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Abstract

Considerable research activity has been directed towards estimating the Cell Loss Prob-
ability (CLP) at the buffer of an ATM switch and understanding the ways in which it can
occur. Much of this activity has been conducted by modeling the cells which enter the buffer
as a continuous fluid. This model can capture the variability of a source at a burst level, but
it ignores the fact that the workload actually arrives in discrete cells. Nonetheless the fluid
model can give accurate estimates of the cell loss probability when the buffer size is not very
small. If the switch has a very small amount of buffer per source then cell level effects can
not be ignored. We consider both Constant Bit Rate (CBR) and periodic on/off Variable
Bit Rate (VBR) sources, and apply large asymptotic techniques to a cell level model of an
ATM output link. Our analysis simultaneously captures both the cell scale and burst scale
effects, enabling us to study the boundary between regions in the parameter space where cell
level effects are or are not significant. In addition to accurately computing the CLP, we are
able to give an insightful qualitative description of how cell loss occurs in very small buffers.

Keywords: ATM, large deviations, burst scale, cell scale, random phases, fluid approxima-
tion

1 Introduction

The cell loss probability at the buffer of an ATM switch has an important impact on service
quality. For this reason, it is interesting to know how it is affected by buffer size and switch
bandwidth and to understand how buffer overflow can occur. The aim of this paper is to
investigate how cell loss can arise from effects at various time scales. The investigation takes
place in terms of the following model. We suppose there are N identical sources and that N is
large. Each source is a periodic on/off source with deterministic lengths of “on” and “oftf” phases
of duration T,, and T,.g, respectively. During each “on” phase the source produces cells at rate
h,i.e., when h is measured in cells per second, it produces one cell every 7 = 1/h seconds. Cells
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enter a shared buffer of size B = Nb which is served by a deterministic server of rate C' = Ne,
i.e., when ¢ is measured in cells per second, one cell is served every 1/(N¢) seconds. Parameters
b and c are respectively the buffer size and service capacity per source.

We assume that 7 = 1/h is very small compared to Ty, and T,g. For each source, the start
of the first “on” phase following time 0 is uniformly distributed on (0, 7oy + Tor |, independently
of other sources. Let pN be the average number of sources that are “on” and let m be the mean
rate of each source, i.e., p = Ton/(Ton + Tor) and m = ph. Figure 1 shows the model for N = 4.
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Figure 1: Cell level model. Cell scale effects occur due to the synchronization of cell arrivals from
different streams.

Cell loss at an ATM output link can arise from both cell scale and burst scale effects [Rob91].
A burst scale effect takes place when the number of sources that are in their “on” phase, say
aN , is such that their combined rate exceeds the server capacity, i.e., aNh > N¢; in this case,
the buffer will start to fill. A cell scale effect takes place when the synchronization of the sources
which are “on” is such that they deliver cells to the buffer at nearly the same time, e.g., as for
the second and third sources in Figure 1. If a large number of sources are synchronized in this
manner, then for an interval of time the aggregate arrival rate can exceed Ne¢, even when only
the average number of sources p/V are “on” and each has h < ¢. Finally, if b < 1, it is possible
that the cell scale effect can be enough on its own to fill the buffer.

Much of the analysis of queueing and multiplexing in ATM switches has been conducted
using a model in which the bursts of discrete cells are replaced by a continuous fluid. This fluid
is either “on”, at a constant rate i, or “off”. The model captures the burst scale effect, but
ignores any cell scale effect. Whether or not this approximation is good depends on the length
of the typical time over which the buffer content increase from 0 to B just prior to cell loss.
If this time, say ?, is large in comparison to the cell scale 1/h, then the fluid model is good.
Typically, this is the case when b is large. If ¢ is large compared to 1/h) but small compared
to Toy and T, then it can be a good approximation to assume that each source is fully “on”
or fully “off” over the typical period during which the buffer fills; this gives the simplification
that the cell loss probability (CLP) depends on the source statistics only through the peak and
mean rates, and the bufferless on/off fluid model can be used [Hui88, Kel91, Kel96].

If the time for buffer overflow ¢ is in the order of magnitude of 1/h, which occurs when the
buffer per source b is very small, cell scale effects can not be disregarded; in this case, use of
the bufferless fluid model may underestimate the CLP by several orders of magnitude. As an



illustration, suppose we have 331 identical on/off sources with peak rate h = 4.5 Mbps and peak
rate to mean rate ratio h/m = 3, which are multiplexed in a link with capacity C' = 622 Mbps
and total buffer B = 30 cells. The bufferless on/off fluid approximation gives a CLP less than
10~%, when in fact the actual CLP is 107°.

To analyze the above model, we apply the continuous-time version of the large asymptotic
techniques which were developed in [CW96]. Our approach simultaneously captures the effects
at the cell scale and burst scale, and accurately computes the cell loss probability. This contrasts
with other work which has addressed either the cell scale or the burst scale alone. Using a simple
heuristic, we are able to investigate the qualitative nature of cell loss. We show that there is
a critical buffer size above which cell scale effects are no longer active, in which case it is valid
to adopt the fluid model. However, when the amount of buffer per source is very small, both
burst and cell scale effects are present (see Figure 2). The burst scale effect occurs when the
empirically observed proportion of sources which are in their “on” phase is above average; the
cell scale effect occurs when the “on” sources of the above burst are “in phase”, creating a large
cell arrival rate for some short interval of time. In Figure 2, these are labeled empirical mean
deviation and random phases effects, respectively.

Approximations for the cell scale component have been proposed [DRS91, RSKJ91, NRSV91,
FLVO94], but at a time before the large deviation analysis of buffer overflow was well understood.
These approximations did not correctly capture the effects at both times scales and can give
erroneous estimates of the CLP. Fortuitously, they happen to be very accurate for the cases of
practical interest, i.e., for CLPs less than 10710,
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Figure 2: Cell loss regimes. The value of &’ depends on the network and source parameters.

The rest of the paper is structured as follows. In Section 2, we review the discrete-time many
sources asymptotic developed in [CW96], and show that it can be generalized to a continuous-
time form which is able to capture the cell scale effects. In Section 3, we apply this asymptotic to
constant bit rate (CBR) traffic (i.e., Tog = 0) and compare the CLP estimated using our approach
with that estimated using other approximations. In Section 4, we apply this asymptotic to our
model for periodic on/off sources. Specifically, in Section 4.1, we use a simple heuristic to
investigate the qualitative nature of cell loss for very small buffers. The heuristic is based on
standard notions of large deviation theory and is validated through numerical comparisons which
show that it is very accurate. Using this heuristic, we describe the sharp boundary between
regions where the cell scale effect is or is not relevant, and explain why previously proposed
approximations for the cell scale component are accurate for practical situations. Section 6
concludes the paper.



2 The many sources asymptotic

In this section, we review the discrete-time many sources asymptotic developed in [CW96], and
present a continuous-time version which can capture cell scale effects.

Our model for an output link is a single server of rate ' = Ne¢ and a finite buffer of size
B = Nb. The service discipline is assumed FIFO (First In First Out). Let X|[0,¢] denote
the number of cells generated by a single source in the interval (0,¢]. We suppose sources are
stationary, hence this represents a typical time interval of length ¢.

B=NDb
C=Nc

N sources Q —_—

Figure 3: ATM output link model.

Let ¢(s,t) denote the log moment generating function
o(s,t) =logE [eSX[O’t]] . (1)

Suppose we adopt a fluid model for the input traffic. In this model, we choose a small positive
4, fixed for all N, and imagine that X [0, ] increases linearly over each interval ¢ € (ké, k6 + 6],
k=0,1,.... Thus, the number of cells in the buffer is treated as a real-valued variable (although
in actuality it is an integer). Service is also imagined to proceed at a constant rate, rather than
cell by cell.

For this model of input traffic, the cell loss probability (CLP) has an exponential tail, as
does the probability P (QN > Nb) that in a system with infinite buffer the occupancy is more
than B. Furthermore, both can be approximated as, [CW96]

P (QN > Nb) ~ CLP ~ ¢V, (2)
where
= i sup{s(b+ct) — (s, 1)} (3)

The approximation (2) is asymptotically exact for large systems in the sense that
limy_0o(1/N)log CLP = —1 and similarly for P (QN > Nb).

If we are to make a more refined analysis which can account for the fact that the data flow
is not a fluid, but rather a stream of discrete cells, then one needs a continuous-time version of
the (2)-(3) in which 6 — 0. The extension is to replace (3) by

I'=inf sup{s(b+ ct) — ¢(s. 1)}, (4)

where now ¢ is a continuous variable. A sketch of the proof of the validity of (2) with (4) is
given in [CSW96]. A similar result has been proved in [BD95].



3 Constant bit rate sources

In this section, we consider independent and identical constant bit rate (CBR) sources whose
phases are randomly distributed. This is the model introduced in Section 1 with T, = 0. We
suppose source ¢ has a rate of h cells per second and generates a new cell at each of the times
oo Ui=1/h, U, Ui+ 1/h,U; 4+ 2/h, ..., where the U; are independent and uniformly distributed
on [0,1/h]. For stability, we require h < ¢, equivalently p = h/c < 1.

3.1 The bufferless model

Suppose there is no buffer. The probability that cell loss occurs during an interval of length A =
1/C,i.e., an interval during which the server can serve exactly one cell, is just the probability that
the NV sources together produce more than one cell during this interval. A single source produces
either 0 or 1 cell during such an interval, with probabilities 1 — p/N and p/N respectively. Since
the sources are independent the total number of cells that they produce in an interval of length
1/C has the binomial distribution B(N, p/N). Thus

CLP = P(more than 1 cell in A)
= 1—DP(0 cells in time A) — P(1 cell in time A)
= 1-(1=p/N)N = N(p/N)(A—p/N)"!
N—oo

=7 1—=(1+p)e?

The limit is the probability that a Poisson random variable with mean p is greater than 1. Note
that in this case CLP /4 0 as N — oo. The fluid model would give CLP = 0.

3.2 The buffered model

We now consider the case where the server has a buffer. During the interval (0, ¢] the expected
number of cells produced by a single source is ht. Let k = [ht] be the greatest integer not
exceeding ht. The actual number of cells which are produced by one source in this interval of
length t is then either &k or k& + 1, depending on the phase of the source relative to time 0. A
little thought shows that for a random phase CBR source (1) has the evaluation

p(s,1) log {(k +1— ht)e*™ + (ht — k)es(kﬂ)]

s(k4+1)+1log[(k+1—ht)e™ + (ht — k)] .

If we substitute this into (4) the minimizing ¢ must be no greater than 1/¢. For suppose
t > 1/c. Consider t' = ¢t — 1/¢ and note that for all s,

s(b+1tc)—logE [eSX[O’t/]] = s(b+tc)—s—1logE [eSX[O’t]_SX[t/’t]]

< s(b+tc)—s—1ogE [eSX[OJ]] +5

s(b+tc) —logE [eSX[O’t]] )



since, by stability, a single source certainly produces no more than 1 cell in an interval of length
1/¢. Therefore k = 0 and

Lp,b) = nf sup {s(b+ct) +1og [(1— ht)e™ + ht]} (5)
= nf sup {s(b+ 1) +log [(1— pt)e™ + pi]} (6)

where now it is convenient to show [, as a function of p and b. The suffix p is a reminder that
this rate function is for CBR sources and measure a cell level effect due to their random phases.

3.3 Comparison with other approximations

Next, we compare the value of CLP obtained using the many sources asymptotic, (2) and (6),
with the values obtained using some other approximations.

The CLP in a system with a finite buffer of size B = N) has the same asymptotic for large
N as P (QN > Nb), the probability that in a system with an infinite buffer the occupancy is
more than B. For the latter, there is an exact formula, [NRSV91]

N\ [i—Nb\' i— NO\N"1/p— N+ Nb
P(QV>Nb)= M ( ; )( /5 ) (1_ 1/p ) 1/pp—i—|—Nb' (7)

Nb<i<N

However, this formula gives little insight. We also have the following two approximations, which
are not asymptotically exact.

(1) P (QN > Nb) S e__2§2 —2B(1-p) _ —N(2b°+2b(1-p)) (8)
.. 1—p _282 pq_._16
ii P(ON > Nb) ~ —— L e 7N (1—p—log(p))
() (€ ) 0g(p)
e N @ 4b(1—p=log(p)) (9)

The first of these is based on a Brownian bridge approximation and holds for large N and p
close to 1 [DRS91, NRSV91]. The second appears in [FLVO94].

Figure 4 displays a comparison of (7), (8), (9), and the ‘large N’ approximation based on (2)
and (6). These graphs are for an output link with C' = 155 Mbps, sources with rate h = 1 Mbps,
and utilization p = 0.3 (N =46 sources) and p = 0.8 (N =124 sources). All approximations are
close when N is large and p is close to 1. One can show by power series expansions that (6),
(8) and (9) differ only by O((1 — p)?). Equation (8) is inaccurate when the utilization is small
and (9) is accurate for the range of CLP that is of practical concern, i.e., about 1071°. Even for
much smaller CLP and larger b, (9) only slightly underestimates the CLP.

4 Periodic on/off sources

In this section, we estimate the CLP at a multiplexer serving a number of identical periodic

on/off sources. Each source is either “on” (at rate h) or “off” (at rate 0). The probability
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Figure 4: Comparison of the large N approximation with other approximations and exact calculation.
(sources are constant bit rate with A~ = 1 Mbps)

a source is “on” is p = Ton/(Ton + Togr) and m = ph is the source’s mean rate. The system
utilization is p = m/c where, as previously, ¢ is the capacity per source.

We consider two approaches. The first approach is heuristic: a simple but sound intuitive
argument enables us qualitatively to explain the nature of cell loss and estimate the CLP when b
is small (where cell loss is due to a combination of cell scale and burst scale effects). The second
approach is brute force: we analytically compute ¢(s,?) and apply (2) and (6) (see [CSWI6]).
This method is algebraically messy because ¢(s,t) is complicated and the calculation can only
be completed numerically. While the second method is accurate and valid for any buffer size,

the heuristic method turns out to be very accurate also.

4.1 Heuristic for small buffers

For small buffers, overflows will occur when some number of sources are “on” and there is cell
loss because cells from a number of different sources arrive very close together. We approximate
the CLP with the probability of the most probable way this can happen. If a N sources are “on”
during the time which the buffer fills, then the overflow occurs according to the model discussed
in Section 3.2, where the the “effective utilization” is p, = ah/c = ap/p and the “effective
buffer” per “on” source is b, = b/a. This is the case because, as we have already discussed
in the introduction, we assume that 75, and T,g are large compared to the cell scale 1/(N¢)
and, in the small buffer regime we are investigating, the time for buffer overflow is on the order
of 1/(Nc¢). Hence, the number of sources that contribute to the overflow remain practically

constant. Thus, an intuitive derivation is the following

1
P(cell loss) = / P(cell loss | aN sources on) x dP(aN sources on)
a=0
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1
/ o= aNIp(paba) y o=NIt(@) g
a=0

_ /1 NI (paba)+ 15 (0)] g (10)
a=0
~ e—Nmina[aIp(pa,ba)-l-If(a)] (11)

b

aNIp(paba) egtimates the

where I,(pq,b,) = 0 for p, > 1 and is given by (6) for p, < 1; hence, e~
cell loss probability in a system of ¢V CBR sources, with utilization p, and buffer per source
b,. The term e~V (@) is the large deviation approximation to the probability that at least a V
out of N sources are on. I¢(a) is given by
a 1-ua
If(a)_alogp—l—(l a)log(l_p) . (12)
Finally, (11) follows from (10) using Laplace’s argument that the large N asymptotic behavior

of this integral is determined by the largest term in the integrand.

Accuracy of the heuristic

Figure 5 shows that the CLP given by the above heuristic equals the CLP estimated by the large
N asymptotic (equations (2) and (6)), using the analytical expression of ¢(s, t) for periodic on/off

sources.
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Figure 5: Comparison of the heuristic for small buffers with numerical computation using direct appli-
cation of the large N asymptotic. (C' = 155 Mbps, h = 1 Mbps, = m/h = 0.25)

Dependence of ¢* on the buffer size

Denote ¢* = argmin,[al,(pq,by) + If(a)]. Figures 6 shows that ¢* increases with b. Further-
more, for small buffer sizes, «* = P, i.e., the number of “on” sources is close to the average and

the cell loss is almost completely due to cell scale effects.
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Figure 6: Heuristic for small buffers. As the buffer per source b increases, the contribution due to the
burst scale component increases. For small b, the most probable way to have losses is to have the mean
number of sources “on”. (p = m/h = 0.25, ¢/h = 0.5)

Boundary between cell scale regime and fluid regime

In the bufferless on/off model, cell loss occurs as soon as the aggregate rate of incoming
cells exceeds the capacity of the link, i.e., if a N sources are “on” and « is such that aNVh > C,
or equivalently, @ > ¢/h. Thus P(cell loss) ~ e~ N1 (/M) where I; is defined in (12). At the
boundary of the cell scale and fluid scale regimes, min,{al(ah/c,b/a)+ Is(a)} = If(¢/h). The
boundary is shown in Figure 7. Observe that for CLP values of practical interest, the buffer per
source is small. Specifically, for sources with h = 1 Mbps and m/h = 0.25, the buffer size above
which cell scale effects are no longer important (Figure 2) is 0’ ~ 0.018 cells for C' = 622 Mbps
and b’ ~ 0.05 cells for C' = 155 Mbps. For such small buffers, «* =~ p = m/h, hence from (11)
we have:

P(cell loss) = e N1 where I = pl,(ph/e,b/p) .,

and using (9) (since it is the more accurate of (8) and (9)) we get, with p = hp/c,
I =205+ b(1 - hp/c—log(hp/c)). (13)

In [RSKJ91, NRSVI1, FLVO94], the cell scale component when N periodic on/off sources
are multiplexed is approximated by the cell loss in a system in which there are N sources and
each source is imagined to be CBR with rate A/ = m. The utilization in this system takes
the correct value, p’ = hp/c, but otherwise this approximation has no particular justification.

However, (9) gives

I =20+ b(1 - hp/c —log(hp/c)). (14)
Equations (13) and (14) differ in one term: the first term on the righthand side of (14) is 2b%,

where it appears that the correct asymptotic has 2b%/p. However, recall from our previous



discussion that for CLP of practical importance the buffer per source is small: e.g., b ~ 0.013
cells for C' = 622 Mbps, CLP = 1034, utilization p = 0.6, and m = 0.25 Mbps. For such values,
the error in the first term of (14) is insignificant. In conclusion, for CLP values of interest, the

rate function can be approximated by

I =b(1~-hp/c—log(hp/c)) = b(1—p—logp). (15)
1 : ; ;
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Figure 7: Area where random phases have an effect (lower right). On the boundary (bold line)
min{al(ah/ec,b/a) + I;(a)} = If(c/h). The area that corresponds to CLP range of interest is located
near the x-axis.

5 Numerical results

When ATM switch designers architect their switches so that these can fit in a single VLSI chip,
the amount of buffering available in the chip for real-time traffic is very much constrained and
amounts to a few hundreds cells to be shared by all links. Hence an important question is if this
amount of buffer suffices to compensate for the burstiness of the incoming traffic. Traditionally,
since the amount of buffer is small compared to the burst sizes, one would neglect the cell level
effects and predict cell loss from the fluid approximation for the bufferless case. In this section
we investigate the accuracy of such an approach.

We consider periodic on/off sources with ~ = 1 Mbps and m/h = 0.25, and compare the
CLP estimated using a bufferless on/off fluid model with the estimate using the many sources
asymptotic. The results for different link capacities are shown in Tables 1, 2, and 3.

Observe that, in the cell scale regime, the CLP depends primarily on B and p, and is
independent of C'. This agrees with the approximation in (15). Also, for fixed p and CLP,
a greater ' allows a lesser buffer per source b. This is due to the more efficient statistical

10



multiplexing for larger link capacities. The total amount of buffer for which the CLP is less
than 10~® grows with the link capacity and the utilization, and amounts to 45 cells for a 1200
Mbps link with p = 0.8. Hence, if the total amount of buffer exceeds 100 cells, we can safely
use the simple fluid approximation for the bufferless case. Of course, this assumes that the
utilization due to real-time traffic will not approach 1, which will be the case if the links also
carry second priority best-effort traffic.

6 Conclusions

We have applied a continuous-time version of the large asymptotic in [CW96] in order to un-
derstand when the cell scale effect is or is not significant. For a periodic on/off model of VBR
traffic, we simultaneously capture the effects of both the cell scale and burst scale. By applying
a simple heuristic, we have been able to give a qualitative description of the way cell loss can
occur in very small buffers, namely, that cell loss occurs due to the combination of two events:
a deviation that takes the number of “on” sources above its mean value, and a synchronization
amongst the random phases of “on” sources. The heuristic is very accurate and is motivated by
standard ideas of large deviation theory. An open issue is to discover if there are scenarios for
which the heuristic is exact.

Some approximations for cell loss that have been proposed for this regime can be very
inaccurate. However, they are accurate for the size of cell loss probability that is interesting in
practice, i.e., CLP ~ 10719, This is due to the small values of buffer per source that is typical
for such CLPs. When we leave the cell scale regime and enter the fluid regime, the exponential

” sources is above

tail of the cell loss is due mainly to a deviation in which the number of “on
its mean value. The assumption that T, and T, are infinite is not a major restriction and the
conclusions in the paper apply when “on” and “off” phases are of random lengths. We have
assumed that all sources are identical, but it should be possible to consider mixtures of sources
of different types. We have noted that the cell scale effect has a Brownian bridge approximation.
It is easy to compute the log moment generating function for mixtures of Brownian bridges with
different parameters.

Ongoing work also includes studying the statistical multiplexing gain, and how it is affected
by the buffer size, when we multiplex real traffic sources, such as videotelephone and MPEG

compressed video, which are policed by the leaky bucket mechanism.
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p—0.4, N — 248 p =06, N =372 p =08, N — 496
Buffer (cells) | b —log,o(CLP) | b —log,o(CLP) | b —log, (CLP)
5 0.020 | 3.57 0.013 | 2.10 0.010 | 0.97
10 0.040 | 7.25 0.027 | 4.29 0.020 | 2.02
15 0.060 | 11.05 0.040 | 6.57
20 0.081 | 14.96 0.054 | 8.94
| on/off fluid | | 33.69 | 10.70 | 2.14

Table 1: C' = 155 Mbps

p=04, N =995

p=06,N = 1492

p=0.8,N =1990

Buffer (cells) | b —log,,(CLP) | b —log,,(CLP) | b —log,,(CLP)
5 0.005 3.53 0.0034 | 2.07 0.0025 | 0.95
10 0.0101 | 7.09 0.0067 | 4.16 0.0050 | 1.91
15 0.0151 | 10.67 0.0101 | 6.28 0.0075 | 2.90
20 0.0201 | 14.29 0.0134 | 8.41 0.0101 | 3.90
25 0.0251 | 17.93 0.0168 | 10.57 0.0126 | 4.92
30 0.0201 | 12.75 0.0151 | 5.96
35 0.0176 | 7.02
40 0.0201 | 8.10
| on/off fluid | 135.2 | 43.0 8.6

Table 2: C' = 622 Mbps

p =04, N =1920

p=0.6, N = 2880

p =08, N = 3840

Buffer (cells) | b —log,o(CLP) | b —log,o(CLP) | b —log,,(CLP)
5 0.0026 | 3.52 0.0017 | 2.06 0.0013 | 0.94
10 0.0052 | 7.06 0.0035 | 4.14 0.0026 | 1.89
15 0.0078 | 10.61 0.0052 | 6.22 0.0039 | 2.85
20 0.0104 | 14.18 0.0069 | 8.32 0.0052 | 3.82
25 0.0087 | 10.43 0.0065 | 4.80
30 0.0104 | 12.55 0.0078 | 5.79
35 0.0091 | 6.79
40 0.0104 | 7.80
45 0.0117 | 8.82
50 0.0130 | 9.85
55 0.0143 | 10.89
60 0.0156 | 11.94
| on/off fluid | 260.79 | 82.86 16.53

Table 3: C' = 1200 Mbps
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