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enter a shared bu�er of size B = Nb which is served by a deterministic server of rate C = Nc,i.e., when c is measured in cells per second, one cell is served every 1=(Nc) seconds. Parametersb and c are respectively the bu�er size and service capacity per source.We assume that � = 1=h is very small compared to Ton and To�. For each source, the startof the �rst \on" phase following time 0 is uniformly distributed on (0; Ton+To� ], independentlyof other sources. Let �pN be the average number of sources that are \on" and let m be the meanrate of each source, i.e., �p = Ton=(Ton+ To�) and m = �ph. Figure 1 shows the model for N = 4.
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Service times:Figure 1: Cell level model. Cell scale e�ects occur due to the synchronization of cell arrivals fromdi�erent streams.Cell loss at an ATM output link can arise from both cell scale and burst scale e�ects [Rob91].A burst scale e�ect takes place when the number of sources that are in their \on" phase, sayaN , is such that their combined rate exceeds the server capacity, i.e., aNh > Nc; in this case,the bu�er will start to �ll. A cell scale e�ect takes place when the synchronization of the sourceswhich are \on" is such that they deliver cells to the bu�er at nearly the same time, e.g., as forthe second and third sources in Figure 1. If a large number of sources are synchronized in thismanner, then for an interval of time the aggregate arrival rate can exceed Nc, even when onlythe average number of sources �pN are \on" and each has h < c. Finally, if b < 1, it is possiblethat the cell scale e�ect can be enough on its own to �ll the bu�er.Much of the analysis of queueing and multiplexing in ATM switches has been conductedusing a model in which the bursts of discrete cells are replaced by a continuous uid. This uidis either \on", at a constant rate h, or \o�". The model captures the burst scale e�ect, butignores any cell scale e�ect. Whether or not this approximation is good depends on the lengthof the typical time over which the bu�er content increase from 0 to B just prior to cell loss.If this time, say t, is large in comparison to the cell scale 1=h, then the uid model is good.Typically, this is the case when b is large. If t is large compared to 1=h) but small comparedto Ton and To�, then it can be a good approximation to assume that each source is fully \on"or fully \o�" over the typical period during which the bu�er �lls; this gives the simpli�cationthat the cell loss probability (CLP) depends on the source statistics only through the peak andmean rates, and the bu�erless on/o� uid model can be used [Hui88, Kel91, Kel96].If the time for bu�er overow t is in the order of magnitude of 1=h, which occurs when thebu�er per source b is very small, cell scale e�ects can not be disregarded; in this case, use ofthe bu�erless uid model may underestimate the CLP by several orders of magnitude. As an2



illustration, suppose we have 331 identical on/o� sources with peak rate h = 4:5 Mbps and peakrate to mean rate ratio h=m = 3, which are multiplexed in a link with capacity C = 622 Mbpsand total bu�er B = 30 cells. The bu�erless on/o� uid approximation gives a CLP less than10�8, when in fact the actual CLP is 10�6.To analyze the above model, we apply the continuous-time version of the large asymptotictechniques which were developed in [CW96]. Our approach simultaneously captures the e�ectsat the cell scale and burst scale, and accurately computes the cell loss probability. This contrastswith other work which has addressed either the cell scale or the burst scale alone. Using a simpleheuristic, we are able to investigate the qualitative nature of cell loss. We show that there isa critical bu�er size above which cell scale e�ects are no longer active, in which case it is validto adopt the uid model. However, when the amount of bu�er per source is very small, bothburst and cell scale e�ects are present (see Figure 2). The burst scale e�ect occurs when theempirically observed proportion of sources which are in their \on" phase is above average; thecell scale e�ect occurs when the \on" sources of the above burst are \in phase", creating a largecell arrival rate for some short interval of time. In Figure 2, these are labeled empirical meandeviation and random phases e�ects, respectively.Approximations for the cell scale component have been proposed [DRS91, RSKJ91, NRSV91,FLVO94], but at a time before the large deviation analysis of bu�er overowwas well understood.These approximations did not correctly capture the e�ects at both times scales and can giveerroneous estimates of the CLP. Fortuitously, they happen to be very accurate for the cases ofpractical interest, i.e., for CLPs less than 10�10.
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FLUID REGIMEFigure 2: Cell loss regimes. The value of b0 depends on the network and source parameters.The rest of the paper is structured as follows. In Section 2, we review the discrete-time manysources asymptotic developed in [CW96], and show that it can be generalized to a continuous-time form which is able to capture the cell scale e�ects. In Section 3, we apply this asymptotic toconstant bit rate (CBR) tra�c (i.e., To� = 0) and compare the CLP estimated using our approachwith that estimated using other approximations. In Section 4, we apply this asymptotic to ourmodel for periodic on/o� sources. Speci�cally, in Section 4.1, we use a simple heuristic toinvestigate the qualitative nature of cell loss for very small bu�ers. The heuristic is based onstandard notions of large deviation theory and is validated through numerical comparisons whichshow that it is very accurate. Using this heuristic, we describe the sharp boundary betweenregions where the cell scale e�ect is or is not relevant, and explain why previously proposedapproximations for the cell scale component are accurate for practical situations. Section 6concludes the paper. 3



2 The many sources asymptoticIn this section, we review the discrete-time many sources asymptotic developed in [CW96], andpresent a continuous-time version which can capture cell scale e�ects.Our model for an output link is a single server of rate C = Nc and a �nite bu�er of sizeB = Nb. The service discipline is assumed FIFO (First In First Out). Let X [0; t] denotethe number of cells generated by a single source in the interval (0; t]. We suppose sources arestationary, hence this represents a typical time interval of length t.
B=Nb

N sources
C=NcFigure 3: ATM output link model.Let '(s; t) denote the log moment generating function'(s; t) = log E hesX[0;t]i : (1)Suppose we adopt a uid model for the input tra�c. In this model, we choose a small positive�, �xed for all N , and imagine that X [0; t] increases linearly over each interval t 2 (k�; k� + �],k = 0; 1; : : : . Thus, the number of cells in the bu�er is treated as a real-valued variable (althoughin actuality it is an integer). Service is also imagined to proceed at a constant rate, rather thancell by cell.For this model of input tra�c, the cell loss probability (CLP) has an exponential tail, asdoes the probability P �QN > Nb� that in a system with in�nite bu�er the occupancy is morethan B. Furthermore, both can be approximated as, [CW96]P �QN > Nb� � CLP � e�NI ; (2)where I = inft=�;2�;::: sups fs(b+ ct)� '(s; t)g : (3)The approximation (2) is asymptotically exact for large systems in the sense thatlimN!1(1=N) logCLP = �I and similarly for P�QN > Nb�.If we are to make a more re�ned analysis which can account for the fact that the data owis not a uid, but rather a stream of discrete cells, then one needs a continuous-time version ofthe (2){(3) in which � ! 0. The extension is to replace (3) byI = inft>0 sups fs(b+ ct)� '(s; t)g ; (4)where now t is a continuous variable. A sketch of the proof of the validity of (2) with (4) isgiven in [CSW96]. A similar result has been proved in [BD95].4



3 Constant bit rate sourcesIn this section, we consider independent and identical constant bit rate (CBR) sources whosephases are randomly distributed. This is the model introduced in Section 1 with To� = 0. Wesuppose source i has a rate of h cells per second and generates a new cell at each of the times: : : ; Ui�1=h; Ui; Ui+1=h; Ui+2=h; : : : , where the Ui are independent and uniformly distributedon [0; 1=h]. For stability, we require h < c, equivalently � = h=c < 1.3.1 The bu�erless modelSuppose there is no bu�er. The probability that cell loss occurs during an interval of length � =1=C, i.e., an interval during which the server can serve exactly one cell, is just the probability thatthe N sources together produce more than one cell during this interval. A single source produceseither 0 or 1 cell during such an interval, with probabilities 1��=N and �=N respectively. Sincethe sources are independent the total number of cells that they produce in an interval of length1=C has the binomial distribution B(N; �=N). ThusCLP = P(more than 1 cell in �)= 1� P(0 cells in time �)� P(1 cell in time �)= 1� (1� �=N)N �N(�=N) (1� �=N)N�1N!1! 1� (1 + �)e��The limit is the probability that a Poisson random variable with mean � is greater than 1. Notethat in this case CLP 6! 0 as N !1. The uid model would give CLP = 0.3.2 The bu�ered modelWe now consider the case where the server has a bu�er. During the interval (0; t] the expectednumber of cells produced by a single source is ht. Let k = dhte be the greatest integer notexceeding ht. The actual number of cells which are produced by one source in this interval oflength t is then either k or k + 1, depending on the phase of the source relative to time 0. Alittle thought shows that for a random phase CBR source (1) has the evaluation'(s; t) = log h(k + 1� ht)esk + (ht� k)es(k+1)i= s(k + 1) + log �(k+ 1� ht)e�s + (ht� k)� :If we substitute this into (4) the minimizing t must be no greater than 1=c. For supposet > 1=c. Consider t0 = t � 1=c and note that for all s,s(b+ t0c)� logE hesX[0;t0]i = s(b+ tc)� s� logE hesX[0;t]�sX[t0;t]i� s(b+ tc)� s� logE hesX[0;t]i+ s= s(b+ tc)� logE hesX[0;t]i ;5



since, by stability, a single source certainly produces no more than 1 cell in an interval of length1=c. Therefore k = 0 andIp(�; b) = inf0<t�1=c sups �s(b+ ct) + log �(1� ht)e�s + ht�	 (5)= inf0<t�1 sups �s(b+ t) + log �(1� �t)e�s + �t�	 ; (6)where now it is convenient to show Ip as a function of � and b. The su�x p is a reminder thatthis rate function is for CBR sources and measure a cell level e�ect due to their random phases.3.3 Comparison with other approximationsNext, we compare the value of CLP obtained using the many sources asymptotic, (2) and (6),with the values obtained using some other approximations.The CLP in a system with a �nite bu�er of size B = Nb has the same asymptotic for largeN as P �QN > Nb�, the probability that in a system with an in�nite bu�er the occupancy ismore than B. For the latter, there is an exact formula, [NRSV91]P�QN > Nb� = XNb<i�N  Ni !� i�Nb1=� �i�1� i�Nb1=� �N�i 1=��N +Nb1=�� i+Nb : (7)However, this formula gives little insight. We also have the following two approximations, whichare not asymptotically exact.(i) P �QN > Nb� � e� 2B2N �2B(1��) = e�N(2b2+2b(1��)) (8)(ii) P �QN > Nb� � � 1� �log(�)e� 2B2N �B(1���log(�))� e�N(2b2+b(1���log(�)) : (9)The �rst of these is based on a Brownian bridge approximation and holds for large N and �close to 1 [DRS91, NRSV91]. The second appears in [FLVO94].Figure 4 displays a comparison of (7), (8), (9), and the `large N ' approximation based on (2)and (6). These graphs are for an output link with C = 155 Mbps, sources with rate h = 1 Mbps,and utilization � = 0:3 (N=46 sources) and � = 0:8 (N=124 sources). All approximations areclose when N is large and � is close to 1. One can show by power series expansions that (6),(8) and (9) di�er only by O((1� �)2). Equation (8) is inaccurate when the utilization is smalland (9) is accurate for the range of CLP that is of practical concern, i.e., about 10�10. Even formuch smaller CLP and larger b, (9) only slightly underestimates the CLP.4 Periodic on/o� sourcesIn this section, we estimate the CLP at a multiplexer serving a number of identical periodicon/o� sources. Each source is either \on" (at rate h) or \o�" (at rate 0). The probability6
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� Z 1a=0 e�aNIp(�a;ba) � e�NIf (a) da= Z 1a=0 e�N [aIp(�a;ba)+If (a)] da (10)� e�N mina[aIp(�a;ba)+If (a)] ; (11)where Ip(�a; ba) = 0 for �a � 1 and is given by (6) for �a < 1; hence, e�aNIp(�a;ba) estimates thecell loss probability in a system of aN CBR sources, with utilization �a and bu�er per sourceba. The term e�NIf (a) is the large deviation approximation to the probability that at least aNout of N sources are on. If (a) is given byIf (a) = a log a�p + (1� a) log�1� a1� �p� : (12)Finally, (11) follows from (10) using Laplace's argument that the large N asymptotic behaviorof this integral is determined by the largest term in the integrand.Accuracy of the heuristicFigure 5 shows that the CLP given by the above heuristic equals the CLP estimated by the largeN asymptotic (equations (2) and (6)), using the analytical expression of '(s; t) for periodic on/o�sources.
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discussion that for CLP of practical importance the bu�er per source is small: e.g., b � 0:013cells for C = 622 Mbps, CLP = 10�8:4, utilization � = 0:6, and m = 0:25 Mbps. For such values,the error in the �rst term of (14) is insigni�cant. In conclusion, for CLP values of interest, therate function can be approximated byI = b(1� h�p=c� log(h�p=c)) = b(1� �� log�) : (15)
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multiplexing for larger link capacities. The total amount of bu�er for which the CLP is lessthan 10�8 grows with the link capacity and the utilization, and amounts to 45 cells for a 1200Mbps link with � = 0:8. Hence, if the total amount of bu�er exceeds 100 cells, we can safelyuse the simple uid approximation for the bu�erless case. Of course, this assumes that theutilization due to real-time tra�c will not approach 1, which will be the case if the links alsocarry second priority best-e�ort tra�c.6 ConclusionsWe have applied a continuous-time version of the large asymptotic in [CW96] in order to un-derstand when the cell scale e�ect is or is not signi�cant. For a periodic on/o� model of VBRtra�c, we simultaneously capture the e�ects of both the cell scale and burst scale. By applyinga simple heuristic, we have been able to give a qualitative description of the way cell loss canoccur in very small bu�ers, namely, that cell loss occurs due to the combination of two events:a deviation that takes the number of \on" sources above its mean value, and a synchronizationamongst the random phases of \on" sources. The heuristic is very accurate and is motivated bystandard ideas of large deviation theory. An open issue is to discover if there are scenarios forwhich the heuristic is exact.Some approximations for cell loss that have been proposed for this regime can be veryinaccurate. However, they are accurate for the size of cell loss probability that is interesting inpractice, i.e., CLP � 10�10. This is due to the small values of bu�er per source that is typicalfor such CLPs. When we leave the cell scale regime and enter the uid regime, the exponentialtail of the cell loss is due mainly to a deviation in which the number of \on" sources is aboveits mean value. The assumption that Ton and To� are in�nite is not a major restriction and theconclusions in the paper apply when \on" and \o�" phases are of random lengths. We haveassumed that all sources are identical, but it should be possible to consider mixtures of sourcesof di�erent types. We have noted that the cell scale e�ect has a Brownian bridge approximation.It is easy to compute the log moment generating function for mixtures of Brownian bridges withdi�erent parameters.Ongoing work also includes studying the statistical multiplexing gain, and how it is a�ectedby the bu�er size, when we multiplex real tra�c sources, such as videotelephone and MPEGcompressed video, which are policed by the leaky bucket mechanism.References[BD95] D. D. Botvich and N. Du�eld. Large deviations, the shape of the loss curve, and economies of scalein large multiplexers. Queueing Systems, 20:293{320, 1995.[CSW96] C. Courcoubetis, V. A. Siris, and R. Weber. Cell scale and burst scale e�ects: An asymptotic approachfor calculating cell loss probability. Technical Report no. 181, ICS-FORTH, December 1996.[CW96] C. Courcoubetis and R. Weber. Bu�er overow asymptotics for a switch handling many tra�c sources.Journal of Applied Probability, 33, 1996.[DRS91] L. G. Dron, G. Ramamurthy, and B. Sengupta. Delay analysis of continuous bit rate tra�c over anATM network. IEEE J. Select. Areas Commun., 9(3):402{407, April 1991.11
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� = 0:4;N = 248 � = 0:6;N = 372 � = 0:8;N = 496Bu�er (cells) b � log10(CLP ) b � log10(CLP ) b � log10(CLP )5 0.020 3.57 0.013 2.10 0.010 0.9710 0.040 7.25 0.027 4.29 0.020 2.0215 0.060 11.05 0.040 6.5720 0.081 14.96 0.054 8.94on/o� uid 33.69 10.70 2.14Table 1: C = 155 Mbps� = 0:4;N = 995 � = 0:6;N = 1492 � = 0:8;N = 1990Bu�er (cells) b � log10(CLP ) b � log10(CLP ) b � log10(CLP )5 0.005 3.53 0.0034 2.07 0.0025 0.9510 0.0101 7.09 0.0067 4.16 0.0050 1.9115 0.0151 10.67 0.0101 6.28 0.0075 2.9020 0.0201 14.29 0.0134 8.41 0.0101 3.9025 0.0251 17.93 0.0168 10.57 0.0126 4.9230 0.0201 12.75 0.0151 5.9635 0.0176 7.0240 0.0201 8.10on/o� uid 135.2 43.0 8.6Table 2: C = 622 Mbps� = 0:4; N = 1920 � = 0:6;N = 2880 � = 0:8;N = 3840Bu�er (cells) b � log10(CLP ) b � log10(CLP ) b � log10(CLP )5 0.0026 3.52 0.0017 2.06 0.0013 0.9410 0.0052 7.06 0.0035 4.14 0.0026 1.8915 0.0078 10.61 0.0052 6.22 0.0039 2.8520 0.0104 14.18 0.0069 8.32 0.0052 3.8225 0.0087 10.43 0.0065 4.8030 0.0104 12.55 0.0078 5.7935 0.0091 6.7940 0.0104 7.8045 0.0117 8.8250 0.0130 9.8555 0.0143 10.8960 0.0156 11.94on/o� uid 260.79 82.86 16.53Table 3: C = 1200 Mbps13


