
MEASUREMENT-BASED USAGE CHARGES INCOMMUNICATIONS NETWORKSCOSTAS COURCOUBETISICS-FORTH and Department of Computer Science, University of Crete, GreeceFRANK KELLY and RICHARD WEBERUniversity of Cambridge, Cambridge, U.K.We study usage-sensitive charging schemes for broadband communications net-works. We argue that a connection's `e�ective bandwidth' is a good proxy forthe quantity of network resource that the connection consumes and can be thebasis for a usage charge. However, the determination of e�ective bandwidth canbe problematic, since it involves the moment generating function of the cell ar-rival process, which may be di�cult to model or measure. This paper describesmethods of computing usage charges from simple measurements and relating theseto bounds on the e�ective bandwidth. Thus we show that charging for usage onthe basis of e�ective bandwidths can be well-approximated by charges based onsimple measurements.
Charging and pricing are essential requirements in the operation of a communicationnetwork. They are needed not only to recover costs and make a pro�t. Even if a generousoperator is willing to o�er a network for free, there are still compelling reasons to charges forservices in order to exercise control. The congestion that has plagued the Internet because itlacks any mechanism for charging and pricing highlights the fact that without charges it isdi�cult to control congestion or divide network resources amongst users in a workable andstable way.Subject classi�cations: Communications: measurement-based charging.1



Of course there are many considerations that in
uence the prices at which an operatorwill choose to sell network services. Marketing and regulation are certainly important, butthese considerations are not unique to the operation of a communications network. Specialconsiderations do, however, arise from the fact that a broadband communications network isintended simultaneously to carry a wide variety of tra�c types.Our conception of a broadband network is that of a collection of resources (links, bu�ers,switches, etc.) which can be used to provide a wide variety of communications services.These services are distinguished by tra�c contracts, which specify parameters to which thetra�c must adhere (a maximum peak rate, for example), and the quality of service which thenetwork undertakes to guarantee (typically, cell loss or delay). These concepts are acceptedas relevant to both the future development of the Internet (guaranteed and controlled-loadservices) and to ATM (ITU (1995), ATM Forum).Given a set of o�ered services, along with tra�c contracts, prices and methods of chargingfor those services, users will generate certain demands, 
uctuating on various time scales,e.g., daily. Network operators will make decisions as to what quantities of di�ering servicesthey wish to o�er at various times. They will set and slowly change prices. Ultimately,in a competitive market, prices will reach an equilibrium. The market for services will bepartitioned into various segments, characterised by di�erent tra�c contracts, qualities ofservice and charges. Some segments will be for high price, real-time services; others will befor low price, best-e�ort services.There remains the important consideration that within each market segment there maybe many types of tra�c that are statistically di�erent, purchased as di�erent services, butwhich are actually indistinguishable at the cell level. They are close enough in their quality ofservice requirements that they may substitute for one another. For example, if a user desiringtwo units of service A realises that one unit of service B meets his needs just as well andcosts less, then he will purchase one unit of B. Perhaps he will need to smooth his tra�c tomeet a slightly di�erent peak rate restriction in the contract for type B tra�c, or accept aslightly worse cell loss rate guarantee, but the cost of doing so might be relatively small. Theimplication is that charges for units of services A and B should be in the ratio of 1 to 2. Fromthe network's point of view, this relative pricing of services A and B makes sense only if thenetwork can carry a unit of service B with the same ease (in terms of maintaining guaranteedservice to all customers) as two units of service A. This is one of the key ideas in the paper:that charges for services which are substitutable for one another must be in proportion to2



their resource usages.This paper is concerned with substitutable connections of real-time tra�c whose quality ofservice requirement is for small cell loss. Two examples are a video conferencing call betweentwo sites of a company, and the delivery of a video �lm to a private residence. Both tra�c typesalso have requirements on delay, but we suppose that this is engineered by the size of bu�ersand queueing disciplines, and that cell loss is the principal concern. We investigate the issuedescribed in the above paragraph, namely, what are the implications for charging due to thefact that some services can substitute for others? We argue that charges for units of servicesA and B must be in proportion to their network resource usage, i.e., `incentive compatible'.This begs the question as to how one might measure resource usage, to which our answer isthe `e�ective bandwidth' statistic described in Section 1. Subsequent sections of the paperare devoted to explaining the how the e�ective bandwidth statistic can be used to constructcharges, or how one might use statistics which approximate to the e�ective bandwidth. Thispaper builds on work in Kelly (1994b), in which the idea of charges based upon e�ectivebandwidths was introduced. What is new is the description of a general framework for a classof charging schemes that can be based on arbitrarily re�ned a posterior measurements and apriori information (such as that a connection is compliant with a given leaky-bucket policer).Please note that this paper does not deal with explicit charges for �xed costs, networkmanagement, billing, maintenance, marketing, etc. These might be re
ected within an overallcharge by a �xed-charge component. Neither do we deal with charging for non-real-time, best-e�ort tra�c. Such tra�c is not subject to connection acceptance control nor given a strictquality of service guarantee, and e�ective bandwidth ideas do not directly apply. Ideas forpricing this tra�c are developing, and envisage prices which dynamically adjust to the levelof congestion in the network. See Courcoubetis, Siris and Stamoulis (1998b), Kelly (1997),Kelly, Maulloo and Tan (1998) and MacKie-Mason and Varian (1994).Our interest is in that part of the charge which re
ects usage of the shared physicalnetwork resources of bandwidth and bu�ering, where it is the �niteness of these resourcesthat is the principal binding constraint. In terms of the example above, such a constraint canbe expressed (at least locally) as a linear constraint nA�A + nB�B � C, where nA; nB arethe number of connections of types A and B, and �A, �B and C depend upon the quantitiesof network resources and the statistical characteristics of type A and B connections. Thecoe�cients �A and �B are the `e�ective bandwidths'. In a competitive equilibrium, the overallsocial welfare, say u(nA; nB), is maximized subject to this constraint. By social welfare we3



mean the sum of all user bene�ts. By formulating the Lagrangian optimization problem, wemaximize without regard to the constraint, but with usage prices ��A and ��B incorporatedinto the objective function, i.e., by maximizing with respect to nA and nB an expression ofthe form u(nA; nB)� ��AnA � ��BnB:Here � is the `shadow price' for the constraint. If usage prices of ��A and ��B are postedthen the social welfare optimum is obtained when nA; nB are chosen in a decentralised wayand without regard to the constraint. If di�erent usage prices were to be posted then thesocial welfare optimum would not be obtained; therefore such prices could not hold in a trulycompetitive setting. Thus a key fact that should be re
ected in �xing these two usage chargesis that they are proportional to �A and �B ; this is what we capture in basing usage chargesupon the e�ective bandwidths, or approximations to them. We do not attempt to state theabsolute value of the usage charges; these depend on the value of �, which is revealed by themarket, via the mechanism of supply and demand for these two network services.Charges not only generate income for the network, but also introduce feedback and control.For example, it may be economical for some customers to shape their tra�c, and by theirdoing so the overall network performance may be enhanced. The key point is that after eachuser has minimized his own charges, the network should be left operating at an e�cient point(e.g., with good utilisation and robustness). `Incentive compatible' tari�s should guide thepopulation of cost-minimizing customers to select contracts and to use the network in waysthat are good for overall network performance. A closely related idea is that charges shouldhave some fairness properties. Charges should re
ect customers' relative network usages, sothat a customer who makes less use of the network is charged less.The concept of an e�ective bandwidth provides a notion of network resource usage appro-priate for a multiservice broadband network, but this concept does not lend itself naturallyto be used as a charging mechanism. This paper describes a methodology, based on theconcept of an e�ective bandwidth, for developing families of charging schemes based on sim-ple measurements, with the property that the expected charge of a connection bounds thee�ective bandwidth of the connection. These charges are sound, both in terms of incentivecompatibility and fairness, but are not too complex. Their implementation does not requirethe network operator to make overly sophisticated or unrealistic measurements. They arealso simple enough that users can determine the e�ects of decisions under their control, e.g.,what e�ect a reduction in peak rate might have on incurred charges.4



The paper is organised as follows. In Section 1 we summarise the notion of an e�ectivebandwidth which underlies our entire approach. In Section 2 we use the concept of e�ectivebandwidth to argue that charges should depend upon both a priori knowledge and a posteriorimeasurements of resource usage. We present a general method for charging, based on bothstatic contract parameters, and measurements taken over the duration of a connection. InSection 3 we consider several special instances of our approach to charging. In Section 4 wegive a numerical example, which compares a pricing approach described by Kelly (1994a) anda new approach that has similarities to the way personal income tax is charged. In Section 5we discuss some related issues, such as connection acceptance control.1 E�ective bandwidths1.1 E�ective bandwidths as a basis for chargingSuppose the arrival process at a broadband link is the superposition of independent sourcesof J types: let nj be the number of connections of type j, and let n = (n1; : : : ; nJ). Wesuppose that after taking into account all economic factors (such as sensitivity of demandsto prices, competition, and so forth) the proportions of tra�c of each of the J types remainsclose to that given by n, and we seek to understand the relative usage of network resourcethat should be attributed to each tra�c type.We take a discrete time model and let Xjk[0; t] be the total load produced by the kthsource of type j in epochs 1; : : : ; t. We assume that increments of fXjk[0; t]; t � 0g, such asXjk[0; t+s]�Xjk[0; t], have distributions which do not depend upon t (i.e, we have stationaryincrements), which may depend upon the type j, but not upon k. We do not require thatsources be ergodic (i.e., that the distribution of Xjk[0; t] can be found from a single samplepath). The e�ective bandwidth of a source of type j is de�ned as�j(s; t) = 1st logE hesXjk [0;t]i ; (1)for some choice of a time parameter t and space parameter s. The e�ective bandwidth hasthe property that it increases from the mean to the peak value of Xjk[0; t]=t as s increasesfrom 0 to 1.Let L(C;B; n) be the proportion of workload lost, through over
ow of a bu�er of sizeB > 0, when it is served at rate C and n = (n1; n2; : : : ; nJ). An important limiting regime,�rst considered in a key paper of Weiss (1986), is one in which the number of sources and the5



bu�er size increase together. Courcoubetis and Weber (1996) have shown thatlimN!1 1N logL(CN;BN;nN) = supt infs 24st JXj=1 nj�j(s; t)� s(Ct+B)35 : (2)The corresponding result has been proved in continuous time by Botvich and Du�eld (1995)and for a special case by Simonian and Guilbert (1995). Courcoubetis, Fouskas and Weber(1995) and Montgomery and de Veciana (1996) have considered the accuracy of approxima-tions for L(C;B;N) based upon (2).Let A(
;C;B) be the subset of ZJ+ such that n 2 A(
;C;B) implies logL(C;B; n) � �
.Such n are those for which the proportion of workload lost is below some prede�ned level andso expresses some quality of service (QoS) requirement. As A(
;C;B) is hard to compute weapproximate it by using (2), from which it follows thatlimN!1 A(
N;CN;BN)N = A ;where A = \0<t<1At ; (3)with At = 8<:n : infs 24st JXj=1 nj�j(s; t)� s(Ct+B)35 � �
9=; ; (4)a region with convex complement in ZJ+ (Kelly (1996)). The set A is a scaled asymptoticapproximation of the set A(
;C;B) and we refer to it as the `acceptance region'.Figure 1 illustrates an acceptance region when J = 2. The dotted lines mark the bound-aries of At for three values of t. QoS is guaranteed when (n1; n2) lies within the region, A,bounded by thick lines.If the boundary of the region A is di�erentiable at the point n, then the tangent planedetermines a half-space JXj=1 nj�j(s; t) � C + 1t �B � 
s� (5)where (s; t) is an extremizing pair in relation (2). Thus at points where the boundary ofthe region A is di�erentiable, the e�ective bandwidths �j(s; t), j = 1; : : : ; J , determine therelative resource usages of tra�c of di�erent types, for local variations of the tra�c mix6
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A0; 0Figure 1: An acceptance region, A.about the point n. This is the rationale for specifying usage charges that are proportionalto e�ective bandwidths. At points where the boundary of the region A is not di�erentiable,two or more constraints of the form (5), with di�ering values of s and t, will be needed tocharacterise permissible local variations of the tra�c mix. We illustrate this possibility inSections 1.3 and 1.4; later, in Section 3.4, we describe how shadow prices may be associatedwith each constraint, and used to weight the various e�ective bandwidths arising from thedi�erent constraints.Our approach is based on the asymptotic result (2) and implicitly assumes that the noconnection occupies a large proportion of the link capacity. Therefore, when tra�c 
uctuatesaround the operating point, the changes in the proportions of tra�c vary little and extremizingvalues of s and t are nearly constant. Experimental results for video tra�c show that as thetra�c mix varies there are points of discontinuity in t and in the e�ective bandwidths; forlarge links (150 Mbps and greater) the variations in the e�ective bandwidths are small as thetra�c mix varies by 10-20%, whereas for small links the e�ect cannot be ignored. For moredetails see Courcoubetis, Siris and Stamoulis (1998a).Note that because we have assumed a FCFS discipline all connections are o�ered thesame QoS. In practice, switches may have facilities for weighted fair queueing, and methodsof selective cell discard, whereby di�erent connections can be o�ered di�erent QoSs. Ourresults are directly applicable to some of these, such as the example of priority queues inSection 3.4, by which two QoS levels can be provided. We expect that other cases might beapproached in a similar way, the key idea in any context being the substitutability of onesource for another. However, we also expect that network operators will wish to provide onlya small set of QoS-di�erentiated services and so it may be reasonable to suppose that all7



real-time tra�c is o�ered no more than one or two QoS levels.The e�ective bandwidth has been developed as a measure of a connection's resource usageat one switch. What justi�cation is there for using this same measure of resource usage toassess the connection's resource usage along a route through the network, where it usesmultiple bu�ers and switches? There are several things one can say.Firstly, we might expect that it is often one bottleneck link which provides the bindingconstraint.Secondly, e�ective bandwidths can sometimes `decouple' at successive links on a route,i.e., that the e�ective bandwidth at a bottleneck link, in the midst of a route, is not a�ectedby the smoothing that takes place in bu�ers upstream of that link. See Wischik (1998).Thirdly, we emphasise that the principal attractive characteristics of the e�ective band-width statistic, �(s; t) = (1=st) logE[exp(�sX[0; t])]. It is a univariate statistic, summarisingthe burstiness of a connection, and its two parameters, s and t, can be used to tune the statis-tic to the degree of statistical multiplexing that takes place in the network and the time scaleover which an event which is guaranteed not to occur too often typically occurs. Althoughthe e�ective bandwidth statistic is motivated by consideration of a constraint on cell loss ratein a single switch, the above characteristics make it an attractive candidate for wider use. Insuch use, s and t are to be set, not by solving equation (2), but adaptively or by experience.In fact, as we describe below, we do not advocate that one should try to make an on-lineestimate of �(s; t), but rather use an approximation to it, leading to more intuitive charges,such as aT + bV , where T is the duration of a call, V the number of cells carried, and a, breplace s; t as parameters which the network operator can adjust.1.2 Interpretations of space and time scalesThe derivation of the large deviations approximation (2) in Courcoubetis and Weber (1996)gives a straightforward interpretation of the parameter t as the time for which the server hasbeen busy preceding a bu�er over
ow. This interpretation has been experimentally veri�edby Courcoubetis, Siris and Stamoulis (1998a). The interpretation of s is less straightforward:over the busy period preceding a bu�er over
ow the amount of work produced by a source oftype j has an exponentially tilted distribution, with with tilt parameter s. See Shwartz andWeiss (1995), page 13, for a description of the tilted distribution.If we identify 
 with the right hand side of the limit (2) then, by the envelope theorem
8



(Varian (1992)), @
@C = st and @
@B = s (6)and these identities provide further interpretations of the space and time scales s and trespectively. We see that the parameter s has an interpretation as the derivative of thelogarithm of the loss probability with respect to bu�er size. A further interpretation of t isavailable from the deduction that t = @
@C � @
@B :Thus if B and C are chosen jointly to achieve a given 
, and if the optimal trade-o� betweenB and C is made, e.g., to minimize a cost such as f(B;C) subject to constraint (5), thent = @f@C � @f@B = marginal cost of unit capacitymarginal cost of unit bu�er :The space and time scales s and t are de�ned as the extremizing pair in relation (2), andhence they depend upon the parameters B and C, and upon the aggregate tra�c mix at theresource. Note that the tra�c from a single source has, at least under the limit (2), no e�ecton s and t.It is instructive to consider two special cases in which the acceptance region reduces totwo linear constraints. In both these examples it is convenient to take time to be continuousrather than discrete.1.3 Example: Leaky bucket policing modelsSuppose that each source k, of type j, is guaranteed to satisfy the conditionXjk[0; t] � �jt+ �j ; for all t : (7)A source which obeys this constraint is said to comply with leaky bucket policing, with tokenbu�er of size �j and leak rate �j (see ITU Recommendation I371 (1995)). Leaky bucketconstraints are one example of constraints that can arise as part of a tra�c contract betweenthe network and the user.Suppose we desire that there be no cell loss, so that 
 =1. Assume that there is positiveprobability of equality in (7). Then it is possible to show thatP(bu�er over
ow) = 0()Xj nj�j � C and Xj nj�j � B: (8)9



In this case the region A is completely de�ned by two linear constraints, corresponding to thelimit of the set At as t ! 1 and t ! 0 respectively. Note that �j(s; t) is correspondinglyequal to either �j or �j , depending upon whether n is such that the �rst or second constrainton the right hand side of (8) holds with equality. More generally, if each source is policed by apositive but �nite number of leaky buckets, then the acceptance region is completely de�nedby a �nite number of linear constraints (see Cruz (1991) and Kelly (1996), Section 3.4). Forexample, ITU Recommendation I371 (1995) discusses the use of two leaky buckets to policea source, one with a small value of � to bound the peak rate, and one with a much largervalue of � and a smaller value of � to bound the sustainable cell rate.1.4 Example: Brownian bridge modelTo motivate the second example, consider several independent sources, where each behavesas a periodic source, producing a burst of size � at unit spaced times fU + n; n = 0; 1; : : : g,where U is uniformly distributed on the interval [0; 1]. The superposition of such a collectioncan be well approximated by a Brownian bridge (for a recent review see Hajek (1994)). Thismotivates study of the source Xj [0; t] = �jt+ �jZ(t� btc)where Z(t); 0 � t � 1, is a standard Brownian bridge. The resulting functions �j(s; t) producea region A de�ned by the two constraintsXj nj�j � C; (9)Xj nj ��j + �2j 
2B� � B + C: (10)(Indeed this acceptance region is exact for a simple queue fed by Brownian bridge inputs -Kelly (1996), Section 3.5). Constraint (9) is of the canonical form (5) with t ! 1. Con-straint (10) may be thrown into the form (5), with for example the choice (s; t) = (2
=B; 1=2).2 Charging schemes2.1 Combining prior information with measurementsWe have argued above that e�ective bandwidths can provide a way to assess resource usageand that usage charges should be proportional to e�ective bandwidths. However, there are10



subtleties in the conversion of an e�ective bandwidth into a charge, arising from whether weestimate the e�ective bandwidth of a connection of a given type from a priori or a posterioriinformation.A priori information which might be available for connections of type j could includethe fact that all connections of this type are subject to a common tra�c contract, possiblyde�ned in terms of leaky bucket parameters, but might also include information gleaned fromhistorical data on past connections of type j. For example, one might estimate the e�ectivebandwidth of connections of type j in the following way. For each connection k that we seeof type j we could compute 1T=t T=tXi=1 esXjk[(i�1)t;it]; (11)average such estimates over all connections we have seen to date of type j, form an empiricalestimate of the expectation appearing in the formula (1), and hence make an estimate, ~�j(s; t),say, of the e�ective bandwidth of a connection of type j. Note that we must average overmany connections of type j, since because we have not assumed ergodicity of sources of typej the evaluation of (11) may di�er signi�cantly between two connections of this type.We could now simply charge each newly admitted connection of type j an amount perunit time equal to the empirical estimate ~�j(s; t), as determined by past connections of typej. This is the charging method which is adopted by an all-you-can-eat restaurant. At sucha restaurant each customer is charged not for his own food consumption, but rather for theaverage amount that similar customers have eaten in the past. (There is only one customertype, except that some such restaurants have a lower price for children or di�erent pricesdepending on the time of day.) The existence of all-you-can-eat restaurants demonstratesthat this charging scheme is viable. This is analogous to the charging scheme used when localtelephone calls are unmetered, or when the only cost a student pays to browse the WWW isthe cost of waiting for a free seat in the computer room. But all-you-can-eat restaurants arenot for everyone. They encourage diners to over-eat; they tend to serve only the lower qualitypart of the market. Customers with small appetites are likely to feel they are over-chargedin such restaurants. Others are put o� by the bare-bones, help-yourself, no-frills ambience.The problem with adopting a charging scheme in which a connection is charged at a rateper unit time which is determined wholly in terms of parameters that are known at call setup,is that users are not penalised for using more than the typical amount of resources used byothers of their type. Supposing that connections of a given type are subject to the same11



tra�c contract, (e.g., a leaky bucket constraint), each user of that type may as well use themaximum of network resources that the contract allows. This results in a situation wherethe operator calculates the largest e�ective bandwidth that is possible subject to the agreedpolicing parameters and charges for it. Users who have connections of type j but whose tra�cdoes not have the maximal e�ective bandwidth possible for this type will not wish to pay asthough as they did and will seek network service providers using a di�erent charging method.For a concrete example, consider the case of a source with peak rate h and mean rate m,(perhaps policed as the peak and sustainable cell rate, ITU Recommendation I371 (1995)).Then, as we show in Subsection 3.3, the e�ective bandwidth (1) is bounded above by theexpression G(m;h) = 1st log h1 + mh (esht � 1)i : (12)But a charge based on the bound (12), evaluated with h and m replaced by policed peakand sustainable cell rates respectively, severely penalises users whose mean tra�c may beunpredictable and not easily characterised by policing parameters such as a sustainable cellrate.At the other extreme, one might charge a user wholly on the basis of a posteriori mea-surements that are made for his connection, e.g., charge�̂jk(s; t) = 1st log0@ 1T=t T=tXi=1 esXjk[(i�1)t;it]1A : (13)as measured for this connection. Apart from the di�culty of interpreting this complicatedtari� to users, there is a conceptual 
aw, which can be illustrated as follows. Suppose a userrequests a connection policed by a high peak rate, but then happens to transmit very littletra�c over the connection. Then an a posteriori estimate of quantity (1) will be near zero andthe charge near zero, even though the a priori expectation may be much larger, as assessedby either the user or the network. Then too much of the risk associated with the uncertaintyof a user's tra�c is borne by the network, since the network may have to allocate at leastsome resources on the basis of a priori information about the connection.Our approach attempts to deal with the di�culties illustrated in the discussion of theabove two charging methods. We construct a charge based on the e�ective bandwidth, whichis a function of both static parameters (known a priori, such as parameters of leaky bucketconstraints) and dynamic parameters (known a posteriori, such as the duration and volume ofthe connection); the static parameters might arise from tra�c contracts, while the dynamic12



parameters arise from measurements of the connections. We bound the e�ective bandwidthby a linear function of the measured parameters, with coe�cients that depend on the staticparameters; and we use such linear functions as the basis for simple charging mechanisms.2.2 Charges that are linear in chosen measurementsIn this section we investigate a charging scheme in which the per unit time charge for aconnection of type j can be expressed as a linear function of the formf(X) = a0 + a1g1(X) + � � � + aLgL(X) = a0 + a>g(X) ; (14)where g1(X); : : : ; gL(X) are measurements taken from the observation of X = (X1; : : : ;XT ),or some functions of those measurements. Here X and a0; : : : ; aL depend on j, and henceperhaps on policing parameters for sources of type j, but we suppress the dependence on jfor convenience.For example, with L = 1 we could take g1(X) equal to expression (11). Or we could takeL = 1 and g1(X) = (1=T ) TXi=1 Xi : (15)In the �rst case the total charge is quite complicated to compute. In the second case the totalcharge is just a function of the total number of cells carried, and, through a0, the durationof the connection. These are of course practically the simplest measurements we could takeand lead to a total charge of a0 � time + a1 � volume. Below we consider other possibilities.Note that by making the charge a linear function of speci�ed statistics the user's expectedcharge is a function only of the expected values of those statistics. The expected value of thecharge per unit time is just Ef(X) = a0 + a>Eg(X) :Next we describe how linear functions of the form (14) may be constructed so that theexpected charge bounds the e�ective bandwidth.Suppose that X 2 X (h), for a given set X (h) parameterised by some vector h, and themeasurements satisfy Eg(X) =m. Let ��(m;h) be an upper bound on the e�ective bandwidthsubject to the above constraints, i.e.,��(m;h) := supX:Eg(X)=m;X2X (h)� 1st log E hesX[0;t]i� : (16)13



The supremum is taken over X having stationary increments, Eg(X) = m and X 2 X (h).Note that s and t are �xed here by the system wide operating parameters n;B;C. Consider-ation of ��(m;h) is partly motivated by the remarks at the start of this section, that this iswhat we would should charge a user who makes maximal use of his service contract. Later wedevelop examples where m might be a mean rate and h might be peak rate. An importantproperty of ��(m;h) is that it is concave in m.Lemma 1 ��(m;h) is concave in m.Proof. Suppose X;Y 2 X (h), and Eg(X) = m1, Eg(Y ) = m2 where 0 < � < 1. Let Zbe X or Y with probabilities � and 1 � � respectively. This corresponds to the practicalcircumstance of being unsure of the type of a connection. ThenEg(Z) = �Eg(X) + (1� �)Eg(Y ) = �m1 + (1� �)m2 :So ��(�m1 + (1� �)m2;h) � 1st log E hesZ[0;t]i= 1st log h�EesX[0;t] + (1� �)EesY [0;t]i :� � 1st log hEesX[0;t]i+ (1� �) 1st log hEesY [0;t]iwhere the �rst inequality is by de�nition of ��(�; �) and the second by concavity of log(�). Sincethis holds for all X[0; t] and Y [0; t] satisfying the constraints, we have after maximizing theright hand side ��(�m1 + (1� �)m2;h) � ���(m1;h) + (1� �)��(m2;h) :
The fact that ��(m;h) is concave inmmeans that there is a tangent hyperplane to ��(m;h)at m and Lagrangian methods apply. So there exists �m such that��(m;h) = maxX � 1st log E hesX[0;t]i� �>m(Eg(X) �m)�= min� maxX � 1st log E hesX[0;t]i� �>(Eg(X) �m)� :We are now able to de�ne a family of charging functions of the form,fm;h(X) := maxY � 1st log E hesY [0;t]i� �>m(Eg(Y )� g(X))� = ��(m;h) + �>m(g(X) �m)(17)14



parameterised bym and h. Here h is �xed by the type of connection, but the user is permittedto choose m. These charging functions are of the form a0 + a>g(X), wherea0[m;h] = ��(m;h)� �>mm ; (a1[m;h]; : : : ; ak[m]) = �>m = � @@m1 ��(m;h); : : : ; @@mk ��(m;h)� :Observe that, for any given choice of m, the expected value of the charging rate satis�esEfm;h(X) = maxY � 1st log E hesY [0;t]i� �>m(Eg(Y )� Eg(X))�� min� maxY � 1st log E hesY [0;t]i� �>(Eg(Y )� Eg(X))�= maxY � 1st log E hesY [0;t]i� �>Eg(X)(Eg(Y )� Eg(X))�= ��(Eg(X);h) ;with equality ifm = Eg(X). As we intended, the coe�cients ai[m;h] depend upon both staticinformation, such as knowledge of a policed peak rate, as well as the user's expectations aboutmeasurements that will be taken during the duration of the call.When g1(X) is equal to expression (11) we �nd ��(m;h) = �(s; t), and thus Ef(X) =�(s; t) if the user chooses the tari� indexed by m = Eg1 (X). The expected charge is thenequal to the e�ective bandwidth. But as we have noted this charge is di�cult to compute andinterpret to the user. It is likely that we will wish to measure something less complicated.It is clear that some measurements are more useful than others in terms of constructing asensible charge. The measurements should be informative about the e�ective bandwidth.But whatever the measurement the charge we have described has the following desirableproperties.1. It is a simple linear function of measured statistics, g1(X); : : : ; gL(X). The coe�cientsdepend on static parameters which can re
ect the network resources, policing parametersand QoS guarantees.2. The user minimizes the expected charge for his connection if he chooses the chargingfunction fm;h(X) parameterised by m = Eg(x).3. The expected charging rate for a connection, ��(Eg(X);h), is conservative, in the sensethat it has the maximum e�ective bandwidth possible amongst connections having thesame value of Eg(X) and which are parametrised by the same static parameters.Figure 2 shows how the e�ective bandwidth might be bounded by a linear function of ameasured parameter, m1. 15



bound on e�ective bandwidth
tangent a0 + a1g1(X)

possible e�ective bandwiths
Eg1 (X) = m1 g1(X)

I z
Y

Figure 2: E�ective bandwidth and bounds as a function of m13 Some instances of the approachIn this section we consider some special instances of this approach. The �rst two subsectionstreat cases in which the upper bound in (16) can found explicitly, either by solving a linearprogramming or a Markov decision problem. The third subsection explains a simple upperbound which holds generally. The �nal subsection illustrates that multiple constraints canarise when it is desired to give priority to one type of tra�c.3.1 A linear programFor a stationary sequence of discrete random variables X1;X2; : : : letp(x1; x2; : : : ; x� ) = PfX1 = x1;X2 = x2; : : : ;X� = x�gand let p = (p(x1; x2; : : : ; x� ); � = 1; 2; : : : ;xi = 0; 1; 2; : : : ; 1 � i � �) :Then p(x1; x2; : : : ; x� ) � 0; Xx1;x2;::: ;x� p(x1; x2; : : : ; x� ) = 1; (18)16



and stationarity provides the further conditionp(x�+1; x�+2; : : : ; x�+t) = Xx1;x2;::: ;x� p(x1; x2; : : : ; x�+t): (19)The probability P �Pti=1Xi = x	 may be writtenpt(x) = Xx1;x2;::: ;xt:Pt1 xi=x p(x1; x2; : : : ; xt): (20)Then ��(m;h) = (1=st) log Y where Y is the optimal value attained in the linear programmaximize Xx esxpt(x) subject to Eg(X) =m and p 2 P(h);where P(h) is the set of vectors p satisfying (18), (19), (20) and additional conditions pa-rameterised by h.For example, in the case where sources are policed by K leaky buckets we might havem = (m), h = (�k; �k; k = 1; 2; : : : ;K) and the additional conditionsp� (x) = 0; x > �k + �k�; � = 1; 2; : : : ; T ; k = 1; 2; : : : ;K:Note that the constants a(m;h) are provided by the dual variables corresponding to theconstraint Eg(X) =m, through the relationa(m;h) = @@m ��(m;h) = 1st @@m log Y = 1stY @Y@m :Example: the case t = 1The case t = 1 allows several simpli�cations, and provides some helpful examples. In practicalterms it is the case that is appropriate when the bu�er is small. Suppose the source is policed,so that Xi � h. De�ne �j(X) = 1T E " TXi=1 1fXi = jg# ; j = 1; : : : ; h ;i.e., �j is the expected proportion of epochs in which the load is j. The charging formulabecomes quite simple in the case that Eg(X) is linear in �. Suppose Eg(X) = A�, where� = (�0; : : : ; �h)> and A is a k � (h+ 1) matrix. Then��(m) = 1s max�0;::: ;�h8<:log 1T E " TXi=1 esXi# : hXj=1 �j = 1; A� =m9=;= 1s max�0;::: ;�h8<:log hXj=1 �jesj : hXj=1 �j = 1; A� =m9=;17



The maximization problem is equivalent to one in which the objective function is replaced byPj �jesj. This gives a linear program (LP):maximize hXj=0 �jesj ; subject to hXj=0 �j = 1; A� =m:In accordance with the usual theory of linear programming, the solution will have �j 6= 0 forat most k + 1 di�erent j. So we see that the worst case distribution is concentrated on k+ 1points.Let us take L = 1, g1(X) = (1=T )PTi=1Xi. We adopt the notation that m1 = m, so thatm is the expected number of cells carried per period. Then the LP described in the previoussubsection is equivalent to maximize hXj=0 �jesjsubject to hXj=0 �j = 1; hXj=0 j�j = m:which clearly has the solution �0 = (1 �m=h), �ht = m=h and �j = 0 otherwise. Then as in(12) ��(m;h) = 1st log h�1� mh �+ mh eshi = G(m;h)This gives a total charge off(X) = 1s �log h�1� mh �+ mh eshi� � esh � 1mesh + (h�m)�m�T+ 1s � esh � 1mesh + (h�m)�V (21)where V = PTi=1Xi is the total volume of cells carried. This is the charge that has beendescribed by Kelly (1994a).3.2 Markov decision process formulationSuppose a connection is policed by leaky buckets with parameters (�k; �k); k = 1; 2; : : : ;K.Then the linear program of Section 3.1 may be formulated as a Markov decision problem, asfollows. Let Zk(�) = mini<� 8<:�k(� � i) + �k � ��1Xj=i Xj9=; :18



Thus 0 � Zk(�) � �k; k = 1; 2; : : : ;K. Let the state of the Markov decision process at time� be (Zk(�); k = 1; 2; : : : ;K;X��1;X��2; : : : ;X��t+1):The action allowed at time � is to choose X� in the region0 � X� � mink fZk(�) + �kg;with associated reward exp[s(X�+X��1+� � �+X��t+1)]. Note that if t; �k; �k; k = 1; 2; : : : ; k,are all rational, and Xj is integral, then the Markov decision process has a �nite state andaction space, and can hence be written as a �nite linear program (Ross (1983), Chapter 5.3;Whittle (1983), Chapter 32.3).For example, if (s; t) = (1; 2) and a source is policed by a single leaky bucket with pa-rameters (�; �) = (1; 2), then the worst case tra�c takes the form of a periodic sequence withrepeated blocks of the form, 00131. If (s; t) = (1; 4) and a source is policed by two leakybuckets with parameters (�1; �1) = (3; 0) and (�2; �2) = (2; 2), then the worst case tra�ctakes the form of a periodic sequence with repeated blocks of the form, 0223322.Note that the blocks have the shape of an inverted T. Doshi (1994), see also Worster(1994), has previously noted that an L shape may, for sources policed by a leaky bucket, bemore di�cult to multiplex than a source taking two levels.More complex optima may arise, but fortunately a simple bound exists.3.3 A simple boundA constraint 0 � X[0; t] � �X[0; t] together with the convexity of the exponential functionimplies that �(s; t) � 1st log �1 + tm�X [0; t] �es �X[0;t] � 1��= G(m; �X [0; t]=t);where G(m;h) is de�ned in equation (12) and m is the mean rate. If a source is policed byleaky buckets with parameters (�k; �k), k = 1; 2; : : : ;K, then we haveX[0; t] � mink f�kt+ �kg;and so ��(m;h) � G(m;mink f�k + �k=tg):19



3.4 Multiple constraintsThe paradigm described in Section 2 applies in some interesting circumstances in which theacceptance region is described by multiple constraints.Example: priority queueingIt is sometimes the case that one will want to give di�erent qualities of service to di�erentclasses of tra�c. One way to do this is by priority queueing.Suppose tra�c classes are partitioned into two sets, J1 and J2. Service is FCFS, excepti 2 J1 is always given priority over j 2 J2.For i 2 J1 there is a QoS guarantee on delay of the form:P(delay > B1=C) � e�
1 :For all sources there is a QoS guarantee on cell loss rate:P(bu�er over
ow) � e�
2 :This gives two constraints: Xj2J1 nj�j(s1; t1) � K1 (22)Xj2J1[J2 nj�j(s2; t2) � K2 (23)where K1 := C + 1t1 �B1 � 
1s1� K2 := C + 1t2 �B � 
2s2� :and the si; ti are the appropriate extremising values.For example, suppose J1 = f1g, J2 = f2g. Then we haven1�1(s1; t1) � K1n1�1(s2; t2) + n2�2(s2; t2) � K2If K1=�1(s1; t1) < K2=�2(s2; t2) then the region in which the network provider can expect tooperate is illustrated in Figure 3.Suppose a network operator charges fi per unit time for a connection of type i, i = 1; 2.The revenue f1n1+f2n2 is maximized by operating, if possible, at some point on the boundary20
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0; 0Figure 3: An acceptance region de�ned by two constraintsQRP . The operating point will be determined by issues such as the price sensitivity of thedemand for the two types of tra�c.However, whatever the nature of the demand, there will be shadow prices �1 and �2associated with relaxation of the constraints (22) and (23) respectively. If (22) is active (i.e.,the network operates at capacity constrained by PR), then it will be appropriate to chargetype 1 connections an amount which bounds �1�1(s1; t1). If (23) is active then it will beappropriate to charge both type 1 and type 2 connections, at prices which bound �2�1(s2; t2)and �2�2(s2; t2) respectively. If operation is at point R then type 1 connections should incura total charge which bounds �1�1(s1; t1) + �2�1(s2; t2).In all these cases the charge is a linear function of the measurements g1(X); : : : ; gL(X).For example, suppose we charge simply for time and volume, as in Subsection 3.1, and oper-ation occurs at R. The charge for a type 1 call should bef1(m;h) = �1�a1[: : : ]T + b1[: : : ]V �+ �2�a2[: : : ]T + b2[: : : ]V �= a[: : : ]T + b[: : : ]V ;where a1; b1 depend on m1; h1; s1; t1, and a2; b2 depend on m1; h1;m2; h2; s2; t2, and a; b aresimply the appropriate linear combination of these coe�cients. The point is that the form ofthe charge remains the same. The user can be o�ered a number of tari�s, that di�er only inthe weights placed on T and V .As a further extension of this example, suppose that tra�c from a source of type j consistsof correlated streams of high and low priority tra�c. Let�(k)j (s; t) = 1st log E hexp (sX(k)j [0; t])i21



where X(k)j [0; t] is the workload of priority k or higher produced by a source of type j overthe interval [0; t]. Then the acceptance region is given by two constraintsXj nj�(1)j (s1; t1) � K1;Xj nj�(2)j (s2; t2) � K2:Note that these reduce to constraints (22) and (23) respectively in the case where a sourceproduces either high or low priority tra�c, but not both.Example: Brownian bridge modelTwo constraints may arise in even simpler circumstances. For example, consider again theBrownian bridge model of Subsection 1.4. Then a charge based on the two e�ective band-widths arising in the constraints (9) and (10) takes the form�1�j + �2 ��j + �2j 
2B�for a connection of type j. Within our framework this might correspond to a case where thereare no measurements, and each type j connection is policed by a constraintXj [t; t+ 1] � �j for all t:(The worst case tra�c subject to this form of sliding window constraint is a periodic stream,with bursts of size �j at unit spaced times.)4 A comparison of two charging schemesAn important issue for a charging scheme is its complexity. We expect that by taking moremeasurements the charge can be made to more faithfully re
ect the e�ective bandwidth. Inthis section we consider a family of charging schemes and quantify their performance for aparticular form of tra�c.4.1 Tax band charging schemesWe look at a family of schemes corresponding to choices of the matrix A in the example ofSection 3.1. The simplest member of this family is is the one in which the charge is (21), i.e.,based upon only time and volume. Other members of this family are re�nements in which22



separate time and volume measurements are made for periods during which the source ratelies in one of ` bands.We divide the time interval [0; T ] into T=t intervals of length t. For notational ease letXi = X[(i� 1)t; it], i = 1; : : : ; T=t. Choose thresholds, h0; : : : ; ht, such that �1 = h0 < h1 <� � � < h` = ht, and de�ne,Ik = fi : hk�1 < Xi � hkg; gk(X) = 1T=tXi2Ik 1; g`+k(X) = 1T=tXi2IkXi ;for k = 1; : : : ; `. SoEgk (X) = Xj2Ik �j; Eg`+k (X) = Xj2Ik j�j ; k = 1; : : : ; `:The LP is then maximize hXj=0 �jesjsubject to htXj=0 �j = 1; Xj2Ik �j = mk ; Xj2Ik j�j = m`+k ; k = 1; : : : ; `:This is easily solved to give��(m; h) = 1st logX̀k=1 �m`+k �mkhk�1 �mkhk � hk�1 � 1 eshk + mkhk �m`+khk � hk�1 � 1es(hk�1+1)�It follows from ak = @ ��(m; h)=@mk thata1 > a2 > � � � > a` and a`+1 < a`+2 � � � < a2` :Furthermoreak + (hk�1 + 1)a`+k = �es(hk�1+1) and ak + hka`+k = �eshk ;where � = 1ste�st��(m;h). The total charge takes the forma0T + T=tXi=1 maxk fak + a`+kXig :One can check that the maximum on the r.h.s. occurs for k if i 2 Ik, i.e., hk�1 < Xi � hk.This corresponds to a `tax-band charging scheme', in that cells incur a cost per cell thatdepends upon in which of ` bands Xi falls. If hk�1 < Xi � hk, then the charge for those cellsis ak + (hk�1 + 1)a`+k + (Xi � hk�1 � 1)a`+k = �eshk�1 + (Xi � hk�1 � 1)a`+k :23



The case ` = 1 corresponds to the charge of Section 3.1, in which the charge is based ononly T and V . When we take ` > 1 we are maximizing over a more restricted set and theexpected charge is less. This is at the price of measuring more.4.2 Discussion of the tax band schemesCharging schemes which result from taking ` = 1 and ` = 2 are equivalent to bounding thee�ective bandwidth by using EesX[0;t] � E�(sX[0; t]), where � = �1 is either single chordlying above esx (the case ` = 1), or two chords � = �2 lying above esx (the case ` = 2),graphed against x in the three plots in Figure 4.

h0 = 0 h1 h1 + 1 h2 = h
esx�2(x)�1(x)

Figure 4: Bounds for tax band schemes with 1 and 2 bandsWe have called these `tax-band schemes' because of their similarity to the system ofgraduated (or banded) income tax which is operated in most countries. In such countriesthere is a charging period for income tax calculation, t, which is usually one year. Supposefor simplicity that there are only two tax bands, and that the tax for a year's income I iscomputed from the following table, in which 0 < a3 < a4 < 1 and h1 > 0.income band tax0 � I � h1 a0 + Ia3h1 < I a0 + h1a3 + (I � h1)a4One can think of a0 as a �xed `poll' tax which is paid equally by all taxpayers, irrespective24



of income. This leads to total tax over T years that can be written in the forma0T + a1T1 + a2T2 + a3I1 + a4I2;where T1 and T2 are respectively the numbers of these years in which the taxpayer does notor does pay higher rate tax, I1 and I2 are respectively his total income, summed over yearsof these types, and a1 = 0, a2 = a0 + h1(a3 � a4).Notice that a taxpayer who has a constant income in each of 40 years will pay less tax thana taxpayer who has the same total income over those 40 years but whose income varies aboveand below h1 from year to year. While this anomaly is not desirable in a tax system (andindeed some countries allow taxpayers to average their income over several years to reducethis e�ect), it is precisely what we want, in the context of charging for variable rate tra�c,so that a source that is more bursty will pay a greater charge.Our analogous charging scheme for a connection is to divide the duration of the connection,T , into T=t intervals of length t, where its value is determined from the parameters of thesystem. In the examples we consider, the critical parameter t ranges from about 50ms to1500ms. Each such interval will be our charging interval for the tra�c stream.Let us classify a charging interval as being of type I or II as the total volume of cells thesource produces during that interval is either � h1 or > h1. the charging function takes theform a1[: : : ]T1 + a2[: : : ]T2 + a3[: : : ]V1 + a4[: : : ]V2: (24)Recall that T1 and T2 are the total durations of intervals of types I and II respectively; soT1 + T2 = T . Similarly, V1 and V2 are the total volumes of cells generated by the sourceduring intervals of types I and II respectively; so V1 + V2 = V . We have, as above, a1 > a2,a3 < a4. Then the charge is equivalent toT=tXi=1 maxfa1t+ a3vi ; a2t+ a4vig;where vi is the number of cells which the source generates during the ith charging interval.The maximum is achieved by the �rst or second term as vi � h1 or vi > h1. Notice that thecharge is an increasing and convex function of vi.4.3 Numerical comparison of the schemesTo illustrate these ideas, we give some numerical results for a theoretical model of a sourcethat has been a popular testbed in other studies. This source alternates between on and o�25



states according to a two-state Markov process. The mean duration of an on phase is 350 msand the mean duration of an o� phase is 650 ms. In the on phase the source produces cells ata constant rate of 64 Kbps, and in the o� phase it is silent. Thus these sources have mean rate:35(64) = 22:4 kbps. Suppose the total bandwidth available to a number of such calls is 155Mbps. On the basis of peak rate allocation, the switch could carry just 155; 000=64 = 2; 420connections, (or perhaps slightly less, due to cell scale e�ects; although these e�ects are verysmall for this model once the bu�er is more than about 50 cells.) If there were an in�nitebu�er, and delay is not an issue, then it would be possible to carry 155; 000=22:4 = 6; 920connections.Suppose the switch has a bu�er of 200 ATM cells (= 84:4k bits, since a cell is 53 bytes.)Solving so that (2) gives about 17.75 (which we take as a target value as e�17:75 + 2� 10�8),we �nd n = 6; 350 and the extremizing values in equation (2) of t = 95ms and s = 0:027.Table 1 displays the results of similar calculations when the bandwidth which is availableto these sources is reduced to 50% and 25% of the maximum (perhaps because some of thebandwidth is being used by constant bit rate sources). Other lines in the table show resultsfor bu�ers of smaller and larger sizes.B (cells) C (Kbps) n 
 t ms s (Kb)�150 155,000 6,315 17.6 46 0.054155,000 6,350 17.6 95 0.027200 77,500 3,075 17.6 116 0.03237,750 1,430 17.7 143 0.0392000 155,000 6,505 17.5 359 0.00810000 155,000 6,705 17.9 1332 0.003Table 1: Values of s and t for various B and C.Table 2 shows values of(a) 1st log EesX[0;t] (b) 1st log E�(sX [0; t]) (c) 1st log h�1� mh �+ mh eshtifor t = 150 ms and t = 1000 ms. Here �(x) denotes the piecewise linear function that boundsex for a tax-band scheme with two bands, (as shown in Figure 4), where the point at which thetwo bands are divided is chosen to minimize (b). The data for t = 150 demonstrates that thereis not much di�erence for typical values of t and s. The data for t = 1000 demonstrates thatthe tax-band scheme can gives a substantially better approximation to the e�ective bandwidth26



when t is large. However, as we have seen, the circumstance in which it is appropriate to taket large (relative to the mean durations of on and o� phases of a source) is when there is alarge bu�er; in this case s is small and there is not much di�erence between the two chargingschemes. t = 150 mss (a) (b) (c)0 22.4 22.4 22.40.001 22.46 22.46 22.470.01 22.97 23.00 23.110.05 25.34 25.51 26.030.1 28.42 28.75 29.820.2 34.48 35.09 37.030.5 47.04 47.74 50.201 54.79 55.18 57.002 59.23 59.38 60.505 62.05 62.08 62.601 64 64 64

t = 1000 mss (a) (b) (c)0 22.4 22.4 22.40.001 22.56 22.63 22.870.01 24.04 24.73 27.290.05 31.05 34.34 44.460.1 38.80 42.75 53.530.2 47.94 50.49 58.750.5 56.61 57.36 61.901 60.15 60.36 62.952 62.04 62.09 63.485 63.21 63.21 63.791 64 64 64Table 2: Comparison of bounds (b) and (c) to the e�ective bandwidth (a)However, we do expect to see more marked di�erences when there is a mixture of sourcesof di�erent types and whose burstiness di�ers widely. For example, if there are also a smallnumber of sources for which the mean on and o� phases are 35 and 65 ms then the extremizingvalues of t and s in equation (2) will be much as before (since the proportion of these sourcesis small.) For these sources (and also for a source with even shorter on and o� phases) thevalues of (a){(c) at t = 95 and s = 0:027 are given in Table 3.mean on, o� (a) (b) (c)350, 650 23.47 23.51 (+ 0.2%) 23.62 (+ 0.6%)35, 65 22.84 23.01 (+ 0.7%) 24.62 (+ 3.4%)3.5, 6.5 22.44 22.57 (+ 0.6%) 24.62 (+ 5.3%)Table 3: Over estimates of the e�ective bandwidth by tax-band schemesThus to charge for these sources simply on the basis of T and V results in 3.4% over-27



charging relative to their e�ective bandwidths, even when the most favourable tari� of thistype is used. Users whose sources are of this type will prefer to be charged according to thetax-band scheme or to smooth their tra�c in a small bu�er so that it has a smaller peak rate.For this model of Markov modulated on-o� sources we can conclude that1. typical values of t are 100{200 ms;2. typical values of s are 0.01{0.04 per Kb;3. the quantities of interest change slowly in s; t, so it is not important that these bedetermined very accurately;4. as bu�er or bandwidth increases, t increases and s decreases;5. the charge based on T and V over-charges, as compared to a charge which is simply thee�ective bandwidth, by about 0.6%;6. the charge based on a tax-band scheme using two bands over-charges by about 0:1%.5 DiscussionIt is important to appreciate the interface between usage charges and connection acceptancecontrol (CAC). Given charges, demand rates, and a CAC policy, the network will carry variousnumbers of di�erent services; these numbers will 
uctuate, in response to randomly o�eredtra�c, around some point on the boundary of an acceptance region, which is itself a functionof the CAC policy. There will be a shadow price for the binding constraint at this point, ande�ective bandwidths for each type of tra�c. For example, if the CAC is to accept a call if thisleaves Pi nihi < C, where hi is the peak rate, then the e�ective bandwidth for tra�c type iis hi and the usage charge for tra�c type i should be of the form �hi. Note that operationtakes place around a point at the boundary of the acceptance region; if it were taking placeat an interior point then prices should come down, so as to admit more tra�c.In the case of real-time bursty sources subject to a non-zero cell loss rate guarantee, ane�cient network operator will wish to take advantage of statistical multiplexing and use anacceptance region close to that described in this paper, i.e., A = fni :Pi ni�i(s; t) < Kg.In our approach the CAC which is consistent with our charge is the acceptance region�A = fni :Pi ni��i(m;h) < Kg, where ��i(m;h) is an upper bound on the e�ective bandwidth,subject to knowledge of static parameters and a priori estimates of measured parameters. The28



CAC treats two sources as equivalent if, conditional on the a priori information available,their values of ��i(m;h) are the same. A dynamic CAC that is also responsive to on-linemeasurement might conceivably make even more e�cient use of network resources. However,within the class of CAC that we have described, the most e�cient CAC is when users makeaccurate a priori estimates of the expected value of the measured parameter (11), so that��i(m;h) = �i(s; t) and the acceptance region is A. Generally, users know less, we measureless, and �A lies strictly within A. However, as our numerical examples have shown, fairlysimple measurements can be enough to ensure that �A is almost as large as A.We have developed results in the context in which the tra�c mix is �xed at some operatingpoint. In practice, the tra�c mix will 
uctuate around this point, which may itself be di�erentat di�erent times of day. Di�erent constraints will be binding at di�erent operating points,and so usage charges will di�er. If the binding constraint is a single link then the usage chargeat that time of day is to be computed from the e�ective bandwidths that hold at that link.If the tra�c passes along two links, each of which is �lled to capacity, then the usage chargeshould be found from a weighted sum of the e�ective bandwidths, where the weights are theshadow prices of the link constraints. Sometimes tra�c passes through two or more networks(e.g., a local one and a wide area one). The local network might be uncongested, resultingin a charge with only a �xed-charge component; the wide area network might be congested,resulting in a charge with both �xed and usage charge components. The user should becharged for the networks he uses, and therefore to choose from a menu of tari�s will need toknow which parts of his tra�c is carried on one or other of the networks, or both.AcknowledgementThe partial support of the Commission of the European Communities ACTS project AC039,entitled Charging and Accounting Schemes in Multiservice ATM Networks (CA$hMAN), isacknowledged.We are grateful to Peter Austing and John de Sa for solving the MDP examples in Sec-tion 3.2, to Meena Lakshmanan for help with the calculation of the tables of Section 4.3, andto George Stamoulis and Vasilios Siris for helpful discussions.
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