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Abstract 

Objects of various integer sizes, o,, o , are to be packed together into bins 
of size N as they arrive at a service facility. The number of objects of size o, 
which arrive by time t is A , where the components of A' = (A , * , , A ')' are 
independent renewal processes, with A'/t - A as t --oo. The empty space in 
those bins which are neither empty nor full at time t is called the wasted space 
and the system is declared stabilizable if for some finite B there exists a 
bin-packing algorithm whose use guarantees the expected wasted space is less 
than B for all t. We show that the system is stabilizable if the arrival processes 
are Poisson and A lies in the interior of a certain convex polyhedral cone A. In 
this case there exists a bin-packing algorithm which stabilizes the system without 
needing to know A. However, if A lies on the boundary of A the wasted space 
grows as O(V\t) and if A is exterior to A it grows as O(t); these conclusions hold 
even if objects may be repacked as often as desired. 

ONLINE ALGORITHMS; RANDOM WALKS; STOCHASTIC ALGORITHMS 

1. Problem description and results 

In a one-dimensional bin-packing model we suppose that objects of various 

integer sizes in the set O = {o1, , o *, n} are to be packed together into bins of 

integer size N as they arrive at a service facility. The number of objects of size o, 
which arrive by time t is A', where the components of A' = (A, * , A t)' are 

independent renewal processes, with A'/t-- A =(A,' , An)' as t -- o. The 

empty space in those bins which are neither empty nor full at time t is called the 
wasted space and this is denoted by W'. The system is declared stabilizable if for 
some finite B there exists a bin-packing algorithm whose use guarantees that the 

expected wasted space is less than B for all t. Of course this is equivalent to the 
notion that the expected number of partially full bins remains uniformly 
bounded as time increases. 
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We are interested in characterizing the parameter values N, O and A' for 
which the system is stabilizable. It is assumed that the bin-packing must be 
online: that is, the objects must be placed in bins as they arrive and may not be 
repacked later. The wasted space can certainly be less if objects may be repacked 
as often as desired, but even if repacking is allowed the system may not be 
stabilizable (for example, if O = {2} and N = 3). 

Coffman et al. (1984) survey over 100 articles on bin-packing models. Almost 
all of these concern the worst-case analysis of suboptimal algorithms for 
deterministic scenarios. Some authors have studied stochastic bin-packing 
models, with both online and offline algorithms. Their principal interest has been 
the average performance of classical algorithms such as 'first fit' or 'best fit' when 
the object sizes are drawn from a known distribution (see Bentley et al. (1984)). 
Hoffmann (1982) has studied the design of online algorithms which employ 
knowledge about the distribution from which object sizes are drawn. He has 
shown that there is an online algorithm making the expected value of the ratio of 
the number of used bins to the sum of the object sizes as close to 1 as desired as 
t -oo. 

We ask whether it is possible for the expected wasted space to remain 
uniformly bounded as time increases. This would be desirable in a cutting-stock 
context, where as orders arrive they are cut from rolls of stock which are 
manufactured in equal lengths N, and operating costs are proportional to the 
amount of stock which has been manufactured but which is as yet only partially 
cut. We begin our discussion by defining the set of configurations C = {cl, , m} 
as the set of all distinct ways in which a bin of size N can be packed completely 
with objects from the set 0. Configuration cj is given by the vector (ci, * * , cj,n), 
where c,k E O denotes the size of object to occupy the kth slot of the 
configuration, and where clearly Sk Cjk = N. In order that the c,'s have a unique 
designation, without duplication of equivalent packings, we always order the 
slots so that cjl ' * * * cjn,. 

Crucial to our analysis is the n x m-dimensional packing matrix Q, of which 
the element qi% is the number of objects of size oi used in packing configuration 
cj. To avoid triviality we suppose that each row of O is non-zero, so that each 
object in O can be packed with some other objects in O to completely fill a bin 
of size N. Another important entity is the set, A = {A: A = Qf, f - O}, spanned by 
non-negative linear combinations of the columns of Q. Let bdy(A), ext(A) and 
int(A) denote the boundary, exterior and interior of A respectively. Notice that A 
is a closed convex polyhedral cone in n-dimensional space and int(A) is 
non-empty if and only if the null space N(Q') = {x: Q'x = 0} = {0}. To illustrate 
the importance of A we describe a simple example. 

Example. Suppose objects of sizes 1 and 2 are to be packed in bins of size 3: 
O = {1,2}, N = 3. There are two configurations, with 
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1= Q =( 1) and A={A: A1 A2}. 

For reasons which we shall explain following the statement of Theorem 4, we 
restrict attention to A > 0. If A E ext(A) then A2 > A1 and it is clear that even if 

repacking is allowed the number of bins which are only partially filled by a single 
2 will grow as O(t). If A E bdy(A) then A = A2 and each 1 must be matched with 
a 2 if the wasted space is not to grow as fast as O(t). If we try to do this, either all 

partially full bins at time t will contain a single 2, or all will contain a single 1. 
The number of partially full bins will perform a symmetric random walk on the 

non-negative integers with reflection at 0, and hence the expected number of 
such bins will grow as O(Vt). If A E int(A) then A1> A2. Suppose we use an 
online algorithm which, if there are partially full bins, always puts a 1 in a 

partially full bin with a 2, or if there is no such bin puts it in a partially full bin 
with other l's. The number of partially full bins containing a 2 performs a 
random walk on the non-negative integers, with drift towards 0 and reflection at 
0. The number of partially full bins containing l's is never more than 1. Thus the 

expected wasted space is bounded by some B for all t. 
The observations made for the above example can be generalized. We show 

that a system is stabilizable only if A E int(A). When the objects arrive according 
to independent Poisson processes this condition is sufficient for stability. We 
describe a probabilistic bin-packing algorithm which stabilizes the system in this 
case and which does not need to know A. When A is not in the interior of A the 

system is not stabilizable even if repacking is allowed. If A E bdy(A) the wasted 

space grows as O(Vt), and if A ext(A) it grows as O(t). These results are 
stated in the following theorems. 

Theorem 1. If A > 0 is exterior to A, then W' - O(t), even when repacking 
is allowed. 

Theorem 2. If A > 0 is on the boundary of A and the interarrival times of the 
renewal processes A t have non-zero variance, then for every algorithm there is a 
B > 0 such that E[W'] > BV\t, even when repacking is allowed. If the interarri- 
val times for each object size are constant, then there exists an online algorithm 
and B < oo such that W' < B for all t. 

Theorem 3. If A > 0 is in the interior of A, and objects may be repacked as 

desired, then there exists an algorithm, a bound B < o and an almost surely 
finite random time T such that W' < B for all t > r. 

Theorem 4. If A > 0 is in the interior of A and the arrival processes are 
Poisson then the system is stabilizable by an online algorithm which does not 
need to know A. 
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Throughout the above we restrict attention to A > 0. If the ith component of A 
is 0 and other components are positive then the dimension of the system should 
be reduced and the theorems should be read for a A* embedded in n -1- 
dimensional space, where O* = O -{o,}, A * > 0, and Q* is derived from Q by 
deleting the ith row of Q and all columns of Q which have a positive entry in the 
ith row (thereby deleting all configurations which cannot be used). Thus, in the 
above example, we have A = (1, 0)' E bdy(A) if A is viewed as being embedded in 
R2. However, for the set A* = {A,: A, > 0}, which is embedded in R', we do have 
(1)Eint(A*). It is therefore Theorems 3 and 4 which apply when A = (1,0)', 
rather than Theorem 2. For A = (0,1)', the reduction of Q to Q* leaves nothing 
and A* is empty. 

A linear programming algorithm can be used to determine whether or not a 
particular A lies in the interior or exterior of A. The computation complexity of 
this calculation is therefore polynomial in the dimensions of the matrix Q. 
However, m may be very large. If O = {1,2, * * , n} and the m columns of Q 
express all the ways in which a bin of size n can be filled, then the calculation will 
grow exponentially, since m(n), the number of partitions of n, is asymptotically 
(1/4n V3) exp(r N/2 n/3). 

In the proof of Theorem 4 we introduce a probabilistic bin-packing algorithm 
which stabilizes the system if and only if the system can be stabilized. The 
algorithm does not need to know A. The key idea is to view the placing of an 
object in a bin as filling a slot in a particular configuration. The state of the 
system is given by a list of partially full configurations. This is a more useful 
description of the state of the system than one which simply states the various 
amounts of empty space in partially full bins. The wasted space can be studied in 
terms of the random walks on the non-negative integers, and the theorems are 
proved using well-known results for these walks. 

2. Characterization of stabilizable systems 

It is helpful to elaborate the algebraic description of the closed convex 
polyhedral cone A = {Qf: f O0}. The cone is formed from non-negative combi- 
nations of a finite number of generators. These generators, which correspond to 
edges of the cone, are a subset of the m columns of Q. The cone is bounded by 
hyperplanes. Suppose h is a unit-length normal to the boundary hyperplane 
given by {A: h'A = 0}, and suppose the direction of h is away from A, in the 
sense that h'A < 0 for all A E A. If H denotes the matrix whose columns are all 
such vectors h then A = {A: H'A - 0}. 

Remark. If we know H then it is easy to determine whether or not a 
particular A lies in A. However, the calculation of H from Q is equivalent to 
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finding the set of extreme points of a linear program and it is therefore a 
calculation whose computational complexity grows exponentially in m and n. 

We now describe the packing process. Throughout the following we use 
capital letters for processes which take only integer values and small letters for 
processes which may take real values. We define the filled bin process N' by 
A ' = QN' + B', where N, B' are non-negative integer-valued processes with N' 

minimizing | B' 112 = V'E(B )2 over all integer-valued processes. Nt is the number 
of fully packed bins at time t which use configuration j. Note that N' may not be 
unique. B is the number of objects of size oi packed in bins which are only 
partially full. The number of objects in partially full bins is IIB' |I1 = S B |. Since 
the size of each object is at least 1 there are between || B' I|1/N and | B' I|, partially 
full bins. Thus the wasted space satisfies I B' I|1/N < Wt' | I B' I|1N for all possible 
packings. The following lemma bounds the wasted space in terms of the normals 
to boundary hyperplanes of A. 

Lemma 1. Suppose h is a unit-length vector normal to a boundary hyper- 
plane of A and h points away from A. Then 1 B'112- (h'A')+. 

Proof. If h'A' = 0 the conclusion of the lemma is trivial. If h'A' > 0 then A' 
is exterior to A and h'A' is the distance of A' to the boundary hyperplane of A. 
Let n' minimize A'- Qn'lt2, where n' is a real-valued process. Then the 
lemma follows from 

IIB' 112= IIA' - QN' 12 > II A - Qnt 112 > h'A'. 

Proof of Theorem 1. Suppose a = min{ 1A - x II|: x E A}> 0 and that this 
minimum is achieved by x = A. Let f be such that A = Qf and let n' be any filled 
bin process. Then 

llA' - Qn' 11 = IIA' - At + At - Qn' ll ' IIAt - On' ll - II A' - At II 

' |AA |- [ t -|I A' - At I1. 
Hence IA - Qn' II at - I A - At II, for all t and 

lB' ll = IA' - QN' 1II> IA' - Qnt' - O(t)-o(t) almost surely. 

Proof of Theorem 2. Consider first the deterministic case, in which interarri- 
val times for each object size are constant. Suppose A = Of for f - 0. Then 

A' = [At] = [Qft] Q[ft], 

and 

A ' [At] + 1 - [Qft] + 1 Q [ft] + Q1 +1 - Q [ft] + (mN + 1)1, 

where [ft] denotes the integer part of ft taken componentwise. One can see from 
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the above that it is possible to implement an online algorithm which at time t has 
completely filled at least N = [ft] bins with configuration j and leaves no more 
than mN + 1 objects of size oi in partially full bins. Thus the wasted space is 
always bounded by nN(mN + 1). 

When the interarrival times have non-zero variance and A E bdy(A), then A 
lies in some boundary hyperplane to the cone A. Let h be the unit-length vector 
which is normal to this hyperplane and which points away from A, and consider 
the process y, = (h'A')+. The central limit theorem implies that for some a the 
distribution of (h'A'- h'At)a/rVt converges to that of the standard normal 
random variable as t -- o. Since h'A = 0 we have E[(yt)] - crL -/t, where ,/ is 
the mean of the absolute value of a standard normal random variable. This fact 
combined with Lemma 1 completes the proof of the theorem. 

Proof of Theorem 3. Consider an open ball B(A, 8)C int(A) centred on A. 
Since A'lt-- A almost surely, there exists a random time T which is almost 
surely finite such that A /t E B(A, 8) for all t > T. Therefore At E B(At, St)C A, 
since A is a cone, and we can solve At = Qn' for all t > T. We have 

Q[n'] 
t A ' Q[n'] + Q1 - Q[n'] + (mN)1, 

and so it is possible to restrict the wasted space to no more than nmN2 for t > 
by repacking so that there are at least S[nt]i full bins at time t. 

The rest of this section leads up to the proof of Theorem 4 and throughout 
what remains we suppose that each arrival process A is a Poisson process of rate 
At. Let X = (Xjt, ,X,)' be a vector describing the state at time t of bins 
which have been filled or are being filled according to packing configuration ci. 
Here Xjk is the number of objects (of size Cjk) which have been placed in bins for 
which the packing configuration has been chosen to be cj and each of which has 
been placed in the the kth slot of that configuration (see Figure 1). Let 
dkl = I Xk- X;,. Consider a vector, e = (e.i * *, et), e {k E { , , nj}. We 

say that ej is the stabilizing effort vector for X, if ek = s when Xtk is the sth 
largest distinct integer in the set {X;1,* ,Xj,}. This means that etk> e# 
whenever X;k < X;, and e k = e', whenever Xk = X,,. Because the arrival proces- 
ses are Poisson, X,, j = 1, *, m, provides complete information about the state. 

C,1 

Cj2 

4 - i 

Figure 1. Bins filled using Cf. X;l = 4, X;2 = 1, X;3 = 3 
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We also let W' denote the total empty space in those bins which are partially 
packed using configuration j. 

Lemma 2. Suppose that all bins are to be packed using the one configura- 
tion ci and that at time t the state is X,. Let e, be the stabilizing effort vector and 
suppose the arrival process for those objects of size Cjk which are to be packed in 
the kth slot of ci is a non-homogeneous Poisson process with rate 

(1) Ljk = g+ Eejk, k = 1, . , nj, 

with e > 0, and 0 - g, < G for some G > 0. Then there exists B < oo such that 

E[ W, < B. 

Proof. The process dtki is an asymmetric random walk on the non-negative 
integers with unit jumps, a reflecting boundary at 0 and a negative drift towards 0 
of at least e. The state at time t of such a random walk has a finite expected value 
which is bounded uniformly in t. Hence E [d'k] can be uniformly bounded in t 
for each k and 1. The lemma follows by taking the expected value of 

W,-_ N ,dkl. 

The following lemma describes the method by which we can construct a 

stabilizing bin-packing algorithm when A is known. 

Lemma 3. If the arrival processes are Poisson, and A > 0 is in the interior of 
A and known, then there exists a B < oo and is a packing algorithm depending on 
A for which E[W'] < B. 

Proof. The proof of the lemma is based upon the notion of decomposing the 

system into m subsystems, the jth of which is concerned with filling bins 
according to configuration cj. Input processes to these m subsystems are 
constructed by splitting the one arrival process A' into m arrival processes, one 
for each subsystem. The splitting is done so that the rates at which objects enter 
each subsystem satisfy (1) and so that Lemma 2 may be applied to each 
subsystem. The splitting is achieved by probabilistically routing the arrivals to 
the subsystems using the time-varying routing probabilities I.k 

To achieve an appropriate splitting of A' we show that there exists a vector 
g' = (g, *, g )', g , 0, and some e >0 not depending on t, such that 

(2) Lk ,k=g +ee k, j=l,-..,m and k=l, --,ni, 
m ni 

(3) A, 
i (cjk 

= o, )itk 
k=1 

where l(c,k = oi) is 0 or 1 as cjk oi or cij = oi respectively. Now at each time t 
that an object of size oi arrives we calculate the ek's and solve (2) and (3) for the 

g's and the Lztk's. We then place the object in a slot of size o,, by choosing with 
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probability Lu to place the object in slot k of configuration q, where cik = oi. To 
show that we can indeed solve (2) and (3) we combine them to give 

m m ni 

(4) A, = qg;+ l(cjk= o,)ek, 

m ni 
(5) A = Qg + eu where u= l(c = o)e 

Now every ut is no more than mN2. Let D = mN2 and let d(A) denote the 
minimum distance of A from the boundary of A. Since A is in the interior of A 
the open ball B(A, d(A))is in A. Let E = e(A) = d(A )/(D /n). Then A - Eu' E A 
for all t and the equation A - Eu' = Qg' has a solution g' 0 for all t. 

To summarize: the splitting of the arrival process is accomplished in the 
following way. When an object of size oi arrives at time t we calculate the 
stabilizing effort vector e' for each Xt. We solve (5) for g' and then make a 
randomized decision about where the object should be packed. Amongst all slots 
having ck = oi, with probability tLk we choose to place the object in slot k of 

configuration cj. Now (2) states that the arrival rate of those objects which are to 
be put in slot k of a bin being packed with configuration c, can be written as the 
sum of a process of rate g', which is independent of k, and a term which depends 
on the stabilizing effort vector for X, at time t. Since each g~ is less than max[A,] 
we can apply Lemma 2 to each subsystem, taking G = max[Ai]. From Lemma 2 
we deduce that for each subsystem j there is a B < oo such that E[W W < B/m. 
The sum over j gives E [ W'] < B. 

The above proof of Lemma 3 describes a bin-packing algorithm which 
requires knowledge of A and e in solving (5) and (2). Since e = d(A)/D/n the 
algorithm will be denoted ALG(A). The following states that the system is also 
stabilizable using ALG(A) if A is sufficiently close to A. 

Lemma 4. There exists an open ball B(A, 8) centred on the actual arrival 
rate A such that ALG(A) stabilizes the system if A is in B (A, 6). That is, if A and 

(A) = d (A)/D are used instead of A and e to compute the p k's from (5) and (2), 
then the system is still stabilizable when these /jk's are used to determine the 

routing probabilities. 

Proof. First note that a sufficient condition for E[W'] < B < oo is 

(6) for all j, k, : L k < 4r- e if Xk > X,,. 

Suppose ALG(A) is used but the true arrival rate is A. In this case, let Ljk(A, A) 
denote the arrival rate of those objects which will be placed in the kth slot of 
bins being packed with configuration ci. We need to show that there exists an 
open ball around A such that if A is in this ball these ILk(A, A)'s satisfy (6). 
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Suppose A E B (A, d (A)/2). This implies d(A ) d (A)/2 and hence e(A)= 
d(A)/D > d(A)/2D = (A)/2. By construction, the /;k(A, A)'s satisfy (6) with e 
replaced by E(A). But since (A) -e(A)/2 they actually satisfy (6) with e 
replaced by E(A)/2. 

Now consider A near A. By the construction in (2) and (5) the rate L/k(A, A) is 
continuous in A, uniformly for all A's within any bounded set within A. 
Therefore, for all A E B(A, d(A)/2) we can choose a 8, with 8 < d(A)/2, which 
does not depend on A and is such that if A E B(A, 8) then the tLj(A, A)'s satisfy 
(6) with e replaced by (A )/3 (here choosing e(A )/3 as something less than the 
quantity e (A )/2 found at the conclusion of the previous paragraph). This proves 
the lemma, since (6) now holds for the kjk(A, A )'s when e is replaced by E (A)/3, 
and II - AA 112< 

We use the above lemma to construct a stabilizing algorithm based upon a 
converging estimate of A which is independent of the arrival process. 

Lemma 5. Suppose that A' is a stochastic process which is independent of 
A' and whose time-varying value is used as an estimate of A. Suppose that for all 

> 0 there exists a T such that A' lies inside the ball B(A, 8) for all t > , and 

E[] < oo. Then ALG(A') stabilizes the system. 

Proof. Let 8 be chosen so that the conclusions of Lemma 4 hold. By 
hypothesis, there is a random time T such that A' lies within B (A, 8) for all t > , 
and E[T] < oo. Let K = SAi be the number of objects which have arrived by 
time T, where E[K] = E[Tr]Ai < oo. Then for slots k and I of cj and all t, 

(7) E[d ki] E[K] + B, 

for some finite B. This is trivial when t < r since there are no more than K 
arrivals by time t and so dk' K. Recall that da performs an asymmetric 
random walk on the non-negative integers. It increases and decreases in unit 
steps; the rates of increase and decrease are uniformly bounded above and there 
is a drift towards 0 of at least e (A )/3 if A' E B (A, 8). Such a random walk returns 
to 0 infinitely often and it can be shown that the expected value of the maximum 
achieved before returning to 0 when the process starts in state k is bounded 
above by k + B, for some finite B. (Here B is just the expected value of the 
maximum achieved by a similar random walk, which starts at 0, but which does 
not have the reflecting boundary at 0.) Since d'k, is at most K, we see that as d5kl 
returns to 0 for the first time following r, it reaches a maximum on the way whose 
expected value is bounded above by E[K] + B. Once the first return to 0 has 
been made, the same B is a bound for E[d',] thereafter. The proof of the lemma 
follows from summing (7) over all j, k and I (with of course different K and B) to 
show E[W'] is uniformly bounded for all t. 
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Note that it is essential that A' be independent of A'. If A' were computed 
from {A': 0'- s - t}, say by A' = A'/t, then it would be incorrect to claim that 
A' is Poisson after T, since if this were so then A' could certainly exit B(A, 8) 
after time r. It is for this reason that we have approached the proof of Theorem 4 
indirectly. 

Proof of Theorem 4. The proof is almost complete. The key idea is to split the 
arrival process into two similar streams and let these feed arrivals to two 
identical bin-packing facilities, say F' and F2. It is convenient to suppose that 
A'/t - 2A. As each object arrives, it is randomly sent to F1 or F2 with equal 
probabilities. Thus each of the two facilities is fed by a Poisson process of rate A. 
Moreover, these arrival processes, say A"'1 and A2"', are statistically indepen- 
dent. At F' we use algorithm ALG(A2 t) with A2' = A2 "t/[t] and at F2 we use 
ALG(A"t) with A" 't = A 1']/[t] (where [t] denotes the integer part of t, these 
estimators are employed for t _ 1 and we use any estimators for t < 1). By this 
device the estimate of A used to determine the bin-packing at each facility is 
independent of the arrival process at that facility. Now A1"' and A2t' satisfy the 
conditions of Lemma 5. That is, they tend to A almost surely (by the strong law 
of large numbers). They are also within 8 of A for all t greater than some 
random times T1, T2 which have finite means. To see this, we use a Chebyshev 
inequality to give 

P(IA' - A12 >8) = P(IIA2 l'-A [t] 2 > 8[t]) 

_- E ( lA?'-Ai l)[t] /86[t]6. 

By calculations of moments of Poisson random variables we can show that the 
final term above is O([t]-3). Then summing on t = s, s + 1, * * , gives P(T1, s) 
O([s]-2). Further summation on s gives E[T1]< o. Lemma 5 applies to both 
facilities and the proof of Theorem 4 is complete. 

3. Discussion 

The algorithm constructed to prove Theorem 4 is a complicated one. We must, 
as each object arrives, calculate the ek's and then solve the n linear equations in 
m variables which appear in (5). This is a polynomial-time calculation in n and 
m, but its interest is theoretical rather than practical. We expect there to be some 
simpler algorithm which stabilizes the system if and only if it can be stabilized, 
and we expect it to do so if objects arrive according to renewal processes, not 
just Poisson processes. Perhaps some modifications of the best fit or first fit 
algorithms might work. We also hope to characterize stability for the continuous 
model, in which the bins are of size 1 and successive objects have sizes which are 
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independent, identically distributed samples from a distribution on (0,1]. 
Bentley et al. (1984) and others have a number of results. For example, when the 
distribution is uniform on (0, a], use of the first fit algorithm leads to E[W'] - 

0(t4/5). For more results see Coffman et al. (1984). 
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