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Abstract

We present a methodology for the on-line estimation of the cell-loss probability of an ATM
link. It is particularly suitable for estimating small probabilities of the order 1076-1079, with
variance orders of magnitude smaller than traditional estimators. The method is justified by
the theory of large deviations and the information it requires is based on the actual traffic flows
rather than the analysis of some specific traffic models. The method is effective when there is a
large degree of statistical multiplexing; in other words, when the number of input traffic sources
is large. The statistical properties we require for the traffic are very general and are met by most
real-time traffic source models. Implementation issues of this methodology, which demonstrate
its simplicity, are also discussed.

1 Introduction

An ATM network provides support for a wide range of services which have differing bandwidth
requirements, traffic pattern statistics and Quality of Service (QoS) requirements. All information
flows are organized into fixed-size packets, called cells, and carried over high capacity links between
switches in the network. Cells belonging to a number of different calls are statistically multiplexed in
order to make efficient use of network resources. Switches are buffered, as a safeguard against those
cases that cells arrive at a switch faster than they can be switched to output links. Occasionally,
the buffer will not be large enough and cell loss will occur. Therefore, a measure of QoS offered
by the network to a traffic stream is its cell loss probability (CLP); for most types of traffic this
probability should be very small, of the order of 1076 to 1079,

Accurate and timely CLP estimation is important but difficult

The network is required to attain high utilization and to provide acceptable QoS, with the help of
the Traffic and Congestion Controlmechanism [8]. The Connection Admission Controlis a primary
function of that mechanism, which must decide whether or not to accept a new call, based on the
call’s traffic characteristics and QoS requirements, and on the current network status. It is therefore
important that the network have a mechanism for obtaining accurate and timely estimators of the
CLP that occur at each link.

A generic problem that the network management system faces is that since the events of interest
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are rare (e.g., cell-loss rates of the order of 107 — 107%), any direct brute-force on-line estimation
procedure would fail because of the large time required to make an accurate estimate. For example,
assume that the CLP is equal to p, and that the cell-loss events are i.i.d. In order to estimate the
CLP, with reasonable confidence interval, by simply counting the number of cells arriving and the
number of cells being dropped, one would have to observe in the order of 10%p~! cells passing
through the buffer [15]. Now suppose that we have a 155 Mb/s link and that the load on the link is
0.80, with an anticipated CLP of the order of 107%. Then, the estimate would require approximately
3 - 103 seconds of network time. Such a time is impractical since decisions about accepting a new
call in the network must be done quickly, and because the composition of the traffic can change in
such a large time interval.

Indirect estimation procedures for CLP

The use of queueing theory analysis to accurately predict the cell loss rate in ATM links has
been studied in a series of papers [10], [1], [16], [13]. Specifically, the GI/D/1/K model was
analyzed in [10], the MMPP(2)/D/1/K in [10] and [1], the MMPP(2)/E;/1/K in [16] and the
MMPP(J)/E;/1/K in [13]. In order to build the mathematical model for the real traffic stream,
some statistics, such as the squared coefficient of variation of cell interarrival time in [10] and the
index of dispersion for counts in [16], were used. The values of those statistics, known as traffic
descriptors, are determined using real traffic data. Since the traffic descriptors are usually com-
plex statistics, the collection and processing of that data isn’t simple tasks, and often require long
sampling periods to make an accurate estimate. Furthermore, the arrival process of those models
is inadequate to characterize the superposition of traffic sources in realistic systems.

Assuming a bufferless model for the real buffered-resource system, we are able to derive an
upper bound of the CLP, since the buffer can save cells that should be discarded in the bufferless
model. In [14], Saito and Shiomoto develop an estimation technique that relies on the peak and
average rates of each traffic source. A similar in spirit technique was proposed by Murase et al. in [9].
Both techniques are based on the assumption that each call produces cells according to the worst
possible traffic pattern, given the peak and average rates. In [2], Bean studies this bufferless model
for the special case where the traffic sources are characterized by the exponential ON/OFF model.
The work in that paper uses the Chernoff approximation, the effective bandwidth concept and the
statistical technique known as bootstrap to estimate the cell loss rate when there is incomplete
source information. Using those techniques we ensure that the CLP is never underestimated, but
we can’t ensure that it isn’t too overestimated, especially when the buffer size is large.

In [7], the CLP is approximated in terms of the first and the second moment of the aggregate
arrival rate and the size of the buffer. The approximation is effective only when the aggregate
arrival rate is normally distributed. In [3], the CLP is given by a formula involving the mean rate
of each source, its index of dispersion and the buffer size. That formula takes the form of the first
two terms in an asymptotic expansion that is accurate for large buffer sizes.

In [4], the CLP is given by a function, whose form is known by a formal mathematical devel-
opment based on large deviation asymptotics. The function is expressed in terms of three unknown
coefficients, which depend on the system and traffic parameters, and are determined as follows.
First, we select three “virtual subsystems” whose CLP is much larger than that of the actual
system, and therefore can be measured with small variance in a relatively short time. Then, we
accurately measure the CLP in those subsystems and solve the resulting three equations to deter-
mine the unknown coefficients. Finally, we plug in the obtained values of the coefficients into the
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expression of the function, and thus compute the desired CLP for the actual system. The selection
of the “virtual subsystems” is a critical point in the above algorithm, but no clear selection criteria
were specified in that paper.

Our approach

The key idea in our approach, developed in [5], is similar to the one found in [4], but applied
on a different asymptotic for the system, which resulted in a large improvement of the variance
reduction in systems of practical interest. Also, it includes “virtual subsystems” selection criteria
and uses complex statistical techniques to determine the unknown coefficients, their variance and
their covariance. So, we are able to estimate not only the desired CLP but also its variance.

An application of our results is towards the on-line estimation of the CLPs in actual ATM
links, which serve either a single buffer in a FCFS manner, or two buffers in a complete priority
manner. In the second case, our methodology estimates the cell loss rate incurred in the high-
priority buffer. Furthermore, by a small variation of the method we can infer the CLP that would
occur if we would accept an extra amount of traffic in the system (similarly to [4]). This variant can
be used for implementing dynamic Connection Admission Control procedures in ATM networks.

The rest of the paper is organized as follows. In Section 2 we explain the model and present the
CLP formula used in our procedure. In Section 3 we describe the on-line estimation methodology.
Section 4 contains the implementation issues, and in Section 5 we conclude with a summary and
some directions for further research.

2 The model and the CLP formula

In this section we present our model and the asymptotic CLP formula. The precision of the formula
increases as a certain parameter of the systems grows. In our case this is the parameter N, defined
below, which represents the “size” of the system. For details, the reader is referred to [5].

An output link of an ATM switch is modeled as a queue with a constant service rate and a
buffer for B cells. We shall suppose that time is discretized into epochs, n = 1,2,..., and that
during epoch n the cell service rate and arrival rate are both constant and equal to ' and X, cells
per epoch respectively. This models the usual case where there are dedicated resources C' and B
for the real-time traffic on the above link (using high priority for real-time traffic ensures the first
condition). The workload at the start of epoch n is denoted W, and

Wpt1 = max{0, min[(W,, + X,, — C), B]}.
We shall assume that { X, } is an ergodic process, and that F[X,] < C. This condition implies that
{W,} is ergodic.

Suppose that { X, } is the superposition of sources of M different types, with Np; sources of
type ¢, ¢ = 1,..., M. Thus the traffic is defined by the vector p = (p1,...,pn) and the scaling
parameter N. Let b and ¢ denote respectively the amounts of buffer space and bandwidth per
source, so that B = Nb and C' = Ne.

The cell loss rate can be expressed as L(c,b, N) = E[(W, + X,, — C — B,0)*], when W,, and
X, have their stationary values. A related measure is the proportion of time the buffer is full,
which we denote ®(¢,b, N) = P(W, = B). Assuming that D is the average number of cells lost in
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an overflowing epoch, the relationship between the CLP and the probability of buffer overflow in
an epoch is L = D®. If the epoch’s duration is equal to the cell transmission time, then D is less
than the number of ATM switch input links, and so we can state that ® is a good approximation

of the CLP.

The large N asymptotic

The large N asymptotic with which we are concerned takes the following form.
®(c,b, N)=exp(—NI(c,b)+ g1(c,b, N)), (1)

where limy . g1(¢,b, N)/N = 0. Both I(c,b) and g1(¢,b, N) depend on p but as we have done
above, this is suppressed. The rate I(c,b) is found as the solution to an optimization problem posed
in terms of time dependent logarithmic moment generating functions.

Asymptotic (1) suggests that for large values of N (number of traffic sources) the frequency of
buffer overflow ®(N) can be approximated by

$(N)= AN exp(—NI), (2)

where A and £ are constants. This is because we could neglect the terms varying slower than log(V)
in an expansion of ¢1(c,b, N) and absorb them in the constant A.

3 The on-line estimation methodology

The following example illustrates the basic idea of our methodology. Consider an ATM link that is
carrying 1000 sources, with a loss rate of about 1071°, As we have already mentioned, it is difficult
to measure such a small cell-loss rate directly. However, if we measure the loss rate p in a “virtual
subsystem”, that is carrying 200 sources and has bandwidth and buffer space equal to the one-fifth
of the corresponding values of the actual link, then, according to the large N asymptotic result, we
should obtain a value of about 10~2. Such a cell-loss rate is much larger than that of the actual
link, and therefore can be measured with small variance in a relatively short time. The interesting
question consists on how to get the CLP value of the real system using the CLP estimates of the
“virtual subsystems”.

Assume that ¥ = {1,..., N} is our real system, where N is the number of calls which are
served by the ATM link. A subsystem %; C X is described by the calls it serves, and let N; = |%;]
be the number of those calls. Our methodology is described by the following steps:

1st) Select K “virtual subsystems” ¥4,...,Xk.
2nd) Estimate the cell loss rate ®; directly, for each subsystem ¥;, i =1,..., K.

3rd) Determine the unknown coefficients A, £ and I, by solving the K linear equations

log ®; =log ®(N;) =log A + log N, — IN;, i=1,... K, (3)

4th) Calculate the desired quantity log®(N)=1og A+ {log N — IN
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There are some issues that have to be clarified. The first concerns the choice of the K “virtual
subsystems”. A small subsystem, i.e. a subsystem that serves few calls, will result in estimators
with small variance but which will contribute too large extrapolation errors since the approximation
formula (2) becomes accurate only when there is a large degree of statistical multiplexing. On the
other hand, if we select a large subsystem, then we face the problem of the large amount of time
required to obtain an accurate CLP estimate directly. In order to characterize the accuracy of the
CLP estimate in each subsystem, we obtain its variance. Those values are taken into consideration
when determining the unknown coefficients A, £ and 1.

3.1 Determination of the A, £ and [ coeflicients

In our methodology, the solution of the linear equations (3) is based on the regression analysis. In
order to describe that solution technique we rewrite the equation (3) using a different notation

y(N)) = D ap Xp(N;) (4)
k=1

where y(N;) = log ®(N;), X1(N;) = 1, Xo(N;) =log N;, X3(N;) = N;, and the a1, ag, as are the
unknown coefficients with a; =log A, a; = £ and a3 = —1.

If we denote by y; the logarithm of the direct CLP estimate for the ¢-th “virtual subsystem”,
ie. y; = log®;, ¢+ = 1,..., K, then we can determine the unknown coefficients by solving the
following minimization problem
2 o [y - S XV
=) (5)

a;

MINIMIzZE OVET 41, G, 43

=1

where o; is the standard deviation of the y; estimator. This procedure, known as “weighted least-

squares fitting”, is the maximum likelihood estimation of the fitted parameters if the y; estimation

errors are independent and normally distributed. A simple estimation of o; is presented in subsec-
tion 3.3, so we can assume that the values of o; is known.

Function y? obtains its minimum when the following equality holds

8X2 K 1 3
— =0& 2_2 yi—Zaka(Ni) X]‘(NZ')IO =4
da; i=1 71 =1
K 3 K
1 ;3 X5 (V;
& 3 Y axnox,v = Y L
=1 ' k=1 1=1 ¢
3 K K
Xi(Ni)X;(N:) yi X, (Ns)
A Z Z 0.2 ak = Z 02 =
k=1i=1 i i=1 i
3
& ) Biay = 7; (6)
k=1

where 3;, = 8, W is the (j, k) element of a 3 x 3 matrix and v; = Y&, %&Nﬁ is the

j-element of a vector of length 3.

The set of linear equations (6) can be solved using classical numerical methods, such as LU
decomposition and backsubstitution or Gauss—Jordan elimination, but these methods are suscep-
tible to roundoff error. There exist a very powerful set of techniques, known as singular value
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decomposition, that fixes the roundoff problem [6]. A very efficient implementation of a singular
value decomposition technique is presented in [11] and is recommended for the solution of equations

(6)-
Let (6;;) denote the inverse matrix of (5;;). We can calculate the values of the unknown
coefficients using the following equations

X ( X
a; = Z(S]k’yk—Z(sijy k ZZ ]k k 3/27 J=12,3 (7)

=1 k=1

The term Y 5_, %(N) is independent of y;. If the CLP estimators for each “virtual subsystem”

are mutually independent, then

K /3 ¢ N 2
Var(a;) = Z_: (Z 76]ka2(NZ)) Var(y;) =

o
k=1 ¢

W (jé)z(iiéﬂA@(Ng)zwzz
! k=1

K
2
=1
2
=1

K 3
1
—0'2 E 5]ka(NZ) E 5lel(N

tok=1

— Yy 3 AN

3
k=11=1 =1 g1
3 3
= D> 86
k=11=1

Since (¢é;;) is the inverse matrix of (;;), the following equation holds

Var(a;) Zéykfyk =0;; (8)
k=1

where ([;;) is the identity matrix.

Assuming that

i+ 05) Xe(N
Zij =a;+a; = Z@k%-l-Z@MM—ZZ by + Jk k( l)yl
I=1 k=1

and performing a sequence of steps similar to the above, we can find that
Var(Z;;) = bii + 6ij + 0ji + 65

The covariance of the a; and a; coefficients is given by
COﬂamaﬂ=:%(@j+5ﬁ)=5w

because the (6;;) is a symmetric matrix.

Thus, we can calculate the logarithm of the real CLP, y(N), by directly applying formula (4),
and its variance by the following relation

3
Var(y(N)) = > Xi(N)*Var(a;) + > Xi{(N)X;(N)Cov(a;, a;)
=1 (i.4) € {(i)) : 1.7e{1.2,3} A i#j}
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The goodness-of-fit is measured by the following quantity, which is called the squared multiple
regression coefficient

(V) -7
S (yi — 7)

where 7 = (1/K) K| y; and y(/]vZ) is computed from (4). The squared multiple regression coeffi-

R* =

cient must lie between 0 and 1, and the closer it is to 1, the better the fit. If the value of R? is very
close to 0, then either (i) the obtained values of the estimation errors o; may be wrong, or (ii) the
estimation errors o; may not be normally distributed, or (iii) equation (4) may not be adequate to
characterize the CLP in the current system configuration.

3.2 Selection of the “virtual subsystems”

Consider the K “virtual subsystems” 2, Xo, ..., X, which are ordered such that Ny < Ny < --- <
Ny, where N; = |¥;|. In order for the procedure described in the previous section to be accurate,
the following conditions must be satisfied.

e The CLP estimators for each subsystem must be mutually independent. Thus, the subsystems
must not serve common calls, i.e., X; N E; = {0} for 7 # j, and

e The sizes N; of the subsystems must be evenly spaced in the range [Ny, Nx].

Since a large degree of statistical multiplexing in each subsystem is highly desired, we specify
a lower threshold of the number of calls that each subsystem should serve, which we denote by
Nnin- Also, we like to use the maximum possible number of data points as inputs to the regression
analysis, thus to select as many subsystems as possible.

The proposed “virtual subsystems” selection method satisfies the aforementioned conditions
and is based on a simple optimization problem. If N is the number of calls which are served in
the real system, then we partition the set of that calls into the K + 1 subsets ¥1,..., g, 2T, such
that N; = || =in*,i=1,..., K, and ZZI‘:l N; +|2T| = N. The value of n* is determined by the
following minimization problem

minimize f(n)= |2t =N - in=N - w%
over n,
such that  f(n) > 0,
n integer, n > N,

for

- 1 8N min — 1
K = | YN/

2

where |z| denotes the integer part of . That is, we minimize the number of calls that are not
served by any subsystem which is used as input to the regression analysis procedure, and, at the
same time, we maximize the statistical multiplexing degree in any such subsystem. A numerical
solution of the above minimization problem is very simple, since f(n) is a decreasing function.

A final comment is needed about the choice of the constant n,,;,. We do not have any answer
yet for the problem concerning the optimal choice of the above constant. In general, for a specific
ATM switch, the value of n,,;, depends on the traffic characteristics of the multiplexed calls. So,
different values of n,,;, should be used for different compositions of the incoming traffic. Since the
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choice of the constant n,,;, should be done empirically, it is possible to select subsystems where the
large degree of statistical multiplexing assumption does not hold. The data points that correspond
to those subsystems are called outliers, and can easily turn the results of least-squares fit into
nonsense. The use of regression diagnostics [12], which are certain quantities computed from the
data points with the purpose of pinpointing the outliers, is of current study.

3.3 Estimation of the CLP measurement errors in subsystems

As we have already mention in subsection 3.1, we need to know the variance of the log ®; estimator,
where ®; is the cell loss rate measured for subsystem 2;, ¢ = 1,..., K. Assuming that I; is the
number of cells being dropped and D; is the number of cells arriving at the ATM link, then an
unbiased and consistent estimator of log ®; is the log(L;/D;).

Let U; = [21;, 22,5, -+, 2K ;s E;"], j=1,..., M, be M different partitions of the set of calls
that are served by the ATM link, which satisfy the criteria described in subsection 3.2. The notation
Y; ; denotes the i-th subsystem that belongs to the j-th partition,7 =1,...,K,j=1,..., M. Of
course it is true that |2; ;| = |%; x| Vi, j,k and ¥; ; # X, for j # k. Thus, we have M subsystems
of the same size, each serving a different set of calls. Let y; ; be the estimate of the logarithm of
the CLP for subsystem ¥, ;. A crude estimate of the variance of the log ®; estimator is given by

2
M M
1

ot = e O e T - o | i — ) (9)

i=1 i=1

where 77 = (1/M) Z]]\il y;,;- The second sum does a good job of correcting the roundoff error in
the first term.

4 Implementation issues

In this section we discuss some implementation issues of our methodology, wishing to demonstrate
its simplicity.

As we can see in figure (1), the on-line estimation methodology can be also implemented in an
external device, i.e. outside of the VLSI chip which performs the cell switching. When a cell arrives
at the output link, we duplicate the VPI/VCI field of its header and transmit it to the estimation
device. Then, using a lookup table, we find the set of subsystems ¥; ; which serve that VPI/VCI
connection. Three registers, denoted Z; ;, D;; and L;;, are used for each “virtual subsystem”.
Register Z; ; simulates the output queue behaviour in subsystem X;;, and D;;, L;; count the
number of cells arriving and being dropped respectively in subsystem ¥; ;. All three registers are
set equal to zero at the start of an estimation period, and, at each cell arrival, are updated in the
following manner

Di; ++

Zi; ++

if( Zi,j > B, ) {
Lij ++
Zi,j = B;
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Figure 1: An implementation of the proposed on-line estimation procedure

where B; = N;b. Also, the value of Z; ; decreases by one every 1/(N;c) seconds, and, at the same
time, it is checked so that Z; ; > 0.

When we want an estimate of the current CLP incurred in the ATM link, we first calculate
2

the y; ; for each subsystem ¥, ;, using the formula y; ; = log(L;;/D; ;). Next, we compute o
using (9), and insert the values, together with y; ; and N;, as inputs to the regression analysis
procedure described in subsection 3.1. The results of that procedure are the estimates of log (V)

and Var(log ®(V)) and the squared multiple regression coefficient R?.

From the above, it is clear that the estimation device functions are simple and require a small
amount of memory and processing power, hence the implementation of such a device is feasible
with a small cost.

5 Summary and Directions for Further Research

An important issue in ATM networks is the accurate and timely estimation of the cell-loss proba-
bilities that occur at various switches in the network, so that correct decisions can be made about
whether or not to accept more traffic or how it should be routed. In this paper, we present a
methodology for estimating the cell-loss rate of an ATM link in a reasonably short time. The
method uses information that is obtained from the actual traffic lows and it is effective when
there is a large degree of statistical multiplexing. The method can be used by Connection Admis-
sion Control and Routing procedures in ATM networks. Also, it can be used for speeding up the
simulation time for large systems.

An exhaustive simulation study could be conducted in order to study the effectiveness of the
proposed on-line estimation procedure, in terms of accuracy and timeliness, using realistic traffic
sources, long sequences of real video data and heterogeneous input traffic.
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