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ABSTRACT 

Objects of various  integer sizes, o l ,  ..., on, are  to be packed 
together  into bins of size N as they arrive at  a  service facility. 
The  number of objects of size oi which arrive by time t is Af, 
where the components of A' = ( A ;   , . . . , A ; )  are independent 
renewal processes, with A'/ t  + X  at t -+ w. The  empty 
space in those bins which are  neither  empty nor full at  time t 
is called the wasted space and  the system is declared 
stabilizable if for some finite B there exists  a  bin-packing 
algorithm whose use guarantees  the expected  wasted space is 
less than B for  all t .  We show that  the system is stabilizable 
if the  arrival processes are Poisson and X lies in the interior of 
a certain convex polyhedral  cone A. In this case  there exists  a 
bin-packing algorithm which stabilizes the system  without 
needing to know X. However, if X lies on the  boundary of A 
the wasted space grows as O(&) and if X is exterior to A it 
grows as O(t); these conclusions hold even if objects may be 
repacked as often as desired. 

We give two interesting  applications of the above  results. In 
the first we consider the  case in which the bins are of size 
N 1 , N 2 ,  ..., N K .  In  the second we allow the size of the arriving 
objects to be drawn  from  an  arbitrary continuous distribution. 

1. Problem  description and results 

In a  one-dimensional  bin-packing model we suppose that 
objects of various  integer sizes in the set 0 = (0 l,...,onl are  to 
be packed  together into bins of integer  size N as  they  arrive 
at a  service  facility. The  number of objects of size oi which 
arrive by time t is Af, where the components of 
A' = ( A i ,  ..., A ; )  are independent  renewal processes, with 
A'/ t  -,X = (Xl,.. . ,Xn) as t -, 00. The  empty  space in those 
bins which are  neither  empty nor  full a t  time t is called the 
wasted space and this is denoted by W'. The system is 
declared stabilizable if for  some finite B there exists a  bin- 
packing algorithm whose use guarantees  that  the expected 
wasted space is less than B for  all t .  Of course this is 
equivalent to  the notion that  the expected number of partially 
full bins remains uniformly  bounded as  time increases. 

We  are  interested in characterizing  the  parameter values N ,  
0 and A' for which the system is stabilizable. It is assumed 
that  the bin-packing must be online: that is, the objects must 
be placed in bins as they arrive  and  may not be repacked 
later.  The wasted space  can  certainly be less if objects may 
be repacked as often as desired, but even if repacking is 
allowed the system may not be stabilizable (for example, if 
0 = (2) and N = 3). 
Coffman et.  al. (1984)  survey over 100 articles on bin-packing 
models. Most all of these  concern the worst-case  analysis of 
suboptimal  algorithms for deterministic scenarios. Some 
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authors have studied  stochastic bin-packing models, with both 
online and offline algorithms.  Their principal interest  has 
been the  average  performance of classical algorithms  such  as 
"first fit" or "best fit" when the object sizes are  drawn  from a 
known distribution (see Bentley et. al. (1984)). Hoffmann 
(1982)  has  studied the design of online algorithms which 
employ knowledge about  the  distribution  from which object 
sizes are  drawn. He has shown that  there is an online 
algorithm  making  the expected value of the  ratio of the 
number of used  bins to  the  sum of the object sizes as close to 
1 as desired as t -+ 00. 

We  ask  whether  it is possible for the expected  wasted space  to 
remain uniformly  bounded as  time increases. This would be 
desirable in a cutting-stock context,  where as  orders  arrive 
they  are  cut  from rolls of stock which are  manufactured in 
equal  lengths N ,  and  operating costs are proportional to  the 
amount of stock which has been manufactured  but which is as 
yet is only partially  cut.  We begin our discussion by defining 
the  set of conjgurations  C - (el, ..., em) as the  set of all 
distinct ways in which a bin of size N can  be packed 
completely  with  objects from  the set 0. Configuration cj  is 
given by the vector (ejl, ..., cjn j ) ,  where c j k  E. 0 denotes  the 
size of object to occupy the  k'th slot of the configuration, and 
where  clearly z c j k  = N .  In  order  that  the cj's have  a unique 

designation,  without  duplication of equivalent  packings, we 
always  order  the slots so that c j l  Q . . . < cjnj. 

Crucial  to  our analysis is the n x m dimensional  packing 
matrix Q, of which the  element qij is the  number of objects of 
size oi used  in  packing  configuration c j .  To avoid triviality we 
suppose that  each row of Q is non-zero, so that  each  object  in 
0 can  be packed  with some  other objects  in 0 to completely 
fill a bin of size N .  Another  important  entity is the  set, 
A = {X:   X-  Qf, f > 01, spanned by nonnegative linear 
combinations of the columns of Q. Let bdy (A), ext (A) and 
int(h) denote  the  boundary,  exterior  and interior of A 
respectively. Notice  that A is a closed convex polyhedral  cone 
in n dimensional spye   and  inf(A) is nonempty if and only if 
the null space N (Q ) = {x  : Q x =O} = {O). To illustrate  the 
importance of A we describe  a  simple example. 

Example. Suppose  objects of sizes 1 and 2 are  to  be packed in 
bins of size 3: 0 = {1,2), N = 3. There  are two 
configurations,  with 

Q = 1: 1 1  and A = (X:h,2X2). 

k 

For  reasons which we shall explain following the  statement of 
theorem 4, we restrict  attention  to X > 0. If X E ext (A) then 
X, > X, and  it is clear  that even if repacking is allowed the 
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number of bins which are only partially filled by a  single 2 
will grow as 0 ( t ) .  If X E bdy (A) then X,  = X, and  each 1 
must be matched with  a 2 if the wasted space is not to grow 
as  fast  as O(r ) .  If we try  to  do  this,  either  all  partially full 
bins at  time t will contain a  single 2 ,  or all will contain a 
single 1 .  The  number of partially  full bins will perform  a 
symmetric  random walk on the nonnegative integers with 
reflection at  0, and hence the expected number of such bins 
will grow as O ( J ) .  If X E int(A) then X, > X,. Suppose we 
use an online algorithm which, if there  are  partially full bins, 
always  puts a 1 in a partially full  bin with a 2 ,  or if there is 
no  such bin puts  it in  a partially  full bin with other 1’s. The 
number of partially full  bins containing a 2 performs  a 
random walk on the nonnegative  integers,  with drift  towards 0 
and reflection at  0. The  number of partially full bins 
containing 1’s is never more than one. Thus  the expected 
wasted space is bounded by some B for  all t .  

The observations made for the above example  can be 
generalized.  We show that a  system is stabilizable only if 
X E int(A). When  the objects arrive  according  to  independent 
Poisson processes this condition is sufficient for stability.  We 
describe a  probabilistic  bin-packing algorithm which stabilizes 
the system in this  case  and which does not need to know X. 
When X is not in the interior of A the system is not 
stabilizable even if repackin is allowed. If X E bdy(A) the 
wasted space grows as 0 ( / t 1, and if X E ext (A) it grows as 
0 ( r ) .  These results are  stated in the following theorems. 

Theorem 1. If X > 0 is exterior  to A ,  then W‘ - 0( t ) ,  even 
when repacking is allowed. 

Theorem 2. If X > 0 is on the  boundary of A and  the 
interarrival  times of the renewal processes Af have  non-zero 
variance,  then for every algorithm  there is a B > 0 such that 
E[W‘1 > B J ,  even when repacking is allowed. If the 
interarrival times  for each object type  are  constant,  then  there 
exists an online algorithm  and B < m such that W‘ < B for 
all t .  

Theorem 3. If X > 0 is in the interior of A, and objects may 
be repacked as desired, then  there exists an  algorithm, a 
bound B < m and  an  almost surely  finite random  time 7 such 
that W‘ < B for all t > 7. 

Theorem 4. If X > 0 is in the interior of A and  the  arrival 
processes are Poisson then  the system is stabilizable by an 
online algorithm which does not need to know X. 

Throughout  the above we restrict  attention  to X > 0. If the 
i’th component (of X is 0 and  other components are positive 
then  the dimension of the system  should be reduced and  the 
theorems should be read for a A* embedded in n - 1 
dimension space, where O* = 0 - (oil, X* > 0, and Q* is 
derived from Q by deleting the  i’th row of Q and all  columns 
of Q which have  a positive entry in the  i’th row (thereby 
deleting  all  configurations which cannot be used).  Thus, in 
the above example, we have X = ( 1 , O )  E bdy (A) if A is 
viewed as being embedded in R2.  However,  for the set 
A* = (X, :X, > O ) ,  which is embedded in R’, we do have 
( 1 )  E inr(A*).  It is therefore  theorems 3 and 4 which apply 
when X - ( l , O ) ’ ,  rather  than  theorem 2 .  For X = ( O , l ) ’ ,  the 
reduction of Q to Q* leaves nothing and A* is empty. 

A linear  programming  algorithm  can  be used to  determine 
whether or not  a particular X lies in the interior or  exterior of 
A .  The  computation complexity of this  calculation is therefore 
polynomial in the dimensions of the  matrix Q. However, m 
may be very large. If 0 = ( 1 .  2 ,  ..., n] and  the m columns of 

Q express  all the ways in which a bin of size n can be filled, 
then  the  calculation will grow exponentially,  since m (n), the 
number of partitions of n, is asymptotically 
(1 /4  nd) e x p ( x a ) .  

In  the proof of theorem 4 we introduce a  probabilistic  bin- 
packing algorithm which stabilizes the system if and only if 
the system can be stabilized.  The  algorithm does not need to 
know X. The key idea is to view the placing an object in a bin 
as filling a  slot  in  a particular configuration. The  state of the 
system is given by a list of partially full  configurations. This 
is a more useful  description of the  state of the system than 
one which simply states  the various amounts of empty  space in 
partially full bins. The wasted space  can be studied in terms 
of the  random walks on the nonnegative integers  and  the 
theorems  are proved using well-known results  for  these walks. 

In section 3 we provide two applications of the above results. 
In  the first application we allow the bins to be of different 
sizes N , ,   N , ,  ..., NK. We show that in  this case  the cone of the 
stabilizable  arrival  rates A is the smallest convex cone 
containing  all the cones A,,.. . ,&, where each Ai corresponds 
to  the system with bins of size N i .  This implies that having 
bins of various sizes increases the flexibility of the bin-packing 
process and allows the  stabilization of a larger set of arrival 
rates  than  the  immediate  candidate A, u . . . u AK. 

In  the second application the arriving  objects  have sizes i.i.d. 
on (0,11 according to some  density  function f, and  are packed 
in bins of size 1. In  theorem 5 we prove a sufficient condition 
on f for stabilizability  under  the following “rounding-off’ 
assumption. Given an  arbitrarily  large integer R ,  for each 
object  size s let k be the  integer such that 
( k - l ) / R  < s < k / R .  Assume now that  each object of size 
s that arrives is “preprocessed” by the system by being put 
into a box of size k / R ,  and  that these boxes are used for 
filling the bins  instead of the objects  themselves.  Intuitively, 
1/R models the  accuracy of the system  in measuring  the size 
of an  object.  We prove that if f ( x ) = = g ( x ) + e ( x ) ,  where 
g ( x )   - g ( l - x )  and e ( x )  is strictly decreasing in x ,  then  the 
previously defined system  with  “preprocessing” is stabilizable. 

The  form of e ( x )  justifies the intuition that smaller sizes 
provide more flexibility in packing than  larger ones. 

2. Characterization of stabilizable systems 

It is helpful to  elaborate  the  algebraic description of the closed 
convex polyhedral  cone A = {Qf :f 2 0). The cone is formed 
from nonnegative  combinations of a  finite number of 
generators.  These  generators, which correspond to edges of 
the cone, are a  subset of the m columns of Q. The cone is 
bounded by hyperplanes.  Suppose h is a,unit-length normal 
to  the  boundary  hyperplane given by (X:h  X-O), and suppose 
the direction of h is away from A, in the sense that h X < 0 
for all X c A .  If H denotes the  matrix whose columns are all 
such vectors h then A = {X : X H < 0). 

Remark If we know H then it is easy to  determine whether 
or not  a particular X lies in A. However, the  calculation of H 
from Q is equivalent to finding the set of extreme points of a 
linear  program  and  it is therefore a calculation whose 
computational complexity grows exponentially in m and n. 

We now describe the packing process. Throughout  the 
following we use capital  letters for processes which take only 
integer  values and small letters for processes which may  take 
real  values. We define the filled bin process N ‘  by 
A‘ = QN‘ + B ‘ ,  where N ‘ ,  B‘ are nonnegative  integer-valued 
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processes with N' minimizing IIB'II2 - ,/= over all 
integer-valued processes. Nj is the  number of fully  packed 
bins a t  time t which use  configuration j .  Note  that N' may 
not be unique. Bf is the  number of objects of type i packed in 
bins which are only partially  full.  The  number of objects in 
partially full  bins is IIB'II1 - ZlBf l .  Since  the size of each 
object is a t  least 1 there  are between IIB'II1/N and IIB' Ill 
partially full bins. Thus  the wasted space satisfies 
11B'1I1 Q W' Q IIB'IIIN for  all possible packings. The 
following lemma bounds the wasted space in terms of the 
normals to  boundary hyperplanes of A. 

Lemma 1. Suppose h is a  unit-length vector normal  to a 
boundary  hyperplane of A and h points away  from A. Then 

Pfoof. If h'A' Q 0 the conclusion of thq lemma is trivial.  If 
h A ' > 0 then A' is exterior  to A and h A' is the  distance of 
A' to  the  boundary  hyperplane of A. Let n' minimize 
IIA' -Qn' 1 1 2 ,  where n' is a  real-valued process. Then  the 
lemma follows from 

11B'll2 - IIA' -QN'1I2 2 llA'-Qn'll2 2 h'A' .  

11B'11, 2 (h  A' )+ .  

Proof of theorem 1. Suppose a - m i n ( l l X ~ x l l l : x ~ A ]  > 0 
and \hat this  minimum is  achieved by x - X. Let f be such 
that X - Qf and  let nr be any filled bin process. Then 

llA'-Q~'ll1 - IIA'-Xt+Xt-Qn'lll 2 IlXt-Qn'lll - llA'-Xtll~ 

2 l lX-~l l1t - IIA'-Xf 111. 

Hence llA'-Qn'lll 2 at-lIA'-Xtlll for  all t and 

IIB'II1 - IIA' -QN'IIl 2 IIA' -Qn'lll - O ( t )  - o ( t )  almost 
surely. 

h o o f  of theorem 2. Consider  first the  deterministic case, in 
which interarrival  times for each object type  are  constant. 
Suppose X = Qf for f 2 0. Then 

A' 2 [Xtl = [ Q f f l  2 Qrftl,  and 

A' Q [Xtl  + LQ [Qftl + 1_6 Q[ffl + Q l +  1_Q Q[ffl 

+ (mN+& 

where [ f t  1 denotes  the integer part of ft taken  componentwise. 
One  can see from  the above that it is possible to implement an 
online algorithm which at  time t has completely filled at  least 
Nj - [ftlj bins  with  configuration j and leaves no more  than 
m N  + 1 objects of type i in partially  full bins. Thus  the 
wasted space is always  bounded by nN  (mN + 1). 
When  the  interarrival  times have  nonzero variance  and 
X E bdy (A), then X lies in some boundary  hyperplane  to  the 
cone A. Let h be the  unit-length vector which is normal  to 
this  hyperplane  and which points away  from A, and consider 
the process y ,  - ( h  A')'. The  Central  bimit  Theorem 
implies that for  some Q the  distribution of ( h  A'-h'Xt)/aJ 
converges to tha; of the  standard  normal  random  variables  as 
f + 00. Since h X - 0 we have E [ ( y ,  )+I  3 apJ, where p is 
the mean of the  absolute value of a standard  normal  random 
variable. This  fact combined with lemma 1 completes the 
proof of the  theorem. 

h o o f  of theorem 3. Consider an open ball B (h,d E i n t o  
centered on X. Since A'lt + X almost surely, there exists a 
random  time T which is almost  surely finite such  that 
A ' / f  E B (X,6) for all f > T .  Therefore A' E B (ht ,6r )  A, 
since A is a  cone, and we can solve A' - Qn' for  all t > T .  

We have 

Q h ' l  Q A' Q Q[n'l + QlQ Qrn'l + ( m N ) L  

and so it is possible to  restrict  the wasted space  to  no  more 
than  nmN2  for f > T by repacking so that  there  are  at least 
Z[n' li full  bins a t  time t . 
The  rest of this section leads  up  to  the proof of theorem 4 and 
throughout  what  remains we suppose that  each  arrival process 
A/  is a Poisson process of rate X;. Let ~j - OU,', ,...,A$) be 
a  vector  describing the  state  at  time t of bins which have been 
filled or  are being filled according  to packing  configuration c j .  
Here Xjk is the  number of objects (of type c j k )  which have 
been placed  in  bins for which the packing  configuration has 
been  chosen to be cj and  each of which has been  placed  in the 
k'th slot of that configuration (see figure 1). Let 
djkc IXjk -Xj'c 1 .  

X j 1  - 4, xj2 - 1, xj3 - 3 

Figure 1. Bins filled using cj 

Consider  a  vector, ej - (e j l  , ..., ejn, 1, ejk E {1,2, ..., n j ) .  We 
say that e; is the stabilizing effort vector for X j  if ejk = s 
when x j k  is the  s'th  largest  distinct  integer in the  set 
( X j l ,  ..., Xjn,]. This  means  that ejk > ejc whenever 
X !  < Xjc and ejk - ejt whenever Xjk - X j t .  Because the 
arrival processes are Poisson, Xi', j - 1, ..., m, provides 
complete  information  about  the  state.  We  also  let Wj denote 
the  total  empty  space in  those  bins which are  partially packed 
using  configuration j .  

Lemma 2. Suppose  that  all  bins  are  to be packed  using the 
one configuration cj and  that  at  time t the  state is X;. Let e; 
be the  stabilizing effort  vector and suppose the  arrival process 
for those  objects of type cjk which are  to be packed  in the 
k'th slot of cj is a nonhomogeneous Poisson process  with rate 

Jk. 

(1) p f k  - gj + Cejk, k 1, ..., n j ,  

with t > 0, and 0 Q gj < G for  some G > 0. 

Then  there exists B < = such  that E [  Wj1 < B .  
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hoof.  The process djkc is an  asymmetric  random walk on 
the nonnegative integers with unit  jumps, a  reflecting 
boundary at  0 and a negative drift  towards 0 of a t  least t. 

The  state  at  time t of such a random walk has a  finite 
expected value which  is  bounded  uniformly  in t .  Hence 
E [ d j k c l  can be uniformly  bounded in t for each k and t .  
The  lemma follows by taking  the expected value of 

< N 2 djkt.  
&,e 

The following lemma describes the  method by which we can 
construct a stabilizing  bin-packing algorithm when A is known. 

Lemma 3. If the  arrival processes are Poisson with X > 0 in 
the  interior of A and known, then  there exists  a B < = and is 
a  packing algorithm  depending on A for  which E [ W ' ]  < B .  

hoof .  The proof of the  lemma is based upon the notion of 
decomposing the system into m subsystems, the  j 'th of which 
is concerned with filling bins according  to configuration c j .  
Input processes to these m systems are  created by splitting  the 
one  arrival process A' into m processes such  that, for all 
j - 1 ,  ..., m ,  the  rates  at which  objects enter  the  j'th 
subsystem  satisfy (1) and so that  lemma 2 may  be applied to 
each  subsystem.  The  splitting is achieved by probablistic 
routing  the  arrivals  to  the subsystems,  using the time-varying 
routing probabilities pjk. 

To achieve an  appropriate  splitting ?f A' we must show that 
there exists  a  vector g' - (gi ,..., gk) , g 2 0, and  some t > 0 
not depending on t ,  such  that 

(2 )  p jk  = gj + €e,&, j - 1 ,  ..., m and k - 1 ,  ..., n j ,  

(3) X i  = 2 l ( c j k = i ) p j k .  
rn nj 

j-1 k-1 

where. 1 (cjk - oil is 0 or 1 as cjk Z oi or cij - oi 
respectively. Now a t  each  time t that  an  object of size oi 
arrives we calculate  the ejk's and solve (2 )  and (3) for the gj's 
and  the p! 's. We  then place the  object in  a  slot of size oi,  by 
choosing  wlth probability p k  to  place  the  object in  slot  k of 
configuration c . , where cjk - oi. To show that we can indeed 
solve (2 )  and h) we combine them  to give, 

(4) X i  - 2 qi jg j  + t 2 x 1 (cjk - i) e jk ,  

Jk,  

m rn "1 

j-1 j -1  k-1 

( 5 )  A - Qg' + tu', where uf - 2 2 1 (cjk = i )  . 
m 4 

j-1 k-1 

Now  every uf is no more  than mN2.  Let D - mN2 and  let 
d (X) denote  the  minimum  distance of X from  the  boundary of 
A. Since X is in the  interior of A the open  ball B(X,d (X) )  is 
in A. Let t = th) - d(X) /D&. Then X - t u r d  for  all t 
and  the  equation X - tu' = Qg' has a  solution g' > 0 for all 
t .  

To  summarize:  the  splitting of the  arrival process is 
accomplished  in the following way. When  an object of size oi 
arrives a t  time t we calculate  the stabilizing  effort  vector e; 
for  each X;. We solve ( 5 )  for g' and  then  make a 
randomized decision about  where  the object  should be packed. 
Amongst  all slots  having cjk = oil we with  probability pjk 
choose to  place  the object  in slot k of configuration c j .  Now 
(2 )  states  that  the  arrival  rate of those  objects which are  to be 

put in slot k of a  bin  being  packed  with  configuration cj can 
be written  as  the  sum of a process of rate gj, which is 
independent of k ,   and  a term which depends on the stabilizing 
effort vector for Xj at  time t .  Since  each gj is less then 
max [ A i l  we can apply lemma 2 to  each  subsystem,  taking 
G = max[Xi]. From  lemma 2 we deduce  that for each 
subsystem j there is a B < = such  that  E[Wj1 < B / m .  The 
sum over j gives E[WI < B .  

The above proof of lemma 3 describes  a  bin-packing algorithm 
which requires knowledge of X and t in solving ( 5 )  and ( 2 ) .  
Since t - d (X)/D& the  algorithm will be denoted ALG (X). 
The fo!lowi?g states  that  the system is also stabilizable using 
ALG (X) if X is sufficiently close to X. 

Lemma 4. There exists an open ball B (X,6) centered on the 
!ctual arrival  rate X such  that 4L.G (X) s!abilizq the system if 
X is in B (X,6). That is, if and X and t (X) = d (X) /D are used 
instead of X and t to  compute  the p'fk's from ( 5 )  and (21, then 
the system is still stabilizabled when these p'fk's are used to 
determine  the  routing probabilities. 

Proof. First  note  that a sufficient condition  for 
E [ W ' I  < B  < = i s  

(6) for all j , k , C :  p'fk < pje - t if Xjk > Xjt. 

Suppose ALG (ilA is used but  the  true  arrival  rate is X. In  this 
case,  let pjkh,X) denote  the  arrival  rate of those  objects 
which will be placed  in the  k'th slot of bins  being  packed with 
configuration c j .  We need t? show that  there exists an open 
ball around X such  that if J is in this ball these pjk(X,X)'s 
satisfy (6). Suppose A t  B (X, d (X) /2) .  This implies 
d(?) 2 d!X)/2 and hence 
t (X)-=-d(X)/D 2 d A ) / 2 D  - t (X ) /2 .  By conjtruction,  the 
pjk(A,X)'s satisfy (6)  with t replaced by t (X). But  since 
t (X) 2 t (X)/2 they  actually  satisfy (6)  with t replaced by 
t w / 2 .  

Now considerj-near i. By the cons_truction in (2 )  and (2) 
the  rate p'fk(X,X) is continuous  in X, uniformly  for all X's 
yithin  any bounded set within A. Therefore, for all 
XcB(X,d(X) /2)  we cp choose a 6, with S_ < dJX)/2, which 
does-n?t depend on A and is such  that if A t  B(X,6) then  the 
p'~k(X,X)'s satisfy (6)  with t replaced by e (X)/3 (here choosing 
t b / 3  as  something less than  the  quantity e (X)/2 found at  the 
conclusion of the previous paragraph). TI$ proves the 
lemma, since (6) now bolds for  the pjk (X,X)'s when c is 
replaced by t(X)/3, and IIX-XI1 < 6. 
We use the above lemma  to  construct a  stabilizing algorithm 
based upon a  converging estimate of X which is independent of 
the  arrival process. 

Lemma 5. Suppose that i' is a stochastic process which is 
independent of A' and whose time-varying  value is used as  an 
estima!e  of X. Suppose  that for all 6 > 0 there exists  a T such 
that X' lies inside th: ball B (X,6) for all t > T, and 
E[r l  < =. Then ALG (1') stabilizes the system. 

Proof. Let 6 be chosen so that  the conclusions of lemma-4 
hold. By hypothesis, there is a random  time T such  that X' 
lies within B (A,6) for all t > T, and  E[T] < =, Let 
K - ZA; be  the  number of objects which have  arrived by 
time T, where E[K1 - E[71ZXi < =. Then for  slots  k and C 
of c j  and  all t ,  

(7) E[d,!,!I < E[KI + B ,  
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for  some finite B .  This is trivial when t < 7 since there  are 
no more than K arrivals by time t and so djkc < K .  Recall 
that djke performs an  asymmetric  random walk  on the 
nonnegative  integers. It increases and decreases in unit steps; 
the  rates of increase  and decrease are uniformly  bounded 
tbove  and  there is a drift  towards 0 of at least c(X)/3 if 
X' t B (X,6). Such a random walk returns  to 0 infinitely often 
and it can be shown that  the expected  value of the  maximum 
achieved  before returning  to 0 when the process starts in state 
k is bounded  above by k + B ,  for  some  finite B .  (Here B is 
just  the expected  value of the  maximum achieved by a similar 
random walk, which starts  at 0, but which does not  have the 
relecting boundary at  0.) Since di'kc is a t  most K ,  we see that 
as d;ke returns  to 0 for the first t ~ m e  following 7, it  reaches a 
maximum on the way whose expected  value is bounded  above 
by E[KI + B .  Once  the first return  to 0 has been made,  the 
same B is a  bound  for E[djkc]  thereafter.  The proof of the 
lemma follows from  summing (7) over all j ,  k and C (with of 
course different K and B )  to show E[W'1 is uniformly 
bounded for  all t .  

Note  that it is essential that i' be independent of A ' .  If i' 
were computed  from (AS  :O Q s Q t ) ,  by say X' - A ' l t ,  then it 
would be incorrectLo  claim  that A' is Poisson after 7, since if 
this were so then X' could certainly exit B(X,6) after  time 7. 

It is for this reason that we have approached  the proof of 
theorem 4 indirectly. 

Proof of theorem 4. The proof is almost complete. The key 
idea is to split the  arrival process into two similar  streams  and 
let these  feed arrivals  to two  identical  bin-packing  facilities, 
say F' and F2. It is convenient to suppose that A'l t  - 2X. 
As each object arrives, it is randomly sent  to F' or F2 with 
equal probabilities. Thus  each of the two facilities is fed by a 
Poisson process of rate X. Moreover,  these arrival processes, 
say A'.' and A'':, are  statistically inde endent.  At F' we use 
algorithm ALG(XY) with X2.['] = A2*[' 7 A t ]  and  at F 2  we use 
A L G 6 ' " )  where A'"" = A'9[ '1 / [ t l ,  t > 0. (where [ t l  denotes 
the  integer  part of t ,  these  estimators  are employed for t 2 t 
and we use  any  estimator  for t < 1 ) .  By this devise the 
estimate of X used to  determine  the bin-packing at  each 
facility is independent of the  arrival process at  that facility. It 
:an be proved, though we omit the proof here,  that A',' and 
X2,' satisfy  the  other conditions of lemma 5 ,  in that  they tend 
to X almost surely and  are within 6 of X for all t greater  than 
some  random times 7*, 7 2  which have finite means.  To see 
this, we use a  Chebyshev  inequality to give 

By calculations of moments of Poisson random variables we 
can show that  the final term above is O ( [ t  Then 
summing on t = s ,  s + 1 ,  ... , gives P (rl > s) - o ( [ s I - ~ ) .  
Further  summation on s gives E [ T ~ ]  < 00. Lemma 5 applies 
to both  facilities and  the proof of theorem 4 is complete. 

3. Applications 

As we mentioned in the first section of the  paper, we are 
interested in determining  whether having available bins of 
more than one  size  increases the set of stabilizable  arrival 
rates  to  include X's which are not stabilizable by using 
exclusively one  among  the available bin sizes. Formally, if the 
bin sizes are N i ,  i = 1 ,  ..., K and Ai corresponds to  the bin- 

packing  system with bin size Ni, we are  interested in knowing 

whether  the A of the system is larger  than u Ai. The  answer 

of this question is quite simple. We  can define the set of 
configurations of the system to be the union of the  sets of the 
configurations of the individual  systems, and accordingly 
define the packing matrix Q. Clearly Q can be written  as 
[Q1 lQ21 . . . IQKl, where Qi is the packing matrix of the 
system of bin size i .  This implies that A is the convex cone 
generated by the union of the  generators of the cones Ai ,  

i = 1 ,  ..., K ,  hence it is in general  larger  than U Ai. Note  also 

that all the previous results carry over in this  more  general 
case,  and  the  same stabilizing  bin-packing algorithm  can be 
used as well. 

We proceed now with  a second application of our  stability 
results.  We will show that   i f f  is the density  function of the 
object sizes over (0,11, then i f f  is of the  form f -g + e  where 
g ( x )   - g ( l - x )  and e ( x )  is strictly decreasing, then  the use of 
our bin-packing algorithm will stabilize  the system if every 
object is "preprocessed" as described in the first section of the 
paper.  It is easy to see that  this is  equivalent with proving the 
following theorem. 

Theorem 5. Let (1 ,2,  ..., N1 be  the set of object sizes, N be 
the bin size, and X i  = f ( i ) ,  where f is defined on (0,NI and 
f ( x )   - g ( x )   + e ( x ) ,  where 

(a) g ( x )   - g ( N - x )  (symmetric),  and 

(b) e ( x )  < e ( y )  iff x > y ,  

K 

i-1 

K 

i - 1  

for  all x ,y E (0, N1. Then X E A. 
Proof. Let X ( f )  denote  the X corresponding to a  choice o f f ,  
and  le^ F be  the  set of all density functions satisfying (a), (b). 
Let A -  {X I X -  Qz,z 2 01. Now  one  can easily  see that if 
f E F ,  then  there is an open ball B around f which is also &I 
F. This implies that if we prove that for  a f E F X ( f >  E A, 
then  this X(f 1 must  be in the  interior of A sigce  for all X in 
the open  ball X(f ), f E B,-we have that X E A. Hence  it is 
enough to show that X ( f )  E A iff  E F .  

Let X(f 1 -X(g)   +X(e) .  One  can easily  see that X(g> -Qz, for 
some z 2 0, simply by choosing the components of z 
corresponding to configurations of the  form ( i , N - i ) ,  
i = l ,  ..., N/2-1,  to  be  equal  to g ( i ) ,  and  the component 
corresponding to  the configuration ( N / 2 ,   N / 2 )  to be equal  to 
g ( N / 2 ) / 2  (for simplicity we assume  from now on that N is 
even. If N is odd, a  trivial  modification  makes the  same proof 
work. Intuitively, if N is even, the objects of size N / 2  can 
arrive at  any  arbitrary  rate since they  can  be packed  two in 
each bin independently of other objects  in the system.) We 
only have to prove now that h ( e )  E A. 
Let ui be the vector in which the first i components are 1 and 
the  remaining N - i  components are 0. Since e ( x )  is strictly 
decreasing, we can write 

N 
X(e) = x a j u i ,  ai > 0 ,  i - 1 ,  ..., N .  

i-1 

We will show now that-+ E h, i - 1 ,..., N .  Let q ( i , N )  stand 
for the assertion ''Uk E A, k - 1 ,  ..., i ,  with bin size  being N". 
It is easy to see that proving q ( i , N )  is equivalent  with 
proving that  there exist  two numbers k ,  I ,  such that by using 
k objects of each size 1 ,  ..., i ,  we can pack them completely 
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into 1 bins of size N. We  do  this by induction on i. Clearly 
q (1 ,N)  is valid.  Assume tha t   q ( i ,N)  holds for i = l ,  ..., n-1. 
We will show the validity of q ( n ,  N ) .  

(a)  case of 2n > N. Then n + u = N ,  for  some u < n .  Note 
now that by building  configurations of the  form 
( n  - k ,  u + k ) ,  k -0, 1, ..., we can  use  an  equal  number of all 
objects of sizes u ,  ..., n and  create full bins of size N. By 
using the induction  hypothesis, we can  do  the  same with the 
remaining objects 1, ..., u-1,  since u < n  and  q(u-1,N) is 
valid. This completes case  (a). 

(b)  case of 2n < N. Then we can write N -dn + u ,  
u < n , d  > 1, or equivalently N = ( d - l ) n + ( n + u ) .  Now one 
can trivially  see that q ( n  , t n ) ,  t 2 1 holds, and  that g ( n  , n +u 
holds  since  2n > n + u  by using the result of case  (a). By 
taking  the Cartesian product of the  sets of configurations 
corresponding to q(n,(d-l)n)  and q ( n , n + u ) ,  the result 
follows. Note  that if 2n E N ,  use the above steps to pack  fully 
an  equal  number of the objects  1, ..., n-1, and  then  create full 
bins by packing the  same  number of objects of size N / 2  
(possibly multiply  this  number by two to  make  the  number of 
integer). 

Corollary. I f f  = g  + e  + r ,  where g , e  are  as before, and r has 
arbitrary masses  on the points  corresponding to  the integer 
subset of (N/k I k=1,2 ,  ..., N},  then X(f) is stabilizable. 

This follows as a trivial  consequence of theorem 5 since each 
additional  arrival  rates of objects of size N / k  can  alone be 
used to completely fill bins of size N. 

4. Discussion 

The  algorithm  constructed  to prove theorem  4 is a  complicated 
one. We  must,  as  each object arrives,  calculate  the ejk’s and 
then solve the n linear  equations in m variables which appear 
in ( 5 ) .  This is a  polynomial-time calculation in n and m ,  but 
its interest is theoretical  rather  than  practical.  We expect 
there  to  be some  simpler algorithm which stabilizes the system 
if and only if it can be stabilized,  and we expect it  to  do so if 
objects arrive  according renewal processes, not just Poisson 
processes. Perhaps some  modifications of the best fit or first 
fit algorithms  might work. We also hope to  characterize 
stability for the  continuous model with no “preprocessing’’, in 
which the bins are of size 1  and successive objects  have sizes 
which are  independent, identically distributed samples from a 
distribution on (0,lI. Bently et  al.  (1984)  and  others have  a 
number of results.  For example, when the  distribution is 
uniform on (O,al, use of the first fit algorithm leads to 
E[W‘] - O(t4 ’3 .  For more  results  see  Coffman et  al. 
(1984). 
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