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2in a competitive environment providers will need to price services in a mannerthat takes some account of network resource usage [14,2]. There are many con-siderations that in
uence the price of network services, such as marketing andregulation. However, these considerations are not particular to the operation ofa communications network, which is closely related to technological constraints(e.g., the quantities of services that it can support for a given amount of networkresources). A special consideration arises from the fact that a broadband com-munications network is intended to simultaneously carry a wide variety of tra�ctypes and to provide certain performance guarantees. For example, in ATM net-works the user and the network operator negotiate a tra�c contract. Under thiscontract, the user agrees that his tra�c will conform to certain parameters (e.g.,that bound his peak rate and the size of his bursts), while the operator guaranteesa particular quality of service (expressed, for example, in terms of delay and cellloss ratio). The tra�c contract gives the operator information by which he canbound the network resources that will be required to carry the call.This paper is concerned with just one important part of the charging ac-tivity: the part that aims to assess the relative amount of resources used by aconnection. We shall henceforth simply refer to this component as charging andof computing a charge.1.1. Some desired properties of tari�sThe role of tari�s is not only to generate income for the provider, but tointroduce feedback and control. This happens via the mechanism that is auto-matically in e�ect as each individual user reacts to tari�s and seeks to minimizehis charges. For example, tari�s may make it economical for some users to shapetheir tra�c, which would result in an increase of overall network performance.This is the key idea of incentive compatibility. Tari�s should guide the popula-tion of cost-minimizing users to select contracts and use the network in ways thatare good for overall network performance, e.g., to maximize social welfare [11].Tari�s that are not incentive compatible give the wrong signals and lead users touse the network in ine�cient ways.Well-designed tari�s should also be fair1, i.e., charges should re
ect a user'srelative resource usage. As we will discuss, this is required for achieving econom-ically e�cient allocation of network resources. This point raises the interestingquestion of when one charging scheme is more accurate than another, where ac-curacy is measured not in terms of the absolute value of the charges, but in termsof their correspondence to true resource usage.The above remarks lead one to ask whether it possible to design tari�s thatare sound, both in terms of incentive compatibility and fairness, but that arealso not too complex, and their implementation does not require the network1 In the case of di�erential pricing and/or time-of-day pricing, fairness is considered for users ofthe same \class" that use network services within the same time period.



3operator to make overly sophisticated or unrealistic measurements. Incentivecompatibility will be hard to achieve if tari�s are too complex, since users will�nd it di�cult to determine the e�ect the decisions under their control, such astra�c shaping, have on the charges they incur.1.2. Contribution of the paper and related workIn this paper we study a usage-based charging scheme that is a specialcase of the general model introduced in [3], where charges are linear functions ofmeasurements of time and volume. Our consideration of such a charging scheme ismotivated �rst by its technological feasibility, since current technology can readilysupport measurements of time and volume per connection or 
ow, and second forits simplicity for the users, since charges are simple linear functions of quantitiesthey can easily understand. Consideration of more complex measurements wouldincrease the performance at the expense of a large increase of implementationcosts and complexity. Furthermore, the introduction of usage-based charging isitself a debatable issue, and in this paper we argue that e�ective charging schemesthat require only two simple measurements (time and volume) can be created.Our approach is based on the notion of e�ective bandwidth as a proxy forresource usage [9]. Both theory [6,9,3] and experimentation [5] has shown thata connection's resource usage depends on its context, i.e., the link resources andthe composition and characteristics of the other tra�c it is multiplexed with. Inthe e�ective bandwidth de�nition we consider, this dependence is only througha pair of parameters, the space and time parameters. The approach for creatingusage-based charging schemes, whose mathematical foundation is developed in[3], transforms simple tari�s of the form a0T +a1V into sound approximations ofthe e�ective bandwidth. The variables T (duration) and V (volume) are dynamicvariables that are measured a posteriori, while the coe�cients a0 and a1 are staticparameters that depend on the tra�c contract parameters and the operatingpoint of the network. An important property of the approach is that it treatsdeterministic and statistical multiplexing in a unifying way.We study the above charging approach for real broadband tra�c consistingof Internet Wide Area Network traces and MPEG-1 compressed video, and forcapacity and bu�er sizes that will appear in broadband networks. In particular,we investigate the fairness of the charging approach, i.e., its ability to capture therelative amount of resources used by connections, and its incentive compatibility,i.e., the incentives it provides for guiding the system comprising of the networkand its users to a stable and economically e�cient operating point. Based on theconclusions of these investigations, we believe that our simple tari�s can servetheir purpose well.Our focus is on simple charging schemes that can accurately re
ect therelative amount of resources used by connections. In this sense our work di�ersfrom [11] and [17], which investigate optimal pricing strategies assuming that



4network resources (bu�er and capacity) are charged separately, and [20], whichalso deals with optimal pricing but does not relate charges to the amount ofresources a connection uses. Our approach can be applied to proposals such asexpected capacity [1] and edge pricing [18], which address architectural issuesof pricing network services, or can be complemented with approaches such astime-of-day pricing.The rest of the paper is organized as follows. In Section 2 we brie
y explainour charging methodology by reviewing some key notions and results for creatingcharging schemes that are linear in measurements of time and volume. In Sec-tion 3 we discuss the fairness of charging schemes, based on which we evaluateour approach for real broadband tra�c. In Section 4 we discuss the incentivecompatibility of the approach and work through a complete example in the sim-pler, but illuminating, case of deterministic multiplexing. We also investigate thee�ects of statistical multiplexing on the operating point of the network. In Sec-tion 5 we discuss the incentives for tra�c shaping when our charging approach isused. Finally, in Section 6 we conclude the paper and identify some open issues.2. A theory for usage-based charging2.1. E�ective bandwidths as a measure of resource usageSuppose the arrival process at a link is the superposition of independentsources of J types: let nj be the number of sources of type j, and let n =(n1; : : : ; nJ). We suppose that after taking into account all economic factors(such as demand and competition) the proportions of tra�c of each of the Jtypes remains close to that given by the vector n, and we seek to understand therelative usage of network resources that should be attributed to each tra�c type.Consider a discrete time model and let Xj [0; t] be the total load produced bya source of type j in t epochs. We assume that the increments of fXj [0; t]; t � 0gare stationary. Then, the e�ective bandwidth of a source of type j is de�ned as[9] �j(s; t) = 1st logE hesXj [0;t]i ; (1)where s; t are system de�ned parameters that depend on the characteristics ofthe multiplexed tra�c and the link resources (capacity and bu�er). Speci�cally,the time parameter t (measured in, e.g., msec) corresponds to the most probableduration of the bu�er busy period prior to over
ow [6,22]. The space parameter s(measured in, e.g., kb�1) corresponds to the degree of multiplexing and depends,among others, on the size of the peak rate of the multiplexed sources relativeto the link capacity. In particular, for links with capacity much larger than thepeak rate of the multiplexed sources, s tends to zero and �j(s; t) approaches themean rate of the sources, while for links with capacity not much larger than the



5peak rate of the sources, s is large and �j(s; t) approaches the maximum valueof Xj [0; t]=t.Let L(C;B; n) be the proportion of workload lost, through over
ow of abu�er of size B > 0, when the server has rate C and n = (n1; n2; : : : ; nJ). Assumethat the constraint on the proportion of workload lost is e�
 (we will assumethat the Quality of Service -QoS- is expressed solely through this quantity). Theacceptance region A(
;C;B) is the subset of ZJ+ such that n 2 A(
;C;B) implieslogL(C;B; n) � �
, i.e., the QoS constraint is satis�ed. If n is on the boundaryof the region A(
;C;B), and the boundary is di�erentiable at that point, thenthe tangent plane determines the half-space [9]Xj nj�j(s; t) � C + 1t �B � 
s� ; (2)where (s; t) is an extremizing pair in the following equation, called the manysources asymptotic ([6], also see [21] for the extension to networks):limN!1 1N logL(NC;NB; nN) = supt infs 24st JXj=1nj�j(s; t)� s(Ct+B)35 : (3)The asymptotics behind this approximation assumes only stationarity ofsources, and illustrative examples discussed in [9] and [16] include periodicstreams, fractional Brownian input, policed and shaped sources, and determinis-tic multiplexing. Equation (2) expresses the local (at s; t) condition such that theQoS guarantee is met. The latter is encoded in the e�ective bandwidth de�nitionthrough the value of 
 which in
uences the form of the acceptance region. Fur-thermore, investigations with real tra�c [5] have shown that the above de�nitionof the e�ective bandwidth can accurately quantify resource usage.The above considered the bu�er over
ow probability as the measure of QoS.However, we could have also considered a bound on the maximum delay as themeasure of QoS. Furthermore, we considered the case of a single First-Come-First-Served (FCFS) queue. The results can be extended to priority queueing [9],where each service class has its own pair of operating point parameters s; t.We now stress the network engineering implications of the above results.For any given tra�c stream, the e�ective bandwidth de�nition (1) is a measureof resource usage that depends on the link's operating point2 through only twoparameters s; t. Experimentation has revealed that the values of s; t and thee�ective bandwidth are to a large extent insensitive to small variations of thetra�c mix (percentage of di�erent tra�c types) [5]. Hence, particular pairss; t can be assigned to periods of the day during which the tra�c mix remainsrelatively constant. These values can be computed o�-line using (1) and (3),2 The operating point of a link is characterized by the combination and characteristics of themultiplexed tra�c.



6where the expectation in (1) is replaced by the empirical mean, which is computedfrom tra�c traces taken for the particular period of the day.2.2. Charges based on e�ective bandwidthsWe have argued above that e�ective bandwidths can provide a way to assessresource usage, and hence can be used for constructing the usage-based compo-nent of the charge. There are two extreme methods by which this can be done.Consider sources of type j, where \type" is distinguished by parametersof the tra�c contract and possibly some other static information. The networkcould form the empirical estimate ��j (s; t) of the expectation appearing in (1), asdetermined by past connections of type j. A new connection of type j would becharged at an amount per unit time proportional to ��j(s; t). This is the chargingmethod adopted in an all-you-can-eat restaurant. At such a restaurant each useris charged not for his own food consumption, but rather for the average amountthat similar users have eaten in the past. Under such a charging scheme, eachuser may as well use the maximum amount of network resources that his con-tract allows, which will result in ��j (s; t) eventually becoming the largest e�ectivebandwidth that is possible subject to the agreed policing parameters. Users whohave connections of type j, but whose tra�c does not have the maximal e�ectivebandwidth possible for this type, will not wish to pay as if they did, hence willseek network providers using a di�erent (more competitive) charging method.Similar incentive problems exist with a scheme where charges are basedsolely on the tra�c contract parameters. In this case charges are proportionalto the worst case tra�c for a given tra�c contract. However, because tra�ccontracts can be overly conservative, such a scheme will be unfair for users thatuse less resources than the maximum allowed by their contract.At another extreme, one might charge a user wholly on the basis of mea-surements that are made for his connection, i.e., charge the value of the e�ectivebandwidth of the tra�c actually sent. Incentive compatibility will be hard toachieve with such a complex scheme, since users will �nd it di�cult to determinehow the decisions under their control, such as tra�c shaping, a�ect their charges.Furthermore, there is a conceptual 
aw with the above approach that can be il-lustrated as follows. Suppose a user requests a connection policed by a high peakrate, but happens to transmit very little tra�c over the connection. Then ana posteriori estimate of quantity (1), hence his charge, will be near zero, eventhough the a priori expectation may be much larger, as assessed by either theuser or the network. Since tari�ng and connection acceptance control may beprimarily concerned with expectations of future quality of service, the distinctionmatters. This is the case because such a charging scheme does not account forthe resources reserved at call setup, which is unfair for the network operator.Our approach lies part way between the two extremes described above. Weconstruct a charge that is based on the e�ective bandwidth, but which is a func-



7tion of both static parameters which are part of the tra�c contract (such as thepeak rate and leaky bucket parameters) and dynamic parameters (these corre-spond to the actual tra�c of the connection, the simplest ones being the durationand volume of the connection); we police the static parameters and measure thedynamic parameters; we bound the e�ective bandwidth by a linear function ofthe measured parameters, with coe�cients that depend on the static parameters;and we use such linear functions as the basis for simple charging schemes. Thisleads to a charge with the right incentives for users, which also compensates thenetwork operator for the amount of resources reserved. In the next section wedescribe our approach in detail.2.3. Charges linear in time and volumeSuppose that a connection lasts for epochs 1; : : : ; T and produces loadX1; : : : ;XT in these epochs. Imagine that we want to impose a per unit timecharge for a connection of type j that can be expressed as a linear function ofthe form3 f(X) = a0 + a1g(X) ; (4)where g(X) is the measured mean rate (1=T )PTi=1Xi . In other words, the totalcharge is simply a function of the total number of cells carried and, through a0,the duration of the connection. This is practically the simplest measurement wecould take and leads to charging schemes based on just time and volume.We argued in Section 2.2 that the usage-based charge of a connection shouldbe proportional to the e�ective bandwidth �(s; t) of the connection, for appropri-ate s; t. Next we describe how linear functions of the form (4) can be constructedso that the expected charge bounds the e�ective bandwidth. Consideration ofsuch bounds is partly motivated by the remark that this is what we would chargeto a user who makes maximal use of his tra�c contract.Let ��(m;h) be an upper bound for the greatest e�ective bandwidth possiblesubject to constraints imposed by the tra�c contract h, while the mean rate ism. We de�ne our tari�s in terms of the charging function f parameterized withm;h. Mathematically, this corresponds to the tangent of ��(m;h) at m:f(m;h;X) := ��(m;h) + �m(g(X) �m) ; (5)which is of the form a0 + a1g(X), where a0[m;h] = ��(m;h) � �mm, a1[m;h] =�m = @@m ��(m;h).Our charging scheme works as follows. At connection setup and given histra�c contract h (chosen by the user), the user is o�ered a set of possible tari�3As discussed in the introduction, we are concerned with the relative resource usage that shouldbe attributed to each connection. Transformation of such relative charges to charges expressedin monetary units would be done using a multiplicative constant that depends on economicfactors such as demand and competition.
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Figure 1. A user is charged according to a tangent to the e�ective bandwidth bound. Due tothe concavity of the bound, a user's charge is minimized and becomes proportional to the boundif the user selects the tangent which corresponds to the a priori estimate of his mean rate.pairs (a0; a1) to choose from. These pairs correspond to tangents of the e�ectivebandwidth bound ��(m;h) for di�erent mean rates. Selection of a particular tari�pair a0; a1 de�nes the user's charging rate f(X) = a0 + a1g(X), where g(X) isthe user's mean rate (measured by the network).By considering the concavity of ��(m;h) in m [3], one can show thatthe expected value of the charging rate for this connection is Ef(m;h;X) ���(Eg(X);h), with equality if m = Eg(X) (the actual mean rate of the connec-tion), Figure 1. Hence, a rational user that chooses the tari�s that minimize hischarge will end up being charged in proportion to the maximal e�ective band-width that his connection could have, given all the available information at con-nection setup. Thus, the scheme o�ers the incentive for users to estimate theirmean rates as accurately as possible, and reveal this estimate to the providerthrough their tari� selection. Furthermore, in addition to the static parametersof his tra�c contract h, the user's charge also depends on his actual mean rateg(X); this provides the right incentives for avoiding the \all-you-can-eat restau-rant" e�ect discussed in Section 2.2.We note that although the tari� pairs (a0; a1) are computed using sophisti-cated techniques (e�ective bandwidths and the link operating point parameterss; t), these are hidden from the user. The user is only required to select a tari�pair from a table.2.3.1. Approximations for ��(m;h)In this section we consider approximations for ��(m;h), since ��(m;h) can bedi�cult to calculate and its value depends upon the operating point of the link.



9We start with a simple approximation that shows the relation of the varioustime scales to bu�er over
ow. Suppose that a connection is policed by multipleleaky buckets with parameters (�k; �k) for k = 1; : : : ;K and let m be the meanrate of the connection. The maximum amount of tra�c �X [0; t] produced in atime interval of length t is�X[0; t] � H(t) := mink=1;:::;Kf�kt+ �kg : (6)The last constraint together with the convexity of the exponential function impliesthat ��(m;h) � 1st log �1 + tmH(t) �esH(t) � 1�� = ~�sb(m;h) : (7)We call the right hand side of the last equation the simple bound. This equationis illuminating for the e�ects of leaky buckets on the amount of resource usage.Each leaky bucket (�k; �k) constrains the burstiness of the tra�c in a particulartime scale. The time scale of burstiness that contributes to bu�er over
ow isdetermined by the index k that achieves the minimum in (6).If t=1, then the bound (7) reduces to~�on-off(m;h) = 1s log �1 + mh (esh � 1)� ; (8)which is appropriate when the bu�ers are small and the argument minimizingexpression (6) corresponds to the peak rate h. We refer to this as the on-o�bound. Charges based on this bound have been considered in [8].In many cases [3], the worst case tra�c consists of blocks of an inverted Tpattern repeating periodically or with random gaps, with the size of the blocksand gaps depending on the values of s; t. In this paper we consider the peri-odic pattern shown in Figure 2, which gives the following approximation for thee�ective bandwidth bound, referred to as the inverted T approximation:~�?(m;h) = 1st logE hesX?[0;t]i ; (9)where X?[0; t] denotes the amount of load produced by the inverted T patternin t epochs. The expected value in the right-hand side of (9) can be computedanalytically.3. Performance evaluationIn Section 2.3 we introduced the class of tari�s f(m;h;X) = ��(m;h) +�m(g(X) �m), where h are the policing constraints of the tra�c contract, g(x)is the measured mean rate of the connection, and m is the user's anticipatedvalue of this mean rate. The bound ��(m;h) can be approximated by (7), (8),or (9). In this section we evaluate the performance, in terms of fairness, of
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Figure 2. Periodic pattern for the inverted T approximation. t0 = �h�� , to� = (2t�t0)�+t0hm � 2tthese approximations for real broadband tra�c consisting of Internet Wide AreaNetwork traces and MPEG-1 compressed video. We assume that a user knowshis mean rate, hence his charge will be equal to the value of the approximation~�(m;h) considered.3.1. Fairness of charging schemesWe �rst argue that charging in proportion to the actual e�ective bandwidthis required to achieve economic e�ciency. Indeed, consider two types of con-nections, A and B, and let uA(nA) and uB(nB) be the utility of accepting nAand nB connections of type A and B, respectively. The constraint on the num-ber of connections that can be accepted, while guaranteeing a target QoS, hasthe form of (2): nA�A + nB�B � K, for some value of K. The social welfareuA(nA) + uB(nB) is maximized when nA; nB are chosen in a decentralized wayby imposing usage prices ��A; ��B for connection types A;B respectively, with� being the shadow price for the constraint nA�A + nB�B � K. On the otherhand, if charges are not proportional to the e�ective bandwidth, then the optimalis not achieved. As an example, consider the case where both connection typesA and B are charged at rate g. Then the number of connections of each type willbe nA and nB, with u0A(nA) = u0B(nB) = g. For such a tra�c mix let �A < �B.Now assume that connections of type B are charged slightly more than those oftype A. The number of connections of type A now becomes nA + �, while thenumber of connections of type B becomes nA � ��A=�B , for some small value�. Note that the new source combination also satis�es the acceptance constraint.Furthermore, the new combination results in an increase of the total utility by�(u0A(nA) � �A=�Bu0B(nB)) = �g(1 � �A=�B) > 0, since �A < �B. The aboveexample shows that charging both connection types the same does not achievethe optimal welfare.An approximation ~�(m;h) of the actual e�ective bandwidth �(m;h) =�(s; t), given by equation (1), is de�ned as fair if the variance of the ratio~�(m;h)=�(m;h) is small, when m;h range over some interesting set of values.This implies that for this set we have ~�(m;h)=�(m;h) � k, for some constantk, and pricing in proportion to ~�(m;h) is equivalent to pricing in proportion to�(m;h). Hence, pricing in proportion to a proxy ~�(m;h) that is fair can achieveeconomic e�ciency. A reasonable measure of the unfairness of an approximation



11for a set of connections is the standard deviation of ~�(m;h)=(��(m;h)), where� is the average of ~�(m;h)=�(m;h), as m;h take values corresponding to theconnection set. We will refer to this as the unfairness index U . For example,an approximation that consistently overestimates the true e�ective bandwidth bysome constant multiplicative factor will have U = 0, hence would be preferredover some other approximation that, on the average, is closer to the true e�ectivebandwidth, but whose ratio ~�(m;h)=�(m;h) varies, hence U > 0.Whereas fairness, or the variability of the approximation error, is importantfor achieving economic e�ciency, the absolute approximation error of ~�(m;h),when that latter is used for acceptance control, is important for optimizing the useof resources, where optimality here refers to the maximal utilization of resources.In this paper we consider only the former, since our focus is on creating usage-based charging schemes that are incentive compatible and guide the network toan economically e�cient operating point.3.2. Experiments with real tra�cOur experiments involved real broadband tra�c, namely Internet Wide AreaNetwork traces and MPEG-1 video. For the former we used the Bellcore Ethernettrace BC-Oct89Ext4 [10], which has a total duration of approximately 34 hours.From the initial Bellcore trace we created a set of 17 non-overlapping trace seg-ments, each with a duration of approximately 116 minutes. Our model consistsof a link with capacity C and bu�er B that multiplexes a number of connections.The tra�c of each connection is given by one trace segment. Hence there are atotal of 17 di�erent connection types. Furthermore, for each connection the startframe within the trace segment is randomly chosen. The e�ective bandwidth foreach such connection is estimated from (1) with the expectation replaced by theempirical mean. Hence, if T is the duration of a trace segment j then the e�ectivebandwidth aj for a connection whose tra�c is given by this segment is computedfrom �j = 1st log 24 1T=t T=tXi=1 esXj [(i�1)t;it]35 ; (10)where Xj [(i � 1)t; it] is the load produced in the interval [(i � 1)t; it). For theparameters s; t we consider \typical" values that correspond to a target over
owprobability equal to 10�6, link capacities 34; 155; and 622 Mbps, and bu�er sizesthat are anticipated for broadband networks. Such typical values5 are computedusing equations (1), (3), and (10). In the experiments with Internet tra�c thatfollow, the values of s; t were obtained for a tra�c mix containing the same num-4Obtained from The Internet Tra�c Archive, http://www.acm.org/sigcomm/ITA/5 Typical values of parameters s; t for Internet WAN tra�c and other tra�c types and mixesare available at http://www.ics.forth.gr/netgroup/msa



12ber of connections for each connection type, where the tra�c for each connectiontype is given by one of the 17 trace segments.We assume that connections are policed by two leaky buckets h =f(h; 0); (�; �)g, and that the tra�c is shaped in a bu�er of size d (measuredin msec). Tra�c shaping is performed by averaging the amount of tra�c in win-dows of length d.6 For the experiments with Internet tra�c, we assume thattra�c is shaped with shaping delay d = 20 msec. The pairs (�; �) for which allthe tra�c is conforming form an indi�erence curve G (Figure 3). Finally, weassume that all users know their mean rates and are \rational", i.e., they selectthe pair (�; �) that minimizes their charge.
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(b) C = 155 MbpsFigure 4. Unfairness of the three e�ective bandwidth bounds for Internet WAN tra�c.tra�c used in our experiments leads to a less variable approximation error, i.e.,ratio ~�(m;h)=�(m;h). The inverted T approximation (9) is tighter than thesimple bound (7) due to the convexity of the exponential and the constraintX?(t) � H(t), where H(t) is de�ned in (6), with the strict inequality occuringfor some intervals of length t.� Whereas for small bu�er sizes the on-o� bound is fair, for large bu�er sizesits unfairness increases. This can be explained as follows: For small bu�ersizes the value of t is small and the minimization in (6) occurs for k = 1, i.e,H(t) is given by the peak rate �0 = h. Due to this, the simple bound (7)coincides with the on-o� bound (8). On the other hand, for large bu�er sizesthe value of t is large and the minimization in (6) occurs for k = 2, i.e, H(t)is determined by the leaky bucket parameters and is independent of the peakrate. As a result, for large bu�er sizes the on-o� bound has an approximationerror with higher variability.� The unfairness of the simple bound and inverted T approximation initiallyincreases as the bu�er size increases. However, this occurs up to some bu�ersize, after which the unfairness decreases as the bu�er size increases. Thisbehavior can be explained as follows: For small bu�er sizes, parameter s tendsto be large. For large values of s, the e�ective bandwidth (1) approaches thepeak rate measured over an interval t. In such a case both the simple boundand inverted T approximation are tight and have an approximation error withsmall variability. On the other hand, for large bu�er sizes, s tends to be smalland t tends to be large. In the case of small values of s, the e�ective bandwidthis determined by the mean, the variance, and higher moments of X[0; t] [9].Because the value of t is large, the variance and higher moments of X[0; t] aresmall, hence the e�ective bandwidth approaches the mean. In such a case, as inthe case of small bu�ers, both the simple bound and inverted T approximation



14 are tight and have an approximation error with small variability.� Finally, comparison of Figures 4(a) and 4(b) shows that the unfairness ofall bounds decreases when the capacity increases. This occurs because fora larger degree of multiplexing, which occurs on higher capacity links, thebounds become tighter and have a less variable approximation error.Next, we investigate the fairness of the e�ective bandwidth bounds forMPEG-1 compressed video with various contents. Because video will typicallyhave stricter delay requirements than general Internet tra�c, the bu�er sizes weconsider in the experiments that follow are smaller, hence correspond to smallerqueueing delays, than those we considered previously for Internet tra�c. Threesets of video tra�c7 were used in our experiments: movies, news and talk shows.These were created by breaking the cell streams containing the MPEG-1 tra�cinto non-overlapping segments, each with a duration of approximately 3 minutes(4500 frames). The resulting movies set contained 54 segments, the news setcontained 16 segments, and the talk show set contained 18 segments. Becausethe on-o� bound is less accurate (for large bu�ers) or coincides (for small bu�ers)with the simple bound, we do not consider it further.The results shown in Figures 5(a) and 5(b) were obtained for values of s; twhen the majority of the multiplexed MPEG-1 tra�c was of type movie. We canmake the following observations regarding the above �gures:� As we observed for Internet WAN tra�c, unfairness is not necessarilymonotonous with the bu�er size. Rather, there may be an initial increaseof unfairness as the bu�er size increases, after which unfairness decreases withincreasing bu�er.� The unfairness of the two bounds depends on the tra�c content. In particular,the fairness of the bounds is higher for talk shows compared to action movies.The fairness for news is somewhere in the middle. This can be explained bynoting that talk show tra�c is less variable than news tra�c, which in turnis less variable than action movie tra�c. Furthermore, the leaky bucket char-acterization is tighter for less variable tra�c, hence the bounds we consider,which are based on the leaky bucket, produce a less variable approximationerror for less variable tra�c.� As can be seen in Figures 4 (b) and 5 (a), for the same capacity and bu�er(C = 155 Mbps and B � 10 msec), both the Internet and the MPEG-1 tra�csegments we considered displayed similar unfairness.The general conclusions of this section hold for other tra�c types, tra�cmixes, and over
ow probabilities that we have investigated. Indeed for higherover
ow probabilities, unfairness tends to be smaller. This occurs because thee�ective bandwidth approaches the mean rate, and all the bounds become tighter.7Made available by O. Rose [15], at ftp://ftp-info3.informatik.uni-wuerzburg.de/pub/
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(b) C = 622 MbpsFigure 5. Unfairness of the simple bound and inverted T approximation for MPEG-1 video withvarious contents.An important issue for further investigation includes the e�ects of uncertainty inthe value of the expected mean rate.Our focus in this section was on the fairness of charging schemes. As dis-cussed in Section 3.1, such a property is required for achieving economic e�ciency.We considered charging schemes based on the bounds (7), (8), and (9), which de-pend on measurements of time and volume. It was found that the inverted Tapproximation has smaller unfairness than the other two bounds. On the otherhand, it is more complex than the other two bounds. Indeed, for the simplebound, if parameter t is known then a user can compute the leaky bucket param-eters that minimize his charge using a simple procedure [4]. Hence, for the simplebound and the inverted T approximation there is a tradeo� between simplicityand fairness. The on-o� bound, for large bu�er sizes, has higher unfairness thanthe other two bounds. One the other hand, the unfairness for the simple boundand inverted T approximation is small for very small or large bu�er sizes. Finally,the unfairness of all bounds decreases with the link capacity, which results in alarger degree of multiplexing, and for smoother tra�c.How do the above schemes compare to other charging schemes, such as theones mentioned in Section 2.2? We have found that charging based solely ontra�c contract parameters has much higher unfairness than the above schemes.This is expected since such contracts, in many cases, provide a very crude andoverly conservative characterization of the actual e�ective bandwidth. We note,nevertheless, that there can be cases where such an approach is desirable eitherbecause no tra�c measurements are possible or because the tra�c of users isclose to the maximum allowed by their contract, e.g., see [19] which containsa comparison of the tari�ng approach presented in this paper with real tari�spublished by a network operator. On the other hand, charging based on the



16actual e�ective bandwidth would be fair, but has other problems, as discussed inSection 2.2: complexity for the user and high implementation costs, in the casethat the e�ective bandwidth is measured for each connection, or the incentiveto \over-eat", in the case that users are charged based on measurements of thee�ective bandwidth for previous connections of the same type.4. Incentive compatibility and user-network interactionAs we have mentioned in the introduction, the operating point of the linkand the posted tari�s are inter-related in a circular fashion. The network op-erator posts tari�s that have been computed for the current operating point ofthe link, which corresponds to some values of the parameters s; t. These tari�sprovide incentives for the users to change their contracts in order to minimizetheir anticipated charges. Under these new contracts, the link's operating pointwill move, since the network operator must guarantee the performance require-ments of these new contracts. Hence, the operator will calculate new tari�s forthe new operating point. This interaction between the network and the userswill continue until an equilibrium is reached. Tari�s are incentive compatible,if they provide the incentives to users, which act to maximize their individualutility, so that the decentralized allocation of network resources coincides withthe economically optimal allocation that would have been made centrally by thenetwork operator, if he knew the utilities of all users.We show below, for a simple example, that if the network operator uses ourcharging approach then an equilibrium exists and maximizes the social welfare,which we take to be the number of users admitted to the system. For simplicity,we assume that all users are policed by a single leaky bucket. Furthermore, weassume that the indi�erence curve G is convex, tends to in�nity when � goes tothe mean rate m, and is zero for � = h. The network consists of a shared linkwith capacity C and bu�er B.Consider �rst the case of deterministic multiplexing (zero over
ow proba-bility). For deterministic multiplexing, our e�ective bandwidth theory suggeststhat s =1 (this follows from (2) when 
 =1), and that the e�ective bandwidthof a connection policed with (�; �) is �j(1; t) = �X [0; t]=t = �j + �jt for t > 0 and�j(1; 0) = �j . The acceptance region A (one-dimensional in our case) is de�nedby the constraints Pj �j � C and Pj �j � B . For each of these constraints, thee�ective bandwidth is de�ned for t =1 and t = 0 and is �j and �j , respectively.A rational user will seek to minimize his charge, hence performs the followingoptimization:USER: min(�;�) �(1; t;m;h) such that (�; �) 2 G ; (11)where t =1; 0 for which the e�ective bandwidth becomes �j; �j respectively.
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� G = �(�)t = 0; �j = �

B=C
Q t =1; �j = �

�Figure 6. Indi�erence curve G and e�ective bandwidth for deterministic multiplexing. Forpoints above Q users tend to decrease �, since their charge is proportional to �. On the otherhand, for points below Q they tend to decrease �, since their charge is proportional to �.The network tries to maximize the number of users it accepts, hence per-forms the following:NETWORK: max n such that Xj �j � C and Xj �j � B : (12)We assume that the network and the users update their parameters in discretesteps as follows: (i) the network computes the values of s; t based on the currenttra�c, (ii) the users synchronously select their leaky bucket parameters, and(iii) the network recomputes the values of s; t for the new operating point. Forsimplicity, we assume that users have identical requirements, hence their choicefor (�; �) coincide. Due to this, the constraints in (12) become n� � C andn� � B, where n is the total number of users.Consider the point Q 2 G where the two constraints are both active, and let��; �� be the leaky bucket parameters at point Q, Figure 6. Hence, n� = C=�� =B=��. The value n� is the maximum number of users (welfare optimum), sincemoving away from Q decreases the number of users that can be accepted. Notealso that the point Q is the intersection of the indi�erence curve G with the lineof slope B=C that passes from the origin.Next we show that under our charging approach the network operating pointwill move towards point Q and that point Q is an equilibrium.If the users choose a point M below Q, then the �rst constraint of (12)will be active (t = 1) and the charge will be proportional to �; this will guideusers to reduce � and move towards Q. On the other hand, if the users choose



18a point M above Q, then the second constraint will be active and the chargewill be proportional to �; this will guide users to reduce � and move towards Q.Assuming that, in order to avoid oscillations, users are allowed to make smallchanges to their tra�c contracts, point Q will be eventually reached.At Q, both constraints in (12) are active and charges will be proportionalto a linear combination �1� + �2� of the e�ective bandwidths � and � thatcorrespond to the two constraints, where �1; �2 are the shadow prices of theoptimization problem in (12). Furthermore, point Q is an equilibrium since usersminimize their charge at that point. Indeed, if we consider the Lagrangian of (12)with the constraints replaced by n� � C and n� � B, then from the necessaryconditions for optimality we can show that the shadow prices �1; �2 satisfy theequation �1�� + �2�� = 1, which corresponds to the tangent of the indi�erencecurve G at point Q. Assume now that a user moves away from point Q bydecreasing his leak rate to �� ���, while still staying on the indi�erence curve.Due to the convexity of the indi�erence curve, the user's bucket size becomes��+�1=�2���+ �, where � > 0. His charge will then become �1��+�2��+�2�,hence it increases. Thus, the point Q on the indi�erence curve is an equilibrium.We now turn to the case of statistical multiplexing. Assume that the networkcharges using the simple bound ~� in (7). Since a rational user seeks to minimizehis charge, he will select the pair (�; �) that minimizes (7). Hence, the userperforms the following optimization:USER: min(�;�) ~�(s; t;m;h) such that (�; �) 2 G ; (13)where m is the user's mean rate and h the policing constraints of his contract,which include the peak rate h and leaky bucket (�; �).On the other hand, the network tries to maximize the number of sourcesthat it can accept while satisfying the QoS constraint P (over
ow) � e�
 . Thiscan be written as follows:NETWORK: maxn such that supt infs [stn~�(s; t;m;h)� s(Ct+B)] � �
 :(14)By performing the optimization in (14), the network computes a new pair (s; t),i.e., the link's operating point moves. This new pair (s; t) will a�ect the users'charges, hence will guide them to perform the optimization in (13) and select anew leaky bucket pair (�; �), which in turn will a�ect the link's operating point,hence the tari�s, and so on. Our experimental results indicate that, for thetra�c considered, the above user-network interaction leads to an equilibrium.Table 1 shows such equilibria for a range of bu�er sizes and for target over
owprobability 10�6. As in the case of deterministic multiplexing, for statisticalmultiplexing our results show that in the equilibrium the number of sources ismaximized. This is expected since the users' objective to minimize their charge,which is proportional to their e�ective bandwidth, coincides with the network's



19Table 1Equilibrium under deterministic and statistical multiplexing. [ C = 34 Mbps; P (over
ow) �10�6 (for statistical multiplexing), Bellcore Internet WAN tra�c. ]Deterministic mult. Statistical mult.B (106bytes) � (Mbps) � (bytes) nmax � (Mbps) � (bytes) nmax0.5 0.615 10600 33 0.475 29100 15301 0.553 18300 54 0.399 52800 16505 0.373 62500 80 0.202 175500 207010 0.285 95500 105 0.162 341100 2170objective to maximize the number of users accepted, since the latter is achievedwhen the e�ective bandwidth per user is minimized.For both cases discussed in this section, we have assumed that the networkhas only partial information regarding the user tra�c, namely the mean ratem and tra�c contract h. Our incentive compatibility results indicate that thenumber of connections accepted under decentralized control with each user se-lecting his own (�; �) pair is the same as the number of users that would havebeen accepted had the network provider, knowing the mean rates and indi�er-ence curves of all users, centrally chosen (�; �) for all users. If the network had apriori the full statistical information of all users, then it would have loaded thelink while satisfying the constraint supt infs [stn�(s; t;m;h)� s(Ct+B)] � �
.Since typically �(s; t;m;h) < ~�(s; t;m;h), the number of users accepted in thecase of full statistical information would be larger than the number accepted inthe cases considered, where the network has only partial information.5. Incentives for tra�c shapingOur �nal investigation deals with the incentives for tra�c shaping that areprovided by our charging scheme.We �rst begin with a discussion of how tra�c shaping a�ects the maximumlink utilization. Figure 7 shows the maximum link utilization, i.e., the aggregatemean rate divided by the link capacity, for di�erent bu�er sizes and shapingdelays, when C = 34 Mbps and a target over
ow probability 10�6 is met. Observethat for a moderate bu�er (75� 103 bytes), shaping tra�c in a bu�er with delayless than 500 msec does not a�ect the maximum utilization, thus the amountof resources used by each connection. Hence, for such bu�er sizes the chargingscheme need not provide the incentives for tra�c shaping.Of course a user can use shaping to make a contract with a lower peak rate.However, contrary to intuition, this might not a�ect his e�ective bandwidth asseen by the network. For example, Table 2 shows that for a bu�er larger than100 � 103 bytes, reducing the peak rate from 2.3 Mbps to 0.28 Mbps does not
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Figure 7. E�ects of tra�c shaping on the maximum link utilization. For a relatively smallbu�er (100 � 103 bytes), shaping in a bu�er with delay less than 500 msec does not a�ect themaximum utilization. [ C = 34 Mbps; P (over
ow) = 10�6, Internet WAN tra�c ]change the e�ective bandwidth, which is equal to 7 Kbps.The above discussion demonstrates how the theory of e�ective bandwidthsdescribed in Section 2 captures the e�ects of the various tra�c and network pa-rameters, such as the relevant time scales, on the amount of resources used byconnections. Hence our charging approach, which is based on e�ective band-widths, correctly takes into account the e�ects of the above parameters on re-source usage and provides incentives for users to shape their tra�c only whenshaping can increase the maximum link utilization.6. ConclusionsThis paper has dealt with one important part of the charging activity: thepart that aims to access a connection's network resource usage. In this direction,Table 2E�ective bandwidth for di�erent peak rates h. For bu�ers larger than 100�103 bytes, reducing hfrom 2:3 Mbps to 0:28 Mbps does not change the e�ective bandwidth, which is equal to 7 Kbps.[ C = 34 Mbps; P (over
ow) = 10�6, Internet WAN tra�c ]E�ective bandwidth (Kbps)Bu�er (103 bytes) h = 2:30 Mbps h = 0:76 Mbps h = 0:28 Mbps17 8.47 7.51 7.0825 8.12 7.49 7.0765 7.20 7.20 7.07106 7.00 7.00 7.00



21we have provided a framework for constructing incentive compatible charges thatre
ect e�ective resource usage. Our charging schemes are based on bounds of thee�ective bandwidth and involve only measurements of the duration and volume ofconnections. The schemes are simple in the sense that they are easily understoodby users. Furthermore, they can be cast in the same formats that are used today,namely, charges depend on static contract parameters (e.g., access line speed,leaky bucket policing parameters, anticipated average rate), and on dynamicparameters of a connection (e.g, actual average rate). Our approach is quitegeneral and can be used to charge for e�ective usage at many levels of networkaccess, ranging from individual users to large organizations. It can be applied toany packet switching technology and can be used under both deterministic andstatistical multiplexing.We have presented numerical results, with real broadband tra�c, that dis-play the fairness of the three e�ective bandwidth bounds that we considered,namely, the on-o� bound, the simple bound, and the inverted T approximation,and how fairness depends on the link parameters (capacity and bu�er). Fur-thermore, we have displayed the incentive compatibility and the user-networkinteraction of the proposed scheme for the cases of deterministic and statisticalmultiplexing. Based on the results of these investigations we believe that ourapproach for constructing tari�s can be used to fairly recover costs from usersand lead to e�cient and stable network operation.The extension of our approach to networks consisting of more than one linkraises several further issues which we hope to treat in the future. Importantchoices concern whether a user sees a single charge from its immediate serviceprovider, or whether a user might see several charges arising from various inter-mediate networks. We simply note here that charges linear in time and volumeremain so under aggregation.AcknowledgementsThe authors thank the anonymous referee for his thorough review and de-tailed comments, which have improved the presentation of the paper.References[1] D. Clark. Internet cost allocation and pricing. In L. W. McKnight and J. P. Bailey, editors,Internet Economics. MIT Press, Cambridge, MA, 1997.[2] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang. Pricing in computer networks: Motivation,formulation, and examples. IEEE/ACM Trans. on Networking, 1(6):614{627, November1993.[3] C. Courcoubetis, F. P. Kelly, and R. Weber. Measurement-based usage charges in com-munications networks. Technical Report 1997-19, Statistical Laboratory, University ofCambridge, 1997. To appear in Operations Research.
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