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Admission Control and Routing in ATM Networks 
using Inferences from Measured Buffer Occupancy 
C. Courcoubetis, G. Kesidis, Member, IEEE, A. 

Abstract- We address the issue of call acceptance and 
routing in ATM networks. Our goal is to design an algo- 
rithm that guarantees bounds on the fraction of cells lost 
by a call. The method we propose for call acceptance and 
routing does not require models describing the trafflc. Each 
switch estimates the additional fraction of cells that would 
be lost if new calls were routed through the switch. The 
routing algorithm uses these estimates. The estimates are 
obtained by monitoring the switch operations and extrapo- 
lating to the situation where more calls are routed through 
the switch. The extrapolation is justified by a scaling prop- 
erty. To reduce the variance of the estimates, the switches 
calculate the cell loss that would occur with virtual buffers. 
A way to choose the sizes of the virtual buffers in order 
to minimize the variance is discussed. Thus, the switches 
constantly estimate their spare capacity. Simulations were 
performed using Markov fluid sources to test the validity of 
our approach. 

I. INTRODUCTION 

SYNCHRONOUS transfer mode (ATM) is a form of A packet switching that is proposed for broadband net- 
works. In ATM, data is divided into 53 byte cells that are 
multiplexed on a time-slotted channel. When network traf- 
fic is bursty, ATM’s use of statistical multiplexing results in 
an efficient use of bandwidth [8 ] .  ATM uses virtual circuits 
(VCs). Every cell of a call will use the same route. When 
a cell arrives a t  a switch, the switch determines its output 
link by looking at  the VC number in the header of the cell, 
and using a lookup table in the switch’s memory. The VC 
number of every call and the lookup tables of every switch 
are determined by the routing algorithm [14]. 

Calls share buffers in switches. The method of call ac- 
ceptance described in this paper can be used with vari- 
ous switch architectures (e.g. output- buffer, shared- buffer, 
Batcher-banyan). If, for example, output buffer switches 
are used, each output link of a switch has an associated 
buffer. When the traffic offered to  a link exceeds the link’s 
capacity, cells begin to  accumulate in the buffer. When a 
cell arrives at a full buffer, it is lost. Since cell losses are 
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rare and delays are small, the statistics of a call does not 
significantly change along its virtual circuit. Also, we as- 
sume that no feedback congestion control method, such as 
windowing, is employed (such methods may not be feasi- 
ble in ATM because of the large bandwidthx delay prod- 
ucts). Therefore we assume that calls of the same type 
(e.g., video, speech, etc.) produce input traffic streams 
with identical statistics a t  every buffer through the net- 
work. Traditional quality-of-service requirements for a call 
accepted through the network require that its cell loss rate 
be less than a predefined amount that depends on the type 
of service provided by the call. 

We consider calls that use a non-negligible fraction of 
the link bandwidth, such as video calls or bundles of voice 
or data  transfer calls. Thus, the number of calls is small 
compared to the buffer size. In our analysis, we therefore 
consider asymptotics as the buffer size becomes large and 
the number of calls is fixed. 

Our goal is to  design an algorithm for call acceptance 
and routing that guarantees bounds on the fraction of cells 
lost by the calls because of buffer overflows. The method 
we propose does not require models describing the statis- 
tics of the traffic. This contrasts with algorithms based on 
parametric models that attempt to estimate the parameters 
from the traffic. We choose the former approach because 
realistic models may be complex and slow to fit. We make 
an analogy with direct vs. indirect adaptive control. In in- 
direct adaptive control, a parametric model is first fitted to 
the observed traffic. The optimal policy for the estimated 
parameters is then used. In the direct approach, the quan- 
tity to be optimized is measured. The control actions are 
selected to  optimize future values of this quantity. 

Thus, by monitoring its buffer occupancy, each switch 
constantly estimates its spare capacity to accept new calls. 
The algorithm then accepts and routes calls by using these 
estimates. To estimate its spare capacity, the switch has to 
evaluate the value that the cell loss probability would have 
if more calls were using that switch. Since the loss prob- 
ability is very small, estimators based on fractions of lost 
cells have a very large variance and are therefore very slow. 
To reduce the variance, we estimate the value that the cell 
loss probability would have if the switch buffers could store 
fewer cells. That is, we keep track of a virtual buffer occu- 
pancy corresponding to  a smaller buffer capacity. To relate 
the statistics of cell losses of this smaller buffer to those of 
the actual buffer, we use results on the shape of the loss 
probability as a function of the buffer size. These shape 
results are derived using the theory of large deviations. 

The paper is organized as follows. Section 2 describes 
the call acceptance and routing algorithm in some detail. 
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In section 3 we assume the input sources are of the same 
type, and prove a predictive scaling property of the prob- 
ability of buffer overflow in a busy cycle. We relate this 
quantity to the fraction of cells lost. In section 4, we de- 
scribe two methods of variance reduction. Our simulations 
are described in section 5. Finally, in section 6, we discuss 
a way to handle multiple types of calls with this method 
and draw conclusions. 

11. MONITOR TO INFER NETWORK OVERFLOW 
STATISTICS (MINOS) 

We describe an algorithm which can be used by a switch 
to predict its spare capacity. This algorithm is a Monitor 
to Infer Network Overflow Statistics (MINOS). Another 
sample path estimation method for queuing networks was 
described in [7]. 

As explained above, we want to  estimate the loss proba- 
bility in the switch buffers. Consider a given buffer of size 
B cells shared by N > 0 virtual circuits, and served by a 
fiber with transmission rate c cells/s. Let F ( N ,  B ,  c) be 
the fraction of cells lost due to buffer overflows. We want 
to estimate the fraction F ( N (  1 + E ) ,  B ,  c )  of cells lost when 
a fraction E more calls are added. In section 3, we show 
that the probability of buffer overflow in a busy cycle, 9, 
has the following property: for large B ,  

Q , ( N ( l +  E ) ,  B , c )  M 9 ( N ,  B ,  A). ( 1 )  l + €  

By expressing F in terms of Q, we conclude that F has 
this property as well. Thus, we can estimate F when a 
fraction E more calls are added by estimating F with the 
current number of calls, N ,  and the service rate reduced 
by the same fraction. To estimate F ( N ( 1  + E ) , B , c ) ,  a 
device is added to the switch that keeps track of the buffer 
occupancy, Y ( t ) ,  when the service rate is &. Specifically, 
when a cell arrives a t  the buffer, Y ( t )  is incremented by 
one. Also, Y ( t )  is decremented by one every % seconds 
when Y ( t )  > 0. This function could be realized by a chip 
implementing the above algorithm. The problem now is to  
estimate F ( N ,  B,  &) by monitoring the buffer. Because 
this loss probability is very small (typically about lo-’), 
a direct estimator based on the fraction of lost cells has a 
very large variance. 

To improve the estimator, the device will estimate the 
losses for smaller buffers (called virtual buffers) so as t o  
increase the frequency of buffer overflows, and therefore 
speed-up the collection of “important” samples. There is a 
tradeoff in choosing the size of the virtual buffers. If these 
virtual buffers are still too large, our estimates will be too 
slow. However, if these virtual buffers are too small, the 
original system system is over-distorted and we have a large 
error when we extrapolate back to  B. Let B / k  be the size 
of a virtual buffer for some IC > 1 .  

The virtual buffer estimate, F ( N ,  f ,  +), is related to  
F ( N ,  B ,  &), in the following way. We can show (next 
section) that F has the following form: 

Assuming eo(B) has the form A B - ( ,  we obtain estimates 
of 

Because we have three unknowns ( A ,  6, I), we will carry out 
this estimate for three values of k :  ko > kl  > k z  > 1 .  These 
three equations can be solved for A ,  ( and I ( N ,  &). We 
can then plug in A ,  ( and I ( N ,  &) into the expression 
for F ( N ,  B,  &), and thus compute the desired quantity 
F ( N ( l +  E ) ,  B ,  c) x F ( N ,  B ,  &). 

To summarize the above, the estimation algorithm in 
the device keeps track of three “virtual buffer” occupancy 
processes with buffers of size B/ICi, i = 1 , 2 , 3 ,  and service 
rate &. Note that these computations can be done in 
parallel with the normal operation of the switch so that 
the estimates of F ( N ,  e, &) are constantly available to 
the routing algorithm. In section 4 we describe another 
way to  reduce the variance of an estimate of F .  

The difference between MINOS and change-of-measure 
methods ( [ 5 ] , [ 1 2 ] )  is that it is impossible to alter the traffic 
parameters in the problem addressed here. That is why we 
resort to an estimation method that monitors the actual 
traffic. 

Let us now describe how the routing algorithm can use 
the above estimates. For simplicity, we assume that all 
the virtual circuits carry calls of the same type. The case 
of different traffic types is discussed in section 6. Denote 
by F, = F ( N n r B n , c n )  the current fraction of cells lost 
a t  buffer n, for all buffers n in the network. Assuming a 
first-come-first-served queuing discipline in each buffer, F, 
is the fraction of cells lost a t  buffer n by each call that 
uses buffer n. If call i uses buffers 1 , 2 ,  ..., m, the fraction 
of cells lost by that call is 1 - n:=,(l - F,) E F,. 

Using 
the above method, buffer n estimates FA = F ( N , ( l  + 
E ) ,  Bn,cn). We attempt to find a path for the new call 
that satisfies 

m 

Now say we are trying to  route a new call. 

L FA Gnew 

,€path 

where Gnew is the fraction of lost cells acceptable to the 
new call. Moreover, the router must ensure that, by choos- 
ing a particular path for the new call, the above constraint 
is not violated for any existing, previously routed call i 
(with guarantee Ga) which uses all or part of that path. If 
no path is found that satisfies these constraints, the new 
call is refused. 

The routing policy just described is myopic. More so- 
phisticated strategies should be investigated. For instance, 
given statistics about the generation of new calls, one can 
formulate a dynamic programming problem which is solved 
by the optimal policy. We are currently exploring such ex- 
tensions. 
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111. A PREDICTIVE SCALING PROPERTY 

We start by heuristically deriving an expression for 
9 ( N ,  B, c) for general source models. Consider a buffer 
of size B with service rate c shared by N i.i.d., stationary 
and ergodic sources. For all M greater than the average 
rate of cells produced by a source, assume that the prob- 
ability that a source produces MT cells over a period of 
time of length T is approximately exp(-TH(M)) where 
H is strictly convex and non-negative. This assumption 
is motivated by large deviations results for empirical dis- 
tributions of Markov chains[3]. We will give the expres- 
sion for H for Markov fluid models and thereby derive the 
asymptotic results in [l] in a completely different way. The 
expression for H for a large class of stationary and ergodic 
discrete-time sources is given in [lo]. 

By independence, the probability that, for j = 1, ..., N ,  
the jth source produces pjT  cells over time T is about 

We now show the relationship between cell loss probabil- 
ity and the probability of buffer overflow in a busy cycle. 
Assuming that the processes are stationary and ergodic, we 
can express F in terms of the average number D of cells 
lost in an overflowing cycle, the average number C of cells 
arriving in a cycle, and 9: 

(4) 
9 D  
C 

F -. 

In finding an expression for C we ignore the buffer size B 
because the number of cells arriving in an overflowing cycle 
is of order B and the probability of an overflowing cycle is 
of order exp(-BI + o(B)). This gives us a contribution to 
C of approximately exp( - BI+o(  B))  which is negligible for 
large B.  In finding an expression for D we assume that the 
typical value of the time-derivative of the buffer occupancy 
Y when an overflow occurs is not a function of B; indeed, 
that typical value is 

Also, we assume a negligible number of cells will be lost 
after Y returns to zero [2]. Under these assumptions, D 
will have a negligible dependence on B as well (for large B) .  

Consequently, the probability that all sources produce a 
total of N M T  cells over large time T is about 

~~ 

Thus D / C  = exp(o(B)) which implies F = 9 exp(o(h)). ' 

A .  Markov Fluid Example 

A source of a buffer is called a Markov fluid if its time- 
derivative is a continuous-time Markov chain on a finite 
state space. If the arrival process to a buffer with determin- 
istic service rate is a superposition of independent Markov 
fluids, then the buffer occupancy has piecewise-linear tra- 
jectories with random slopes. 

where p = (p1, ..., p ~ ) .  Indeed, each choice of p such that 
x p j  = N M  is one particular way for NMT cells to  get 
produced. This sum of exponentials can be approximated 
by the largest term (originally an argument of Laplace): 

Each Markov fluid source has state space A = 
(Ax,  ..., A,) and has Markov time-derivative with transi- 
tion rate matrix Q. We assume Aj < Aj+l < 00 for all j .  
Let ?r be the invariant of Q (?rQ = 0) and let = C?riAi 
be the average arrival rate. 

To define H, let JQ be the large deviations action func- 
tional for the empirical distribution of a continuous-time 

N 

N 

= exp(-TNH(M))  Markov chain with transition rate matrix Q. Take 

where the last equality is due to  the convexity of H. 
Thus, the probability that, starting from an empty 

buffer, the sources produce cells at rate NM until the buffer 
overflows is 

exp ( - - B Z ) ,  

Indeed T = B / ( N M  - c) is the time the buffer occupancy 
takes to reach B when the aggregate cell arrival rate is 
N M .  By the argument of Laplace, 

9 ( N ,  B, c) exp (-B Mi;fG g) (2) 

= @(I,B,;) (3) 

(5) 

where the infimum is taken over the space C, of distribu- 
tions p on A. Note that the convexity of JQ on C, implies 
that H is convex on (A1,Am).  For completeness, we give 
the following expression for JQ For p E E,, 

where the infimum is taken over the space of transition 
rate matrices on A, G is the relative entropy rate between 
continuous-time Markov chains [9], 
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and p is the invariant of P ( p P  = 0). This definition of JQ 
is different but consistent-in the sense of the contraction 

deviations in [9]). 

i = 0,1,2.  Let a,,j = 1- k ;  k j ’  eo = w, e2 = w, k o - k a  

and = log(k;ok;a)/ log(~~i ,a ,~z .o ,~o . i ) .  solving for the 

stituting into the expression for F we get, 
mapping Principle [IlI-with that in [6] (see ‘‘level 2.5” large three unknowns, A, I ,  and I ,  in terms of the Fi, and sub- 

If the Markov fluids are all of the on-off ( m  = 2) type, 
then (see equation (5)) log F = lo log F o  + I1 log F1 + 12 log F z  

where q1 = Q ~ , ~  and q2 = Q ~ , ~ .  we now use equa- 
tions (2) and (4) to get an expression for F(N, B, c) = 
exp( - B I (  N ,  c) + o( B)). By direct calculation, 

B. Analysis of Variance Reduction using virtual Buffers 

In this section, we estimate the variance reduction 
achieved by using the virtual buffers. For simplicity we 
take E = 0 and consider the variance reduction achieved by 
using two virtual buffers (instead of three) to estimate 9 
(instead of F ) .  Thus, we estimate 

N H ( M )  I (N,c)  := inf ~ 

M >+ NM - C  

9 s 9 ( N ( 1  + E ) ,  B,c)  M 9 ( N ,  B, &) M Ae-B’ 

and the minimizing M > c/N is from the virtual buffer estimates 

Anick et a1 determined that exp(-BI(N, c) + o ( B ) )  is the 
stationary probability that the buffer occupancy exceeds 
B (for an infinite buffer) in [l]. In [4], it was shown that 
F(1,  B ,c)  = exp(-BI(l,c) +o(B))  using afirst-step argu- 
ment for on-off Markov fluids. 

IV. VARIANCE REDUCTION 
Because we assume the buffer sources are stationary and 

ergodic, given enough time we can use the two variance re- 
duction methods described below to obtain a good estimate 
of 9(N, B, c / ( l  + E ) )  with high probability. We attempt to 
analyze the performance of the first method by considering 
the sample standard deviation of our estimates. 

Note that if a large deviation in the behaviour of the ar- 
riving traffic occurs, a poor estimate of 9(N, B ,  c / ( l  + e ) )  
would result, and this could lead to an erroneous admission 
decision which, in turn, could result in excess loss or delay. 
This is a common problem of estimation methods of ran- 
dom quantities. The problem of how much time is required 
to obtain an accurate estimate 9(N,  B, c / ( ~ + E ) )  with high 
probability is addressed in the “small time” simulations of 
the next section. 

A .  Virtual Buffers 

Recall that we proposed using virtual buffers to  increase 
the frequency of “important” samples (buffer overflows) in 
order to reduce the variance of the estimate of F. The 
virtual buffers have sizes B/k;, i = 0,1,2,  with ko > kl > 
kz > 1. We will now explain a way to  express the quantity 
we want to estimate 

in terms of the virtual buffer estimates 

B c  B 
k i ’ 1 S E  ki 

Gi E b(N,-  - )xAexp(- - I )  

i = 0 , 2 .  Substituting for A and I we get @ = 
Assume the time n (measured in busy cycles) to estimate 

the ai’s  is fixed and is the same for both virtual buffers. 
Let ui be the standard deviation of the estimate of 9i so 
that ui = d@i(l - 9 i ) / n  M m, i = 0 , 2 .  Thus, the 
relative error of the estimate of a, U / @ ,  satisfies 

for U, sufficiently small. Note that eo < 0 and f is an upper 
bound for u / 9  because we have ignored the fact that the 
9, are positively correlated. 

Minimizing f over ( k 0 , k z )  we get that the optimal ko 
is very large and the optimal kz minimizes g ( k )  s (k - 
1 ) d m  + k d e x p ( B I / k )  - A. Let n k  and n T A  be the 
number of cycles required to achieve E x 100% relative er- 
ror with 95% confidence [13] using two virtual buffers and 
direct time averaging respectively. A simple computation 
yields: n k / n ~ ~  = g 2 ( k z )  exp(-BI). In our simulations, 
we found A << 1 (which implies the optimal kz M 0.4BI), 
and BI  M 8, so that n k / n T A  FS 1/17. The speed up factor 
is actually larger than 17 because U / @  < f; using sample 
standard deviations, we found a speed up was about 100. 
Unfortunately, fixing E = 0 results in estimates of 9 that 
are consistently one order of magnitude too small. These 
calculations give us a rule of thumb for choosing the ki, 
i = 0 , 1 , 2 :  choose LO large and k:! small. 

C. Variance Reduction using the Kullback-Leibler Distance 

We now describe a faster method for estimating the prob- 
ability of buffer overflow in a cycle. This method is useful 
when the estimation has to  be performed very quickly, on 
the basis of few observations. The main point of this sec- 
tion is that estimators that improve upon those based on 
virtual buffers are possible. Instead of using three virtual 
buffers etc., we monitor the peak buffer occupancy in every 
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N + 1  17 16 15 

- logloF 1.64 2.45 3.40 
-logloFa 1.84 2.52 3.42 
- logloFb 1.76 2.64 3.44 

cycle (call it 2; for the ith cycle). Let n be a given number 
of cycles, and B* = B/ko. For integers b 2 B* - 1, define 
the empirical tail distribution of Z;: 

14 13 

4.60 5.92 
4.48 5.74 
4.44 5.63 

C:=”=,{Z; < B*}  if b = B *  - 1  cyzl 1{Z; = b} if b 2 B*. 

Also define 

4(A, I, b) 
1 - Aexp(-B*I) if b = B * - 1  = {  Aexp(-bI) - Aexp(-(b+ 1)I)  if b 2 B* 

where we have taken E = 0. The Kullback-Leibler distance 
[3] between 4 and p is 

The values of A and I that minimize K are given by 

A = (1 - p ( B *  - l ) )exp(B*I) .  

These expressions for A and I can be easily updated at the 
end of every cycle. Taking E # 0 so that K is a function of 
three parameters, we found no simple closed form solution 
to aK/dE = a K / a I  = aK/dA = 0. 

V. SIMULATIONS 

The objective of the simulation experiments is to  vali- 
date the methods used for estimating the spare capacity of 
switches. Recall that these methods are based on asymp- 
totic results derived from the theory of large deviations. 
Specifically, we use two results: the exponentiality of the 
tail of the overflow probability distribution and the asymp- 
totic scaling property which states that the loss probability 
is a function of the ratio of the number of calls over the 
transmission rate. Since these results are valid only in the 
limit, as the loss probability becomes small, it is important 
to verify that they are usable in the range of values of in- 
terest. The simulation experiments are used for verifying 
that validity. 

The simulation experiments show that the asymptotic 
formulas introduce only a small error when used with real- 
istic loss probabilities. 

We conducted simulations using the on-off Markov fluid 
model described above for the sources to the buffer. The 
following values were chosen for the parameters: B = 1800 
cells, A0 = 0, A1 = 2500 cells/s, c = 15000 cells/s (M 6 
Mbps) and 

20 -20 lo 1 . QT = [ -lo 

The number of sources, N ,  was varied. We took E = 1 / N  
and N + 1 E {13,14, .., 17). The above parameters were 
chosen so that we would be simulating on-off sources with 

burst rates in the Mbps range (1 cell = 53 bytes). We 
observed that the fraction of overflowing cycles among non- 
“trivial” busy cycles was small: a trivial busy cycle being 
one in which a cell arrives to  an empty buffer and leaves 
before the next cell arrives (-c < Y < 0). The values of 
N were chosen in the above range to simulate heavy traffic 
conditions: p ( F )  = +lrlht = where A = ( ~ 0 ~ ~ 1 )  = 

The first simulation checks the N - c scaling property 
(equation (1)) for a finite B when a large amount of time 
is available to  accurately estimate the Fi, i = 1 , 2 , 3 .  For 
N + 1 E 13, ..., 17, we measured F ( N  + 1, B ,  c) using di- 
rect sample averaging (we stopped our simulation when the 
95% confidence interval estimate of F ( N  + 1, B ,  c )  was less 
than 0.3 [13]). Using three virtual buffers, we estimated 
F ( N  + 1, B , c )  from estimates of F; = F ( N ,  e, +) 
using the formulas above with E = 1 / N  (we stopped our 
simulation when the 95% confidence interval estimate of 
F ( N ,  e, +) was less than 10%). We used two differ- 
ent sets of three ki: (20,15,9) and (15,12,9). The simula- 
tion results are given in Table 1. That is, F is the mea- 

( 2 / 3 , W .  

TABLE I 
LARGE TIME, TWO-RATE SOURCES. 

sured value of F (N+ 1, B,  c), Fa is obtained by using three 
virtual buffers with ( N ,  c / ( l  + N-’)) and k = (20,15,9) ,  
and Fb is obtained by using three virtual buffers with 
(N,c/(l  + N-’ ) )  and k = (15 ,12 ,9 ) .  Thus, Fa and Fb 
are both well within an order of magnitude of F .  

In the second simulation, we fixed N + 1 = 13 so that 
P := F ( N +  1,B,c) M 2 x lo-‘ and 9 ( N +  l , B , c )  w 3 x 
lo-’. We ran the simulation for n = lo’ busy cycles of the 
“actual” buffer process (size B). Since the probability of 
even seeing one overflow in this amount of time is 30%, an 
estimate of F from direct sample averages would probably 
be zero. Table 2 shows the performance of the estimator 
of F using three virtual buffers for two sets of k,: k = 
(40,20,10) for Fa and k = (20,15,10)  for F b .  The sample 
standard deviation was less than the estimate in every trial. 
Fa and Fb are both well within an order of magnitude of 

TABLE I1 
SMALL T I M E ,  TWO-RATE SOURCES, @ = 2 x 

I TRIAL 1 1  1 1  2 1  3 1  4 1  5 1  6 1  
I F a x  lo6 11 3.45 I 1.75 I 3.44 I 2.16 I 2.01 12.98 I 

I, I 

Fb x 10‘ 1 1  2.10 I 2.13 I 3.11 12.02 I 2.31 I 2.54 

P. 
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TRIAL I 2 3 4 5 

I783 

6 

These two simulations were repeated using four-rate 
Markov fluids with the following parameters chosen to  have 
the traffic characteristics described above: B = 1800 cells, 
Ai E (0,2000,3000,4000) cells/s, c = 15000 cells/s, 

-10 10 0 
&l. = [ 2: -30 10 : ] 

0 30 -40 10 ' 
0 40 -40 

N + 1 E {9,10,11,12}, and two different sets of three k;: 
(30,15,5) for Fa and (20,15,5) for Fb for both small and 
large-time simulations. For the small-time simulation, we 
fixed N +  1 = 9 and the simulation time n = 5 x lo7 cycles. 
Since the measured value of 9 ( N  + 1, B ,  c) = 6 x lo-', 
we get that the probability of seeing an overflow in one 
n cycle trial is 30% as above. The results are shown in 
Tables 3 and 4 (as in Tables 1 and 2 respectively). Note 
that, Fa and Fb are both well within an order of magnitude 
of F = F ( N  + 1, B, c) in both tables. 

aa x lo7 3.14 6.32 3.32 - _____ 

TABLE I11 
LARGE T I M E ,  FOUR-RATE SOURCES.  

3.36 -- 1 . 0 9 7 1  

I N + l  1 )  1 2 1 1 1 1 1 0 1  9 I 

TRIAL 1 
F a x  lo7 2.77 
F b x  lo7  2.63 

- logloF 11 3.01 I 3.88 15.11 16.74 
-loa,,,F" 1 1  3.02 13.87 I 5.14 16.76 

2 3 4 5 6 
2.98 4.66 1.50 2.90 2.13 
2.78 4.22 1.56 2.32 2.01 

V I "  ,I I I 

-logl,Fb (1  3.62 14.28 15.00 16.55 

TABLE IV 
SMALL T I M E ,  FOUR-RATE SOURCES, P = 2 X lo-'. 

We repeated the simulation with on-off Markov fluid 
sources to estimate 9 using the method based on mini- 
mizing the Kullback-Leibler distance. We fixed N + 1 = 15 
so that 9 ( N  + 1, B, c) M lo-' and ran the simulation for 
n = l o 5  busy cycles. 9" was obtained by using B* = B/15 
and (N,c / ( l  + N - ' ) ) .  In the six trials of this simula- 
tion (results shown Table 5), one overflow was observed 
in the actual buffer. The estimates are optimistic but 
are within an order of magnitude of the measured value 
9 ( N  + l ,B ,c)  = 1.0 x lo-'. Also, the sample standard 
deviation was less than the estimate in every trial. For the 
same amount of time, the three virtual buffers estimate was 
very noisy. 

When estimating 9, trivial busy cycles were counted. 
When these cycles were not counted, the simulations 
yielded good results anyway; the values of 9 were, of 
course, much higher in this case. To show that the loss 
probability is very sensitive to  the source and server bursti- 
ness, we consider an M/M/1 queue with the same traffic 

TABLE V 

SM.41,L T I M E .  TWO-RATE SOrJRCI3S. 6 = 1.0 X lop6. 

intensity p = 15.lrlAl/c = 15/18. Approximating 9 by the 
stationary probability that this M / M / l  queue exceeds B,  
we get @ ( N  + 1, B,C) M p B  z 10-140-an extremely poor 
estimate. 

VI. DISCUSSION AND CONCLUSIONS 

The above method can be used to handle multiple types 
of calls sharing a buffer. Say there are six voice calls (same 
type) and two video calls currently using the buffer, and we 
wish to estimate the effect of adding a video call. Define 
a new type of call that is the sum of three voice calls and 
one video call. Therefore there are two calls of the new 
type currently using the buffer. Instead of estimating the 
fraction of cells lost when another video call is added, we 
estimate F when another call of the new type is added. 
This, of course, may be a very conservative estimate of the 
affect of another video call on the buffer. 

In order to estimate the number of Mips required by one 
virtual buffer to  estimate F,, we let the peak arrival rate 
into the buffer be p x c cells/s. The worst case occurs dur- 
ing cell loss when we have to handle the buffer occupancy 
and perform a comparison every (pc + c)-' seconds, and 
update the cells lost and cells arrived counters every (pc)-l 
seconds. Thus we require 2(pc + c) + 2pc = (4p + 2)c Mips. 
For c = 3.5 x lo5 rells/s (150 Mbps) and p 1 5 we get 7.7 
Mips required by one virtual buffer. 

In summary, we have described an algorithm for esti- 
mating the spare capacity of switches. This method mon- 
itors the traffic in a switch buffer and makes quick and 
direct estimates of the effect of routing more calls through 
that buffer on the fraction of cells lost in that buffer. The 
method can be used by a call acceptance and routing al- 
gorithm. The method is robust: it has been shown, in 
principle, to work under weak assumptions. Finally, simu- 
lations were conducted which demonstrated the predictive 
property of the algorithm as well as the significant variance 
reduction with finite buffer size. 

Since many idealizations were made above, experiments 
on actual networks are clearly required. Moreover, a more 
exhaustive simulation study using more realistic ATM traf- 
fic sources should be conducted. 
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