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Abstract— Traditional contracts for network and computing
resources are of “static” type where the customer is buying
the right to use for a given price a fixed amount of resources
for a long period of time. Typical examples are the case of
contracting bandwidth in access networks and VPNs and the case
of computing infrastructure that a customer leases (or buys) for
fulfilling its IT needs. Current technology in access networks and
Grid computing allows suppliers to offer more flexible contracts
to their customers allowing them to choose dynamically the
amount of resources they are allowed to use at a given time.
This flexibility may benefit the customers with bursty demand
since it allows them to obtain resources only when they need
them and pay only when they use them. We define contracts
where time is discrete and a customer is allowed to buy a fixed
amount of resources ahead of time for a price a, the “static” part
of the contract, and complement this at each new time period by
purchasing an extra amount at price b, the “dynamic” part of
the contract. We investigate the properties of such contracts and
compare them with contracts of purely static or dynamic type.
Our results suggest that in general suppliers and customers are
both better off when using such mixed contracts, and that purely
dynamic contracts may not always be preferable compared to
purely static ones. We also show that under price competition of
suppliers using static contracts against suppliers using dynamic
contracts, at the equilibrium both suppliers may secure some
profit by segmenting the market.

I. INTRODUCTION

Traditional bandwidth contracts have been for fixed band-
width pipes and are long term, typically a year. We are thinking
of a network supplier that leases high capacity broadband lines
to other large companies, such as banks or Internet service
suppliers (ISPs). A bank might lease a 155Mbps line between
two locations for one year. An AOL subscriber might sign
a year’s contract for the service known as ‘AOL Broadband
Gold’ (2Mbps). Typically, such Internet access or VPN ser-
vices do not offer any flexibility to the customer to alter
dynamically the size of the pipe. Similarly, when acquiring
computing resources such a servers and PCs, a company’s IT
department usually makes yearly leasing contracts for fixed
amount of computing resources, or buys these resources which
is the equivalent of a fixed size contract for an even longer
period of time. The problem customers face in making such
contracts is that their demand for resources is not constant but
bursty and in many cases unpredictable. They hence face the
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risk of acquiring for a long time period resources that may not
be effectively used, or acquiring fewer resources that will fail
to meet high short term demand and peak load requirements.

Emerging technology in access networks and Grid comput-
ing allows suppliers to offer more flexible contracts to their
customers providing them the ability to choose dynamically
the amount of resources they are allowed to use at a given
time. For instance, DSLForum’s BroadbandSuite platform [1]
and IPsphere’s framework [2] propose solutions that will offer
the ability to alter the size of the bandwidth pipe with which
a customer is provided on a time scale that is much finer
than yearly. They also provide accounting and billing for
such dynamic services. Grid computing offers a direct analogy
to bandwidth provisioning. Current Grid utility computing
architectures such as SUN Grid Compute Utility [3] allow
customers to buy computing cycles on demand while also
using their existing computing facilities. This flexibility should
benefit the customers with bursty demand since it allows them
to obtain resources only when they need them and pay only
when they use them. If priced correctly, these services may
increase the revenue of the provider by obtaining a share of
the added value to his customers.

In this paper, we investigate the properties of a new type of
contract, the “mixed” contract, which is composed by com-
bining static and dynamic contracts. Under a mixed contract a
customer is allowed to buy a fixed amount of resources ahead
of time for a price a, the “static” part of the contract, and
complement this at each new time period by purchasing an
extra amount at price b, the “dynamic” part of the contract.

Dynamic contracts or the dynamic part of a mixed contract
should not be confused with dynamic pricing approaches
which aim to control network traffic by means of prices.
One such approach is peak-load pricing [4], [5] where prices
can adjust to the fluctuations of demand and may reflect the
investment made in order to serve the high-demand periods.
Due to the fact that mixed contracts have two parts, they may
be considered as two-part tariffs. In the literature, two-part
tariffs are used by the providers to obtain a greater portion -if
not all- of a customer’s utility. The static part of such a tariff
is a lump sum that the user must pay in order to have the right
to use the resources [6] or a way for the provider to cover his
fixed costs. In some cases, this lump sum may give the right
to use a small amount of resources. But in our pricing scheme,
no lump sum and no fixed amount of resources is introduced.
Our two-part contract aims to make more flexible the customer
in the way he expresses his bandwidth needs. Throughout the
paper we consider that both prices (a and b) are fixed, i.e. they
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are not affected by the demand. On the other hand, these prices
can be considered as usage-based prices since customers are
charged based on the volume of bandwidth they consume.

An interesting question we analyze in this paper concerns
the position of the suppliers of dynamic services. Will they
be always better off by providing such services or they may
cannibalize their lucrative static contracts? Will bandwidth
consumption increase or decrease? What will be the result of
price competition between dynamic and static service suppli-
ers? Will one supplier get the whole market share by displacing
the other? We show that many interesting facts may occur.
For instance, in a monopolist situation, a customer may not
always be better off when the supplier offers purely dynamic
contracts. Also our models suggest that resource consumption
may drop when dynamic contracts are used (which justifies the
fears of the network operators for allowing dynamic contracts).
Moreover, we show that offering mixed contracts (the “mixed”
suppliers) is always beneficial to both the customers and the
resource suppliers. Also, under price competition, the market
will be segmented and both the dynamic and static suppliers
may make profit at the equilibrium.

A simple example

Let us suppose, for example, that at the start of a year a
customer can sign a contract for a fixed line at a cost of $a
per 1 Mbps. Additionally, he may purchase at the start of each
week, additional capacity for a cost of $b per 1 Mbps per year.
Assuming a < b, there is the incentive to book ahead. This is
easier for customers whose requirements are more predictable.
Suppose that the supplier has no capacity constraint. Consider
now three customers and their bandwidth requirements. For
simplicity we assume that these requirements are inelastic.

Customer 1 needs 1 Mbps pipe throughout the year. The
most he would be prepared to pay for this is $100. Customer
2 needs a 1 Mbps pipe on half of the weeks of the year and a
2 Mbps pipe on the other half of the weeks of the year. These
weeks are randomly distributed in the year, but are predictable
one week ahead. The most he would be prepared to pay for this
is $190. Customer 3 needs a 1 Mbps pipe on 9/10ths of the
weeks of the year and a 3 Mbps pipe on the other 1/10ths of
the weeks of the year, which are again randomly distributed in
the year and predictable one week ahead. The most he would
be prepared to pay for this is $ 136. Customers 2 and 3 will
only purchase a contract if it can satisfy their requirements
on all weeks of the year. The problem for the supplier is to
choose a and b so as to solve the problem

maximize
3∑

i=1

yi,

subject to y1 = a if a ≤ 100, otherwise 0, y2 = min{2a, a +
b/2} if min{2a, a + b/2} ≤ 190, otherwise 0, and y3 =
min{3a, a + 2b/10} if min{3a, a + 2b/10} ≤ 136, otherwise
0.

If we allow only the year-long contracts, (so that effectively
b = ∞), then by taking a = 95 the revenue is maximized
to 95 + 190 = $285. Only the first two customers purchase
contracts. If we have wanted to ensure that all three customers

buy contracts, we would have needed to set a = 135/3 = 45
and this would have produced revenue of only $ 270.

Now suppose we allow bookings to be made just one week
ahead. It will be optimal to take a = 100 and b = 180. All
customers will make purchases and the revenue will be 100+
190 + 136 = $426. Note that we are requiring customer 1 to
pay $ 10 more than before. If we wished to avoid this we
might take a = 95 and b = 190. Now we can be certain that
customers 1 and 2 will purchase the same as before, and the
revenue will be 95 + 190 + 133 = $418.

The nice thing about this last solution is that we need not
know before introducing the new tariff that the third customer
even exists. If he does, then we increase revenue by 46.7%.
But if he does not exist then nothing has been lost. If we
are lucky, there will be even further customers, additional to
customer 3, who will start buying contracts.

This example suggests that a provider may increase its profit
by using a mixed contract and that customers may obtain at
least the same net benefit they obtained in the case of using
optimal static contracts. But what if the provider uses purely
dynamic contracts? In this case the optimal revenue is $370,
for b = 100, which is larger than the optimal static revenue of
$285. But this is not always the case! If we have a different
percentage of the same customers, the optimal static revenue
may be higher. For instance, if no customer 3 is present, then
the maximum revenue of static, dynamic and mixed contracts
are $285 (a = 95), $250 (b = 100) and $290 (a = 100,
b = 180) respectively. Hence dynamic contracts may no longer
be optimal for the provider.

This paper is organized as follows. In Section II, we
formulate the general optimization problem that a customer
faces when provided with a static, mixed or dynamic contract.
Section III defines the utility function that will be used
throughout the rest of the paper and in Section IV, we
use this utility function to model the customer’s net benefit
maximization problem. In Section V, we model the provider’s
revenue maximization problem and we show how the prices
of the various contracts are formed. We also consider various
cases of customer distributions. Section VI models a price
competition game between providers of different type of con-
tracts, where we give an insight of how prices will adjust. One
can prove that, under certain conditions, at the equilibrium the
market will be segmented between the providers. Section VII
concludes our work and provides some points for future work.

II. THE OPTIMIZATION PROBLEM

Let us start from the position that contracts generate charges
over fixed long time periods consisting of n shorter periods
(slots). Prices are assumed to be fixed and known to customers.
They buy long-term contracts where they secure a certain fixed
amount of resources for the n slots, and may combine these
with short-term contracts for acquiring additional resources in
each slot.

For simplicity assume that the long time period is a year
and slots correspond to weeks, i.e., n = 52. There are N
customers who are prepared to buy long-term contracts given
that we are charging a static price corresponding to $a0 per
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1 Mbps per week (the actual price is na0 for the long-term
period but we like to express it per slot). Customer i buys
bandwidth of xi Mbps in this long-term static contract. The
revenue is presently

r(a0, b = ∞) = na0

N∑
i=1

xi .

Suppose now that we introduce the possibility of buying
further units of bandwidth, one-week-ahead, for $b per 1
Mbps. Suppose that for the coming week, customer i has a
utility for bandwidth that is parameterized by θ, which he
can predict one week ahead. If he already owns a year-long
contract for bandwidth x, and he additionally buys bandwidth
y for the coming week, then his utility is ui(θ, x + y). This
customer will choose to buy a year-long contract for xi where
this comes from his finding his maximum net benefit as

nbi(a, b) = max
xi

{
nE

[
max

yi

{ui(θ, xi + yi)− byi}
]
−naxi

}
,

(1)
where the expectation is taken over θ and n = 52.

Observe first that the solution of the optimization problem
is independent on n when both prices are expressed on a per
slot basis. The average revenue he generates is ri(a, b) =
naxi +nbȳi, where ȳi = E [arg maxyi

{ui(θ, xi + yi) − byi}]
is the average bandwidth he will buy in a week in the dynamic
bandwidth market, and xi is the maximizer in (1). The total
revenue may be denoted as r(a, b) =

∑
i ri(a, b). We seek to

maximize r(a, b).
The problem faced by the supplier offering the tariff (a, b)

becomes more complex if we consider the possibility that the
customer may seek another supplier offering the tariff (a1, b1)
if his net benefit using this supplier is higher. For instance,
suppose the second supplier offers a purely static contract
(a0,∞). This suggests for a market consisting of a single
customer the optimization problem

maximize
a,b

r(a, b) s.t. nb(a, b) ≥ nb(a0,∞) . (2)

Intuition suggests that at optimality, a ≤ a0 and b > a.
We also observe that for customers with constant bandwidth
requirements introducing the possibility of buying bandwidth
on demand does not increase the revenue of the supplier. But
in the case of customers with fluctuating requirements, (2)
should lead to an increase of revenue.

We can derive now an important property of static versus
purely dynamic contracts. Under the same price a = b,
dynamic contracts are more beneficial for the customer. This
is easy to see from (1) since

max
x

{
nE

[
ui(θ, x) − ax

]}
≤ nE

[
max

y
{ui(θ, y) − ay}

]
.

A simpler version of the problem is one in which customers
have fluctuating but predictable bandwidth requirements. This
corresponds to their knowing the realization of the values of
θ for the different weeks in advance. In this case the customer
solves

nbi(a, b) = max
xi

{ n∑
j=1

[
max

yj
i

{ui(θj , xi+yj
i )−byj

i }
]
−naxi

}
,

(3)
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Fig. 1. The utility function and resulting demand function when k = 1.

where yj
i is the bandwidth to be bought from the dynamic

market during the jth period. Now the revenue generated is
ri(a, b) = naxi + b

∑n
j yj

i .
This model allows us to formulate some more interesting

problems. Observe that the dynamic demand yj
i of customer

fluctuates over time and its statistics are affected by the choice
of a, b. If there is finite capacity in the system that must
be procured at the beginning of the year, then we must also
make sure that the total demand from customers rarely exceed
the capacity. This suggests that we associate an effective
bandwidth [7] with each customer i capturing the variability of
yj

i . Lets denote this by ebi(a, b). Then a related optimization
problem is

maximize
a,b

r(a, b) s.t.
∑

i

ebi(a, b) ≤ C . (4)

This captures the fact that increasing a and decreasing b
may result in higher revenues but it creates more fluctuating
demand which may be harder to provide.

III. A MODEL FOR CONSUMER UTILITY

We suppose that at the time that a customer purchases
static bandwidth he does not yet know his utility function for
bandwidth. He knows only that is will be of the form uk(x),
where k is a parameter, presently unknown, but distributed a
priori as a random variable with a known distribution function
F (k). In particular, we will illustrate ideas with

uk(x) =
{

kx − 1
2x2, x ≤ k ,

1
2k2, x ≥ k .

(5)

Assuming this utility function, if the user faces a static price of
a and knows k then he will choose x to maximize uk(x)−ax.
This gives the demand function xk(a) = max{k − a, 0} (See
Fig. 1).

IV. THE CONSUMER’S PROBLEM: MAXIMIZING NET

BENEFIT

Consider a single consumer and the purchases of bandwidth
that he will make when faced with a static, dynamic, or
mixed supplier, and where the static and dynamic bandwidth
prices are a and b respectively. If facing a static, dynamic or
mixed supplier, the customer optimizes over the quantity of
bandwidth he buys and obtains net benefits (average, per slot)
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of

nbS(a) = max
x

{
E [uk(x) − ax]

}
,

nbD(b) = E
[
max

x
{uk(x) − bx}

]
,

nbM (a, b) = max
x

{
E

[
max

y
{uk(x + y) − by} − ax

]}
,

where the expected values are taken over k.
To illustrate the sort of things that can occur, we consider

examples in which the utility function is of the form (5) and
k has some special distributions. One of these is where k
is arbitrarily distributed on [0, 1] (see Section V-A). Let us
consider for the moment only the cases of static and dynamic
sellers (not mixed). We then have,

nbS(a) = max
x

{∫ 1

0

uk(x) dk − ax

}
,

nbD(b) =
∫ 1

0

max
x

{
uk(x) − bx

}
dk .

Another possible distribution for k is when k = k1 or k =
k2 with probabilities 1− p and p respectively (see Section V-
B). We suppose 0 ≤ k1 < k2. We now have

nbS(a) = max
x

[
(1 − p)uk1(x) + puk2(x) − ax

]
.

For a fixed a, this is a convex function of p. For dynamic
contracts the user’s net benefit is

nbD(b) = (1 − p)max
x

[
uk1(x) − bx

]
+ p max

x

[
uk2(x) − bx

]
.

For a fixed b, this is a linear function of p. Thus, there will
be some range p ∈ [p1, p2] ⊂ [0, 1] for which the dynamic
contract will be preferred. To see this, note that if a = b then
the user will prefer to buy dynamically, except at p = 0 and
p = 1, where the user is indifferent. As b increases, nbD(b)
decreases at every value of p and remains a linear function of
p. Thus as functions of p the linear function nbD(b) crosses
the convex function nbS(a) at most twice.

V. THE MONOPOLIST SUPPLIER’S PROBLEM

A. Identical customers with arbitrarily distributed k

Suppose there is a single monopolist supplier who can
supply bandwidth at cost c and who is attempting to sell
to a population of identical customers. Let us ask whether
he can make more profit as a static, dynamic or mixed
supplier. To discover the answer, we must perform a somewhat
complicated calculation. We assume that the supplier knows
F , the distribution of k and can determine a typical customer’s
demand function, say xS(a) in the static case. He then chooses
the price a to maximize the profit (a − c)xS(a).

The results of Table I are obtained numerically under
the assumption that k is uniformly distributed on [0, 1]. We
suppose c = 0 so that the supplier’s revenue and profit are
the same thing. We show what happens for the three types of
supplier in the columns labeled (S), (M) and (D). The figures
for revenue and mean bandwidths bought and sold are per
customer.

TABLE I

(S) THE OPTIMAL PURELY STATIC CONTRACT HAS a = 2/9 AND THE

OPTIMAL REVENUE IS 2/27. THE USER BUYS x = 1/3.THE USER’S NET

BENEFIT IS 7/162. THE MEAN BANDWIDTH CONSUMED IS 1/3. (M) THE

OPTIMAL MIXED CONTRACT HAS a = 6/25 AND b = 2/5 AND OPTIMAL

REVENUE 2/25. THE USER BUYS x = 1/5 STATIC AND HIS NET BENEFIT IS

11/250. THE MEAN BANDWIDTH CONSUMED IS 7/25. (D) THE OPTIMAL

PURELY DYNAMIC CONTRACT HAS b = 1/3 AND OPTIMAL REVENUE

2/27. THE USER’S NET BENEFIT IS 4/81. THE MEAN BANDWIDTH

CONSUMED IS 2/9.

(S) (M) (D)

seller revenue 0.0741 0.0800 0.0741

optimal a 0.2222 0.2400

optimal b 0.4000 0.3333

bandwidth bought in static 0.3333 0.2000

mean bandwidth sold 0.3333 0.2800 0.2222

user net benefit 0.0432 0.0440 0.0494

These numerical results suggest some conjectures. If true
in general, they support the notion that there is advantage in
offering mixed contracts.

A. The revenue achieved by the seller is strictly greater in
(M) than in (S) or (D).

B. The mean bandwidth sold decreases from (S) to (M) to
(D).

C. The user’s average net benefit increases from (S) to (M)
to (D).

We also notice the interesting fact that the revenue achieved
by the seller is the same in (S) and (D). This turns out to be
true in general, assuming the utility is of form (5). We state
this as follows.

Proposition 1: Suppose the utility function is of the form
in (5). Then a seller of static contracts who maximizes his
revenue by choice of a obtains the same revenue as a seller
of dynamic contracts who maximizes his revenue by choice
of b. Moreover, at these optimums the bandwidth x∗ that is
sold by the seller of static contracts is equal to the optimum
dynamic contract price price b∗.

Proof: The theorem holds whatever the distribution of k,
but let us suppose for simplicity that k is arbitrarily distributed
over [0, 1] with density function f(k). If the seller chooses
a price a for static contracts, the buyer will choose x to
maximize∫ x

0

uk(k)f(k) dk +
∫ 1

x

uk(x)f(k) dk − ax .

This is maximized where

−a +
∫ 1

x

(k − x)f(k) dk = 0 .

Thus the seller maximizes his revenue by maximizing over x

x

∫ 1

x

(k − x)f(k) dk . (6)
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Now if the price of dynamic contracts is b, then the amount
of bandwidth purchased is (k − b)+. Thus the seller seeks to
maximize over b

b

∫ 1

b

(k − b)f(k) dk . (7)

The theorem follows by comparing (6) and (7).
Note also that the optimal x is where

d

dx

{
x

∫ 1

x

(k − x)f(k) dk

}
=

∫ 1

x

(k − 2x)f(k) dk = 0 .

So taking x = x∗ as the solution,∫ 1

x∗
(k − x∗)f(k) dk = (1 − F (x∗))x∗ < x∗ .

Thus as x∗ = b∗ we have that the bandwidth sold under the
dynamic contract is less than the bandwidth sold under the
static contract, as in Conjecture B.

B. Identical customers with two-point distributed k

Since we would like to consider what happens when cus-
tomers are not identical we wish to find some simple model in
which their differences are captured by a single parameter. So
let us suppose that k = k1 or k = k2 with probabilities 1− p
and p. Now different values of p can distinguish customers
from one another. Initially, let us fix p and consider what
happens when a monopolist is selling to a population of
customers, all of whom have the same p.

1) Static contracts: The customer’s net benefit is

p1uk1(x) + p2uk2(x) − ax .

This is a continuous function of x, and it has a continuous first
derivative. Taking the first derivative, we see that the price at
which the user will purchase x is

p1u
′
k1

(x) + p2u
′
k2

(x) = p1(k1 − x)+ + p2(k2 − x)+ .

In fact, we can write

p1(k1 − x)+ + p2(k2 − x)+ = max
{

0, k̄ − x, p2(k2 − x)
}

.

Or we can also invert this to write the demand function as

x(a) = max
{

0, k̄ − a, k2 − a/p2

}
.

Thus the seller’s maximum revenue is

max
x

xmax
{

0, k̄ − x, p2(k2 − x)
}

= max
{

0,max
x

{x(k̄ − x)}, p2 max
x

{x(k2 − x)}
}

= max
{

1
4 k̄2, 1

4p2k
2
2

}
Now 1

4 k̄2 ≥ 1
4p2k

2
2 if and only if p2 ≤ p∗ where

p∗ =
1

(k2/k1 − 1)2
,

since p1 = 1 − p2. This gives the following.

Proposition 2: The optimal (a∗, x∗) are either ( 1
2 k̄, 1

2 k̄) or
( 1
2p2k2,

1
2k2) as p2 is less or greater than p∗.

Note that 2k1 ≥ k2 =⇒ p∗ ≥ 1 =⇒ p2 ≤ p∗ and
the optimum is at x∗ = 1

2 k̄ for all values of p2. Conversely,
p2 > p∗ =⇒ 2k1 < k2.

2) Dynamic contracts: If the seller sets price b then the
user will buy average bandwidth of

p1(k1 − b)+ + p2(k2 − b)+ .

We know by Proposition 1 that the optimal value of b is
1
2 k̄ or 1

2k2. If p2 ≤ p∗ we have b = 1
2 k̄. If p2 ≥ p∗ we have

b = 1
2k2 > k1. It turns out that in both cases the average

bandwidth is the same as in the case of the static contract.
Hence, Conjecture B is not true in a strict sense for the case of
the two-point distributed k. But under a arbitrarily distributed
k, Conjecture B is true in a strict sense (as shown in Section V-
A).

Furthermore, we can compute the difference in the user’s
net benefit under optimal purely dynamic and purely static
contracts as

nbD − nbS =
{

1
2p1p2(k2 − k1)2, p2 ≤ p∗

− 1
2p1k

2
1, p2 > p∗

This gives

Proposition 3: If p2 > p∗ the a user strictly prefers to face a
monopolist seller of static contracts rather than a monopolist
supplier of dynamic contracts. If p2 < p∗ his preference is
reversed.

Thus, we see that whereas the optimal purely static and purely
dynamic contracts produce the same revenue for the seller, the
type of contract that obtains the greater net benefit for the user
depends on whether p2 is less or greater than p∗. Notice that
there is a discontinuity in the user’s net benefit at p2 = p∗.
Conjecture C is not true in general. It is only true if p2 ≤ p∗.

Remark: The above proposition can be generalized, in the
sense that for every price a of the static provider, a dynamic
provider can publish a price b that offers him at least the same
revenue, while the customer acquires a higher net benefit, if
p2 ≤ p∗. The result is reversed in the case of p2 > p∗. In Fig. 2
we show how the user’s net benefit can vary with the seller’s
revenue as the seller varies his static price a, or dynamic price
b. The sellers have no cost. Notice that the maximum revenue
that can be obtained by either method is the same.

3) Mixed contracts: Consider the optimal mixed strategy,
optimized over prices a ≤ b. Suppose the net benefit at the
optimum is

p1uk1(x + y1) + p2uk2(x + y2) − xa − p1y1b − p2y2b .

Note first that we cannot have y1 > 0, since as b > a the net
benefit to the user could be improved by taking x → x + y1,
y1 → 0 and y2 → y2 − y1. Therefore we may consider the
problem when the net benefit is of the form

p1uk1(x) + p2uk2(x + y2) − xa − p2y2b .

Now we must have p2b < a, otherwise the user does best to
buy only static. Now also note that we cannot have x > k1. For
if this were so, the user could make the change x → x− ε >
k1 and y2 → y2 + ε, and his net benefit would increase by
(a− p2b)ε > 0. Thus the optimum must occur where x ≤ k1.
Note also, that the optimum must occur where x + y2 ≤ k2.
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Fig. 2. The user’s net benefit (NB) against the seller’s revenue (REV). The static seller is shown in blue and the dynamic seller in violet. In this example,
k1 = 1, k2 = 3. If p2 < p∗ = 0.25, the seller of dynamic (violet) can, at any revenue value, offer the user a greater net benefit than can the seller of static
(blue). The reverse is true if p2 > p∗.

For a given x, such that x < k2−b, the user optimally takes
y2 = (k2 − x − b), and so his net benefit is then

p1uk1(x) + p2uk2(k2 − b) − xa − p2(k2 − x − b)b .

The derivative of this with respect to x is

−a + p2b + p1(k1 − x) .

Since −a + p2b < 0, this is negative at x = k1, and so the
optimum is at some x < k1, where x = k1 − b + (b − a)/p1.
Thus the seller’s revenue can be found by substituting this
value of x into his revenue of xa + p2(k2 − x − b)b and
optimizing over a and b. This gives

a∗ = 1
2 k̄ and b∗ = 1

2k2 .

Note that these satisfy b > a > p2b, as required. The optimal
purchases are x = 1

2k1 and y2 = 1
2 (k2 − k1). Thus the mean

amount that is purchased is x + p2y2 = 1
2 k̄. Interestingly,

we have the same static price, and same average bandwidth
purchased, as in the static contracts case, provided we are in
the regime where p2 ≤ p∗. As commented previously, a special
case is 2k1 ≥ k2, which implies p∗ = 0.

The user’s net benefit can be calculated to be

p1uk1(k1/2) + p2uk2(k2/2) − (1/4)
(
p1k

2
1 + p2k

2
2

)
= 1

8

(
p1k

2
1 + p2k

2
2

)
Under the static contract it was

1
8

(
p1k1 + p2k2

)2 = 1
8 k̄2 ,

which is less. The seller’s revenue has increased from 1
4 k̄2 to

1
4 (p1k

2
1 + p2k

2
2). It is interesting to note that both the seller

and user increase their profit and net benefit, respectively, by
the same factor of

p1k
2
1 + p2k

2
2

(p1k1 + p2k2)2
.

The greatest possible value for this ratio in the region 2k1 ≥ k2

is 1.125.

TABLE II

SUMMARY OF RESULTS

p2 ≤ p∗ p2 > p∗

rS = rD < rM rS = rD < rM

nbS < nbM < nbD nbD < nbS < nbM

mS = mM = mD mS = mD > mM

Remark: Note that the seller obtains the same revenue as
he could obtain if he knew k and used ‘personalized pricing’,
i.e., charging a price ρ = 1

2k1 if k = k1, and ρ = 1
2k2 if

k = k2.
Let us summarize results. In Table II, we write the seller’s

revenue as rS , rM , rD, the user net benefits as nbS , nbM , nbD

and the mean bandwidths sold as mS ,mM ,mD.
These results suggest that mixed contracts are always prefer-

able to static contracts, in the sense that rM > rS , nbM > nbS

and mM ≤ mS .

VI. PRICE COMPETITION AMONGST SUPPLIERS

We now turn to investigate what happens when suppliers
compete with one another on price. Who wins? Is it the
supplier of static, dynamic or mixed contracts? Is there an
equilibrium in which suppliers of different types can both
make positive profit?

Let us suppose that for a given customer k = 0 or k =
k2, with probabilities 1 − p and p. We suppose p ∈ [0, 1]
is distributed across the population of users with a density
function of f(p).

As previously, the static provider sells at price a, but the
contract for purchase must be made before the customer knows
whether his k is equal to 0 or 1. The dynamic provider sells
at price b, and with the flexibility that the customer need not
make the purchase until he knows whether his k is equal to 0
or 1.

If buying from the static provider the customer chooses x
to maximize

pu(1, x) − ax ,
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Fig. 3. The reaction curves a(b) against b (in blue), and a against b(a) (in violet), for different distributions of p.

and so optimally buys max{1 − a/p, 0}. If buying from the
dynamic provider the customer chooses x to maximize

pu(1, x) − pbx ,

and optimally buys max{1 − b, 0}. Thus a customer strictly
prefers to buy from static rather than dynamic if and only if
a < pb.

Suppose the two providers have unit cost of c1 and c2,
respectively. Then the profits obtained by the two providers
are

fA(a, b) =

{
(a − c1)

∫ 1

a/b
(1 − a/p)f(p) dp, a < b

0, a ≥ b

fB(a, b) =

{
(b − c2)

∫ a/b

0
p(k − b)f(p) dp, a < b

(b − c2)
∫ 1

0
p(k − b)f(p) dp, a ≥ b

These are the payoffs in a Bertrand game of price competition.
From these we can compute the reaction curves.

a(b) = arg max
a

{fA(a, b)}, b(a) = arg max
b

{fB(a, b)} .

To give some numerical examples, suppose c1 = 0.1 and
c2 = 0.2. Fig. 3(a) shows the reaction curves when p is
uniformly distributed, i.e., f(p) = 1. Fig. 3(b) shows these
curves when f(p) = 6p(1 − p). Fig. 3(c) shows these curves
when the distribution is more concentrated around p = 1/2,
with f(p) = 630p4(1 − p)4. The point of intersection in
each graph is a Nash equilibrium. In the equilibrium point of
Fig. 3(a), a = 0.2105, b = 0.3333 and the respective revenues
are 0.0300 and 0.0177.

As already mentioned in Section IV, at the equilibrium point
the market will be segmented between the two providers. The
customers that reside in the edges of the p’s distribution will
prefer the static provider and the rest customers will prefer the
dynamic provider.

VII. CONCLUSIONS & FUTURE WORK

We have presented a model for analyzing the different
types of a contract in a market of resources that can be
provisioned on demand. Our aim was to show that, when
using the appropriate pricing scheme, the provider’s goal of
revenue maximization is not opposed to the consumer’s goal
for net benefit maximization. We have captured the fluctuating
demand of the customers with a single parameter (p), leading
to a formulation of high and low demand periods. Based
on this model, we have studied the characteristics of such

contracts, under specific distributions of k. We have seen how
the provider’s revenue, the customer’s net benefit and the mean
bandwidth sold vary from one type of contract to another and
we have provided the conditions under with a mixed contract is
better from the rest for both the provider and the consumer. We
have also proved that the optimal revenue of a static provider
is the same with the revenue achieved by a dynamic provider,
under any distribution of k. Finally, we have provided some
numerical results for a price competition game between a static
and a dynamic provider that shows that a Nash equilibrium
point exists and that the market at this point is segmented,
hence both providers make profits.

Many issues are open for further research. An interesting
point is to see what segment of the market is obtained by a
mixed provider when participating in a price competition game
with a static or dynamic provider. Furthermore, apart from the
example with the two-point distribution of k, results from more
generic distributions will be studied. The case of non-identical
customers needs also to be studied. Extensions with effective
bandwidth will also be considered. An important question that
may rise is how the shape of the utility function affects all the
aforementioned results. Finally, an open issue is how such a
model can be extended for Grid resources, since the definition
of the basic resource in Grids and its characteristics are not
yet well-defined.
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