since M produces a single bin each time it is invoked whose
configuration might not be the appropriate one to store all the above items, the
policy repeats the mechanism until eventually the correct configurations are pro-
duced and all items are stored. When a bin is filled with all the type a items it
can store, it is immediately filled with the remaining type b items and is removed
from the system. Note that by the definition of M, at all times t there is some
a, for which xt(t) < max,iA.(cf) - 1 = M, where Mis a positive constant. Also,
the number of times M will be invoked until it produces space for a particular
item is bounded above by a geometric random variable G with parameter

In implementing policy ir, the value of j8 that is supplied to M is updated
every MTsteps as follows. Let /J(x) be a vector in E such that xk/\k < x,/X,
implies /?, < @k. Then for kMT < t < (k + \)MT, whenever Mis invoked, it is
supplied with the same value fi[x(kMT)] that was computed based on the avail-
able empty space after the kMTth step. We will show that -K achieves/-stability.

The first part of the proof consists in showing that for any pair of ahaj,
the process [Y(k), F(k)), k = 0 , 1 , . . . , where Y(k) = \[Xj(kMT)/\ -
Xj(kMT)/\j]\, and F(k) is the tr-field generated by [x(sMT), s = 0 ,1 , . . . ,*•),
behaves as a supermartingale with (1) negative drift uniformly bounded away
from zero outside some finite set, and (2) has increments a.s. bounded above
by a random variable with a distribution having an exponentially bounded tail.
This implies by using the results of Hajek [7] that E[\Xj(kMT) - Xj(kMT)\] =
E[Y(k)] < B < oo for all k > 0, and since at all times k there is an at for which
x,(kMT) < M, it follows that E[xi(kMT)] < B', for some B' < oo, and for all
/ = 1 , . . . , m and k > 0. From this, it trivially follows by the definition of the
arrival process and the policy TT that E[Xj(t)] is also bounded uniformly in /
for all / = 1,... ,m. Finally, one can easily observe that the above together with
the definition of -K imply that E[x/(t)] is also bounded uniformly in / for all
/ = m + 1 , . . . , m + n. The second part of the proof consists of showing that the
foregoing policy besides being stable also consumes type b items with rate / .
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We start by proving that Y{k) is a supermartingale with the above proper-
ties for Y(k) sufficiently large. The proof consists of the following two lemmas.

LEMMA 1: If E[Y2(k + l)\F(k)] < Y2(k) - ^Y(k) + i/-2/4 for Y(k) > AT,,
Kt <ot>and,t>0, then E[Y(k + l)\F(k)] < Y(k)-+/2for Y(k)>Kl.

PROOF: Since (E[Y(k + l)\F(k)])2 < E[Y2(k + l)\F(k)], the proof trivially
follows by taking the square roots on both sides of the inequality. •

LEMMA 2: E[Y2(k + l)\F(k)] < Y2{k) - ^Y(k) + ̂ 2/Afor Y(k) > Ku where
Kt < oo and \p > 0, independent of Y(k).

PROOF: Let W = (Wu..., Wm) denote the total amount of empty space
created for the type a items by M during kMT < t < (k + 1 )MT, and let AT =
(Af,,... ,Nm) denote the total number of arrivals of type at,... ,am items dur-
ing the same period of time. To simplify notation, let x denote x(kMT) and fi
denote (l[x(kMT)], and assume that JC,/X, > Xj/\j. Observe first that

X,. X,

X, \j) \X, \j)\ X;

x\ (2.8)

X, X,

Note also that since the arrival process regenerates itself every T steps and IT
does not depend on the past, E[Y2{k + l)\F(k)] = E[Y2(k + l)\x]. From
this, it follows that

E[Y2(k+ 1 ) - Y2(k)\F(k)]

= E[Y2(k + 1) - Y2(k)\x]

1 Xj_ _ xj\ [Wj-N, _ Wj - Nj

v î \j) i X, \j

[E\(Wj-Nj WJ-NJ*

Consider first the last term in (2.8). Clearly, A/,-,Nj do not depend on x and
have finite expectation by the assumptions of our model. Also, the W-n Wj are
bounded above by some random variable with finite expectation since there are,
at most, TiT=\ ty items to be packed in new bins, and for each item, the num-
ber of times we need to run M is bounded above by a geometric random vari-
able. Clearly, this bound is also independent of the state x. This implies that this
term is bounded above by some constant D independent of x.

In the first term of (2.8), we have



454

; - N,

C. Courcoubetis and R. Weber

E[W,\x] -\,MT E[Wj\x] -XjMT
x\ =

(2.9)

Let u(l) be the random variable such that «(/) = 1 iff Mhas been invoked
for the /th time during kMTt < (k + \)MT, and let Z ( / ) = [Z , ( / ) , . . . ,Z^\
denote the empty space generated by M when it was invoked for the /th time.
Recall also that by the definition of M we have for all / = 1,2,... ,E[ZU)] =
rj X(|3) for some r\ > 0 that depends on j3. Then,

(2.10)
W, W °° [ Z / 0 Z / " l

x, x, / = i L x,- Xy j

and we use monotone convergence to obtain

"Z/̂ >

"xT
rd)

1=1

(2.11)

since the w(/)'s and the Z(/ ) 's are mutually independent. By using the fact that
the Z(/> are identically distributed and depend on x only through jS, we obtain
through (2.6)

(2.12)

since our assumption about A-,/X; > XJ/XJ implies that /?, < j3y. Observe now
that E[u(l)] is the probability that during kMT< t<{k+ l)MT, the mecha-
nism M is invoked at least once, which is strictly positive since, at time kMT,
there is some type at item for which xt < M, and every T steps, the probability
of an arrival of such an item is positive by the assumptions of our model. From
this, it follows that there is some positive constant 5 for which £ [ « ( l ) | x ] > 6
for all states x consistent with our policy TT. Similarly, since r? in the previous
inequality depends on 0, let rj' be the minimum y achieved over all values fi G
E. Now, since 0/ - /?,< - e, it follows that

(2.13)
X, X;

where f > 0 does not depend on x.

x\<- eri'8 = - f
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We return now to the proof of Lemma 2. We just proved that if x,/X, >
Xj/Xj, then

E[Y2(k + 1)|*] < Y2(k) - 2{Y(k) + D. (2.14)

Choose any positive \[/ < 2f and let Kx = (D — i/<2/4)/(2f — i/-). Then one can
easily check that by using the above \p and K{, and the conditions of the lemma
are satisfied. The case of AT,/X, < Xj/\j can be handled in a similar way, which
completes the proof of the lemma. •

We now return to the proof of Theorem 1. The foregoing two lemmas im-
ply that Y(k) has a drift of, at most, -i/</2 < 0 when Y(k) > /C,. To complete
the first part of the proof, we must show that the increments of Y(k) are a.s.
bounded above by some random variable having a distribution with an expo-
nentially bounded tail. It is easy to see that the increments of the Y(k) are
bounded above by f^/X, + Wj/Xj, which is also bounded above by the ran-
dom variable

A(kMT)

k=\

/ 1 1 \ ( m
A= (v + v max 2CM

where A(kMT) is the total number of arrivals for all objects that arrived dur-
ing kMT< t < (k + l)MT, and the Gk's are i.i.d. random variables distributed
as the random variable G introduced before. One can easily check that the as-
sumptions about the arrival processes imply that A(kMT) has a distribution
with an exponentially bounded tail, which implies the same for A as well. This
completes the first part of the proof of the theorem.

To complete the second part of the proof of the theorem, we must show
that IT consumes type b items with rate/. Let u(t,l,fi) be the indicator function
on the event that during the first t time steps the mechanism M was invoked for
the /th time and this occurred with parameter /3. Let V(t) denote the total space
(for item types a and b) produced up to time /. Then

(2.15)

where in order to simplify notation, this time Z(/)(/3) denotes the m + n vector
of the empty space for type a, b items produced by the /th invocation of M with
parameter /3. Then monotone convergence implies that

E[V(t)] = fj

l=\ 10SE

j=\
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and by defining o(t,fi) = E,~ i E[u(t,l,&)], we get
m m

E[V(t)] = £ ij(/3)a(M8) ST>( /3)C>= S P ( / , ; ) C > , (2.16)

where we define p(/,./) = S,ii?(0)a(M8)7-/(|S).
Let the m + n vector N(t) denote the total number of items of each type

that are packed in bins up to time /. This corresponds to the total number of
arrivals for each type a item and the total number of type b items that have been
assigned to the completely filled bins up to time /. Now, since the system is sta-
ble, it follows that E[Va{t) - Na{t)] < B for all /, which in turn implies that

m n(t i\
lim £ ^ ^ - CJ

a-\ = 0. (2.17)
/ -» y=l t

Since X = E/Li yjCJ
a by Condition 1, it follows that

i;" = 0. (2.18)

This implies that \\m,_a,p(t,j)/t = yj since he Cj's are linearly independent.
Consider now the lim,_O0£[Ni,(0]/>- Since £[K6(O -N 6 (O] < fi for all

/, it follows by using Condition 1 that

hm £ = hm 2J Q = 2 J T>C6 =/• •

THEOREM 2: f-stabilizability implies Condition 2.

PROOF: We show first that (X,/) must be in the core generated by the cJ's. As-
sume that there exists some packing strategy that is/-stable. Let g = (X,/).
Then if Vj(t) denotes the total number of empty slots for type / items produced
by time t, we have

Let ak(t) denote the number of times that a type k configuration has been
used by time t. Then since E[V(t)]/t = TjkE[ak(t)]/t ck is in the cone gener-
ated by the c*'s for all t and this cone is a closed set, it follows that g is also in
the cone.

Consider now the "reduced" system with bins that do not require any type
s items, but have the same set of configuraitons cJ

a for type a packing items and
the same arrival process as the original system. In Courcoubetis and Weber [2,3]
it is proved that if the arrival processes are Bernoulli, then the system is stabiliz-
able if and only if X is in the interior of the cone generated by the cj's. Clearly,
if the original system is/-stabilizable for all arrival processes satisfying the con-
ditions of the model, then the "reduced" system must also be stabilizable for the
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special case of Bernoulli arrivals with parameter X. This together with the pre-
vious observations implies that the c^'s must span Rm so that the cone gener-
ated by the c '̂s has an interior, and X must be in the interior of this cone. This
completes the proof of the theorem.

THEOREM 3: Condition 2 implies Condition 1.

PROOF: Assume without loss of generality thaty ' i , . . . ,jr is 1 , . . . ,r. Then Con-
dition 2 is equivalent to aiC1 H h arc

r = (X, / ) , a, > 0, / = 1 , . . . ,r, and
Co,.. . ,cr

a span Rm. Note that r>m. Suppose without loss of generality that
the vectors a\Cl

a,... ,amc™ are linearly independent and define v ' = a j c j , . . . ,
vm = amc™. By definition, these vectors satisfy

v1 + • • • + vm + am+icm+1 +---+arc
r=(\J), (2.19)

and the t;J + • • • + v™ are linearly independent . Consider now the / ? ] , . . . ,(3m+l

satisfying

/3 ,a , c J + • • • + ( J m a m c ; + / 3 m + 1 a m + 1 c a
m + 1 = 0, (2.20)

and assume without loss of generality that /^ and j3m+i have opposite sign. De-
fine the m vectors £;' = atc

l + am+lc
m+i, v2 = a2c

2,... ,vm = amcm. These
vectors satisfy

v1 + • • • + vm + am+2c
m+2 + • • • + arc

r = (X, / ) , (2.21)

and the w j , . . . , v™ are linearly independent since if this is not the case, there
must exist some 8lt.. .,8m such that 5,vl + • • • + 8mv™ = 0. But since this
identity must be the same as (2.20), modulo a constant factor, this would imply
that the coefficients of c1 and cm + 1 in (2.20) must be of equal sign, contradict-
ing the assumption we made earlier. Observe now that (2.21) corresponds to
(2.19), with cm being eliminated while preserving the properties of the first m
vectors on the left-hand side of the equation. By repeating r — m — l times the
above construction with the vJ's being the iV's of the previous step, the last set
of the vJ,j — \,... ,m, will correspond to the desired set of 7 , C 1 , . . . ,ymCm,
which by induction will satisfy Condition 1. •

3. A COMPUTATIONAL PROCEDURE FOR
DETERMINING /-STABILIZABILITY

As mentioned in the introduction, Condition 2 is easier to check. In what fol-
lows, we will describe a procedure for checking the validity of Condition 2.

Consider first the following problem: Given the set c 1 , . . . ,cK, find the
maximal subset of indices i c ( 1 , . . . , A"), for which there exist positive num-
bers a,, I E L, such that E/ez. «/c' = (A, / ) . One can easily see that if such a
subset exists, then a maximal one must also exist since if there exist two different
subsets of the cJ's that satisfy the above condition, their union also satisfies the
condition. In order to determine if / G L, i = 1 , . . . ,K, we solve the linear
program
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maximize a,
K

JZajc'
7=1

a,>0, 7 = 1 K.

One can easily see that / G L if and only if the solution a, is positive.
Checking Condition 2 is now straightforward. If L is empty, then clearly

Condition 2 does not hold. If L is not empty, we use Gauss elimination to de-
termine the rank of the matrix with rows c/'s, j 3 L. Now Condition 2 holds
only if the rank is at least m.

4. DISCUSSION

It is important to note that if we consider a particular arrival process in L(\)
and ask if for this process there exists an/-stable policy, then Conditions 1 and
2 are sufficient but not necessary. For example, if we restrict ourselves to de-
terministic arrival processes with mean X, then the condition that (X,/) is in the
interior or on the boundary of S is necessary and sufficient for/-stabilizability.
The above observations together with the first part of the proof for Theo-
rem 2 imply that for a particular arrival process (1) if X is in the exterior of S,
the system is not/-stabilizable; (2) if X satisfies Condition 2 (and hence, Con-
dition 1), then the system is/-stabilizable; and (3) if X is in S and does not sat-
isfy Condition 1 or 2, then the answer depends on the particular properties of
the arrival process. In case (3) we leave as an open problem the determination
of the necessary and sufficient conditions on the distributions of the arrival pro-
cesses for the existence of/-stabilizing policies.

A problem related to the one discussed here has been considered in Cour-
coubetis and Rothblum [5]. In that paper, there was a simple cost structure as-
sociated with the bin-packing system in which a reward r, was obtained for
each bin packed according to configuration cJ. The system was also on-line
and the items arrived as independent Poisson processes with rate X. The goal
was to find the conditions for the existence of policies that are optimal or nearly
optimal while keeping the expected number of partially filled bins bounded or
relatively slowly increasing in time. Necessary and sufficient conditions were
given for a system to be stabilizable while operated in an optimal way. This ar-
ticle includes the above since we provide a characterization of all the possible
/ ' s that can be achieved while stabilizing the system, one among these being the
optimal one corresponding to the cost structure in Courcoubetis and Rothblum
[5]. We do not investigate the case of systems that are "slightly" unstable and
achieve/- e for arbitrarily small e (quasistable and e-optimal in Courcoubetis
and Rothblum [5]).

The problem of stability of on-line bin-packing systems with item types
from a finite set and Bernoulli arrivals has been investigated in Courcoubetis
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and Weber [2,3]. According to the terminology of Coffman et al. [1], these re-
sults provide necessary and sufficient conditions that must hold for a distribu-
tion over a finite set of the item sizes if perfect packing is to be achieved in an
on-line fashion. The related problem of off-line packing has been investigated
by Lueker [8] and Rhee and Talagrand [9].

The policy -K that we introduced in section 2 to stabilize the system is an im-
provement over the policies used in Courcoubetis and Weber [2,3] and Cour-
coubetis and Rothblum [5] for the following two reasons. First, -K uses
significantly less information since it needs to know, for each ah only the num-
ber Xj(t). In Courcoubetis and Weber [2,3], the policies used to achieve stabil-
ity need to know the numbers x/(t), i = 1,. . . ,m, j = 1,. . . ,K, where x/(t)
denotes the empty space for type a, items in bins configured with configuration
cJ. Second, unlike TT, these policies may introduce empty bins to the system
when new items arrive, even if these items can fit in existing partially filled bins.

There is an interesting connection between the policy introduced by Cour-
coubetis et al. [4] for stabilizing a production system and policy w in this arti-
cle. Our bin-packing system corresponds to the production process setup of
Courcoubetis et al. [4] where the production processes have a particular deter-
ministic structure and arrivals are of the type considered in this article. One can
view the arrivals of items as demands for empty space of a particular type, and
introducing a new bin with a certain configuration into the facility as produc-
ing a deterministic amount of empty space of various types. Unfortunately, the
proofs of Courcoubetis et al. [4] require that the production and arrival pro-
cesses be independent and Bernoulli, and so they do not imply the results for
stabilizing the systems considered here. On the other hand, our results extend
those of Courcoubetis et al. [4] for the cases discussed above.
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