
Adv. Appl. Prob. 19, 177-201 (1987)
Printed in N. Ireland

? Applied Probability Trust 1987

MINIMIZING EXPECTED MAKESPANS ON UNIFORM
PROCESSOR SYSTEMS

E. G. COFFMAN, JR*
L. FLAT'O* AND
M. R. GAREY,* AT&T Bell Laboratories
R. R. WEBER** Queens' College, Cambridge

Abstract

We study the problem of scheduling n given jobs on m uniform processors
to minimize expected makespan (maximum finishing time). Job execution
times are not known in advance, but are known to be exponentially
distributed, with identical rate parameters depending solely on the executing
processor. For m = 2 and 3, we show that there exist optimal scheduling rules
of a certain threshold type, and we show how the required thresholds can
be easily determined. We conjecture that similar threshold rules suffice for
m > 3 but are unable to prove this. However, for m > 3 we do obtain a
general bound on problem size that permits Bellman equations to be used to
construct an optimal scheduling rule for any given set of m rate parameters,
with the memory required to represent that scheduling rule being independent
of the number of remaining jobs.
STOCHASTIC SCHEDULING; STOCHASTIC OPTIMIZATION ALGORITHMS

1. Introduction

We study the problem of scheduling given sets of jobs on
m_

2 processors
Pi, - - - , P,,,, which differ only in the rates at which they operate. Job execution
times are not known in advance, but on a processor with rate y they are known
to be independent samples from the exponential distribution with parameter P;
i.e. P[job-length > x] = exp (-ylx), x

_
0. Scheduling is to be non-preemptive,

i.e. once a job is assigned to a processor, it must be executed to completion.
The rate of Pi is denoted by ~i, 1 -i -m, and we assume the ordering

pl P 2 '
/m > O0. We shall adopt the convenient normalization

pl
= 1.

Agrawala et al. [1] define the expected flow time (sum of finishing times) as
the objective function and derive an optimal scheduling rule that minimizes
this expected value. For the case of m = 2 processors this result was
generalized by Lin and Kumar [2] and Walrand [3] to systems with arrivals.

Received 12 March 1985; revision received 19 November 1985.
* Postal address: AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.
** Postal address: Queens' College, Cambridge CB3 9ET, UK.

177

178 E. G. COFFMAN JR ET AL.

In this paper we adopt the expected makespan (maximum finishing time) as
the objective function. As we shall see, the problem of finding simple,
non-enumerative optimization rules under this objective function is substan-
tially more difficult. Indeed, our results will show that an algorithm with the
simplicity of that in [1] is not possible for the makespan problem. This remark
will be made more concrete after the definitions of Section 2.

In Section 3 we prove a number of results that characterize optimal
algorithms. From these results very efficient optimization rules for m = 2 and 3
are derived in Section 4. In Section 5 it is proved that feasible, though less
efficient algorithms can be found for general m. Section 6 concludes the paper
with a discussion of open problems.

2. Definitions

Because of our exponential assumptions, remaining execution times are
independent of elapsed execution times. It follows that scheduling decisions
need to be made only at job completion times, and that a system state need
only specify the number of waiting jobs and which processors are currently
busy (i.e. assigned jobs). This is accomplished in our state notation (a, k),
where k _ 0 denotes the number of waiting jobs and a = a, a2, ' ' ', ,m is a
bit vector with ai = 1, 1 ! i - m, if and only if Pi is currently busy. We let
I ca

= aE denote the number of busy processors. We write 0 and 1 when
referring to the vectors of m O's and m l's, respectively.

A scheduling policy is defined by specifying for each state (a, k), with a 1
and k > 0, which available processors, if any, are to have waiting jobs assigned
to them. Implicitly, if an assignment role decides that no assignments are to be
made when the system is in state (at, k), then the system executes or performs
in (a, k) until the state changes as the result of one or more job completions.
States (a, k) in which the system executes will be termed stable states.

We define C(a, k) as the minimum expected makespan assuming that the
system is initially in state (a, k). This of course generalizes the initial condition
a = 0 that would normally apply in practice. The minimum expected makespan
can be effectively defined by the Bellman equations that we now develop for
C(a, k). Let I, be the set of indices i for which ai = 1 and let J, be the set of
indices for which ai = 0. Define Ei as the vector of all O's except for a 1 in the
ith position.

First, we have

(2.1) C(, 0) = 0.

Next, the state (a, 0) with a 4#0 is obviously stable. Therefore, C(a, 0), a # 0,
can be written as the expected delay, 1/i2 #i, to the first job completion plus

Minimizing expected makespans on uniform processor systems 179

the minimum expected makespan in the resulting state. The probability that
the first completion is on PI, j EI,, is simply i1j/EEI Mi, and hence

C(a, 0) = - + C(a - E, 0), a 0O,
F Mi i Mi,

E
j['•

or

(2.2)
C(a•,

O)= 1+ iC(a-E1iO), a*O.

Since a state (1, k) with no available processors must also be stable, (2.2) also
applies in this case; i.e.

(2.3) C(1, k)=-
1 + 1 LiC(1- Ei, k)},

k

=
O.

M Mi 1<im

As a final boundary condition we observe that the state (0, k) is unstable for all
k - 1, and an assignment must be made to at least one processor. Thus,

(2.4) C(O, k)= min C(Ei, k- 1), k - 1.

In the general case, C(ac, k) can be expressed as the minimum over the two
choices determined by whether or not (a, k) is taken as stable. Thus,

(2.5) C(a, k) = min

{f•

(1 +
•Z tiC(a

- ei, k)), min C(a + i, k -1)

k-1, a 0, 1.

Note that evaluations of the recurrence represented by (2.1)-(2.5) must be
performed in increasing lexicographic order of the pairs (k, I a). For this
reason we shall refer to the pair (k, I 1a) as the size of state (a, k).

In terms of (2.5) state (a, k) is stable if C(a, k) = (1 +
-E

MiC(a - Ei, k))/
E

•Mi.

It will be convenient to refer to (as, k) as weakly stable if it is stable and
C(a, k) = C(ar + Ei, k - 1) for some i EJ,; i.e. the decision to execute in state

(a, k) is not uniquely optimal. The state (a, k) is strongly stable if it is stable,
but not weakly stable.

Equations (2.1)-(2.5) will be referred to collectively as the Bellman
equations. clearly, for any given initial state (at, k) the Bellman equations
allow us to compute an optimal policy inductively from the optimal policies for
all smaller states. The policy is representable as a transition function that

180 E. G. COFFMAN JR ET AL.

defines a stable successor state for (a, k) and each state smaller than (a, k).
However, to represent such a transition function for scheduling a set of n jobs,
it may be necessary to retain a list of (state, stable successor state) pairs whose
length is on the order of n2m, the number of possible states. As in [1] our
objective is an optimal policy whose transition function can be represented in
O(2m) space, independent of n and the initial state. For example, in [1] a
policy of the following threshold type was found to be optimal: a waiting job is
assigned to the fastest available processor, PI, if and only if the number, k, of
waiting jobs satisfies

k> +•- (j
- 1).

According to this rule, if ever a processor
P.

is allowed to remain idle while
other processors are busy executing jobs, then no waiting job will be assigned
to P, throughout the remainder of the schedule.

Unfortunately, a threshold rule of this simplicity is not possible for our
problem, except when m = 2. The above monotonicity property does not apply
in general. In particular, for m = 3 we shall illustrate in Section 4 choices for
P1, t2, ~3 and k such that an optimal policy must not assign a waiting job to P2
in state (101, k), but it must do so in state (100, k), which would follow
(101, k) with a job completion on P3. Moreover, there are initial states such
that (101, k) is reached with positive probability.

However, in Section 5 we shall prove that there exists an integer, K, which
is a function only of p,1, ? " ', m, such that the optimal decision in any state
(a, k), k > K, is to assign a waiting job to every available processor in a. Thus,
after a calculation using the Bellman equations, whose time complexity is
bounded by a function only of pl, ... ,

Mim,
we can obtain an optimal transition

function representable in O(K2m) space.
For the cases m = 2 and 3 we shall show that substantial improvements are

possible. In particular, Section 4 shows that a more general policy of threshold
type can be proved optimal for m = 2 and 3. With these policies, thresholds are
identified with processor states rather than processors. In particular, for each
processor state a = 1 there will exist a threshold t, - 0 such that a waiting job
is assigned to a fastest available processor if and only if the number of waiting
jobs exceeds t,.

The following notation will be helpful in the remainder of the paper. We
write (a, k) g (P, 1) if and only if ai 5 i, 1 -5 i - m, and Ia + k = IP + 1; i.e.
we can go from (a, k) to (P, 1) by assigning jobs to some of the idle processors.
Accordingly, (a, k)

_
(P, 1) implies that C(a, k) - C(P, 1). Moreover, for

every (at, k) there exists a stable state (P, 1) such that (a, k) (I , 1) and
C(a, k) = C(P, 1). Similarly, if (a, k)

_
(y, j) (13, 1) and C(a, k)= C(P, 1),

then C(a, k)= C(y, j).

Minimizing expected makespans on uniform processor systems 181

We conclude this section with a useful property of the maximum of
independent random variables.

Lemma 2.1. Let T and T' be the times required to finish the jobs executing
on P, ..., Pj at rates

p•i, .
, # and ', ... 1,

,
respectively. If i. ;,

1 4 i :j, with inequality holding for at least one i, then E(T) > E(T').

A direct proof of this result is easily supplied. However, as we shall see, it is
a special case of (3.1) below.

3. Properties of an optimal algorithm

Several simplifying properties of optimal algorithms will be proved in this
section for general

m-
2. In Section 4 we shall see that these properties

establish rather easily the existence of simple threshold rules for m = 2 and 3.
As our first objective, Theorem 3.1 will show that an optimal policy must
always keep P1 busy whenever jobs are waiting to be assigned.

It is convenient in the proof of Theorem 3.1 to make use of the intuitive
observation, C(a•,

k + 1) - C(a, k), k - 0, i.e. for a given processor state,
increasing the number can only increase the expected makespan under an
optimal algorithm. After a preliminary result in Lemma 3.1, we shall in fact
show that this inequality is strict and give a tight (positive) lower bound to the
difference C(a, k + 1) - C(a, k).

Let us define the number

1 1 1
-1-

+ 1
25j5m l+1j

25i<j<:m1
+ 1i +

-lj
1 +

"2
+ + m

It is easy to verify that A may be represented more compactly as the integral

A = (m - 1)!
•2

dXm
o(1 + x2 + .X ' Xm)m)

from which A > 0 follows directly.

Lemma 3.1. Let a #1. Then for each j E J,

(i) C(a + E, O) - C(a, O) >-C(1, O) - C(1- El, O)= A,
(ii) C(aL + E,, 0) - C(aL, 0) - C(Ej, 0) - C(O, 0) = 1/i.
Proof. For a* #0 let Ti, iE I,, denote the time required to finish the job

currently assigned to P,. Then

(3.1) C(a, 0) = P
max

i>
t dt = 1 - (1 - exp (-it)) dt, L la• la•

182 E. G. COFFMAN JR ET AL.

with a similar formula holding for C(a + ej, 0). Hence, for a # 0

(3.2) C(a +
ej, 0) - C(ao , 0) = exp (-pit) (1 - exp (-it)) dt.

We extend this formula to a = 0 simply by defining 1-o () = 1. Using (3.2) we

get (ii) from

C(a + e, 0) -
C(a,

0) _ exp (-Lt) dt =

To derive (i) we bound the integrand in (3.2) as follows:

exp (- iyt) 1 (1 - exp (-pit))
-

exp (-yit) H (1 - exp (-pit))
la iA,

1m (3.3) H(1 - exp (-pit))
exp (

1ct)-
1=1

> 1 H(1 - exp (- pit)).
exp (t) - 1 i=1

From (3.2) and (3.3) we conclude that

C(a + Ej, 0) - C(Oa, 0) C(1, 0) - C(1- El, 0)

= exp (-t) fI (1 - exp (-.it))
dt.

0 i=2

Finally, the integral can be expanded to

Sexp (1 - exp (-pit)) dt = exp (-t) - exp (-(1 + p)t)
0 i=2 i0=2

+ - - - exp (-(1 +

Y2+" +
+ m)t) dt,

from which C(1, 0) - C(1- el, 0) = A follows easily.

Lemma 3.2. For all a and k

C(a, k + 1) - C(a, k)
-

C(1 - e1, 1) - C(1 - E1, 0) = A > 0.

Proof. It suffices to prove C(a, k + 1) - C(x, k)
-

A, for then

A -- C(1 - El, 1) - C(1 - El, 0) -- C(1, 0) - C(1 - El, 0)= A,

so that A = C(1- E1, 1) - C(1- el, 0).
We proceed by induction on the size, (k, I al), of state (a, k). The result

holds for k=0 and a=0, since by Lemma 3.2(i) C(0, 1) - C(0, 0) =

C(Eo1, 0) - C(O, 0) A.
Consider k = 0 and suppose the result holds for all states smaller than (ar, 0).

Minimizing expected makespans on uniform processor systems 183

We have

(3.4) C(a, 0)= 1 + jC(a - Ej, 0) .

If C(a, 1) = C(ar+ Ej, 0) for some j EJ,, then by Lemma 3.1 C(ac, 1) -
C(ac, 0) = C(ac + ej, 0) - C(a, 0) - A, as desired. But if (a, 1) is stable and

C(a, 1) = 1 +Luic(ar- , 1)],

then by (3.4) and the inductive hypothesis

1
C(a, 1) - C(a, 0) = 1 E [c(a - yp, 1) - C(a - j, 0)] ?A,

again as desired.
Finally, suppose the result holds for all states smaller than (ar, k) where

k - 1. We have

(3.5) C(a, k) = min
1

1 +
LijC(a

-
Ej,

k)], min C(a+
j, k-1)}. QifE Y L 0 J0

By (3.5) and the inductive hypothesis, if C(a•,
k + 1) =

C(a•
+ Ej, k) for some

jE J,, then

C(a, k + 1) - C(a, k) C(ar + Ej, k) - C(a + yE, k - 1) - A,

whereas if

C(a, k + 1) =1+E11 MC(a -
j, k) ,

then

1

C(a,
k + 1) - C(av,

k)_

C L[C(a - 4, k + 1) - C(a - 4, k)]
_

A.

Theorem 3.1. In (ar, k) let ac = 0 and k - 1. Then (a, k) is unstable.

Corollary 3.1. From this result and Lemma 2.1 we conclude that P1 should
be assigned a waiting job whenever it is available. Hence, when ar =0,
C(ar, k) = C(ar +

EI,
k - 1). It also follows that, in the Bellman equations,

(2.4) can be simplified to C(0, k) = C(E1, k - 1), k
-

1.

184 E. G. COFFMAN JR ET AL.

Proof of the theorem. The result holds for a = 0 and k = 1 since (0, 1) is
unstable. Thus, suppose the result holds for all states smaller than (a, k), and
assume (a, k) is stable. Then al > 0 and we conclude from the remark above
that our inductive hypothesis can be written as

C(Q , k)- -
1 + MiC(- Ei, k)

(3.6)

1 + t C(a- i
+ 1, k-1)].

Now let S, be the following scheduling policy with the initial state (a, k). In
addition to executing the jobs initially on P,, ie I,, S, also executes a job on
PI1, thus reducing the number of waiting jobs to k - 1. No further assignments
are made by S, until some Pi (i 0 1) finishes its job, at which point S, proceeds
optimally; i.e. in any such resulting state S, is assumed to be an optimal policy.
Let Ci(at, k) be the expected makespan under S1. The probability that P1
finishes before any P,, i E I,, is 1/(1 + F

ti•). Hence,

1F 1
C1(ac, k) = Cl(Qa + El, k - 1) 1 +

li

C(a - Ei, k- 1)

(3.7)

Y-i
1?

+
El,

k-
1).

From (3.6), (3.7) and Lemma 3.2 we obtain the contradiction Cl(a, k) <

C(a, k). Hence, (a, k) is not stable.

Another intuitive result that we shall now prove is that if waiting jobs are
assigned in any state (a, k) by an optimal policy, then they must be assigned to
fastest available processors. This property follows easily from the following
result.

Theorem 3.2. Let a be such that p, q e•J, Jp lq. Then C(a + ep, k)
C(a + Eq, k) for all k.

Proof. For k = 0 the theorem follows immediately from Lemma 2.1. Thus,
let k >0 and suppose the theorem holds for any state (lexicographically)
smaller than (ar, k). For * 40 let

C'(fl(p, l)=
~

1
+

C(
-

E, 1) .

Minimizing expected makespans on uniform processor systems 185

The Bellman equations give

C(a + Ep, k)= min C'(a + Ep,k), C(a + Ep + Eq, k- 1),

mm C(Ca+E,+E, k-1),

C(a +
Eq, k)= min {C'(c +

Eq, k),C(c + Ep + Eq, k -1),

mm C(a + Eq +c E, k- 1)}.
Jc,- {p, q}

The theorem for (a, k) will therefore follow from C'(a + ep, k) 5 C'(a +

Eq, k).
From the formulas for C'(a + Ep, k) and C'(a + Eq, k) we get

(lPP+ Zii)C'(a + ep, k)(-Pq+?iZ P) C'(&i + Eq, k)

pi[C(a + ep - ej, k) - C(a+ Eq - E, k)] + (pp - q)C(at, k),

which we rewrite as

(P
+ Z Pi)[C'(a + ep, k) - C'(a + Eq, k)]

(3.8) = (Pp - Pl,)[C(a, k) - C'(a + Eq, k)]
+ E li[C(a + Ep - Ei, k)- C(c + Eq - E,, k)].

By Lemma 3.2

C(a, k)-5 C'(a + Eq, k - 1)-5 C'(a + Eq, k).
Hence the first term on the right of (3.8) is negative. The second term on the
right of (3.8) is negative by assumption. We conclude from (3.8) that
C'(&i + Ep, k) - C'(a + Eq, k).

With Theorem 3.2 a further simplification of the Bellman equations is
possible. In (2.5) the expression min;j, C(a + Ei, k - 1) can be replaced by
C(ar + Ep, k - 1), where p is the least index in J,.

Next, we shall identify additional sets of states for which optimal decisions
have the structure of a threshold rule, i.e. those states (a, k) for which there
are thresholds

t,•
0 such that (ar, k) is unstable if and only if k > t,. Note that

if al = 0, then t, = 0 by Theorem 3.1. We now consider states
(El,

k), k
-

1.

Theorem 3.3. Let k 1. If
(El,

k) is stable, then (El, k - 1) is strongly
stable.

186 E. G. COFFMAN JR ET AL.

Proof. Suppose (E1, k) is stable but (El, k - 1) is not strongly stable. Then
k

=
2. By the Bellman equations, Corollary 3.1 and Theorem 3.2

(3.9) C(E1, k)= 1 + C(0, k)= 1 + C(E1, k - 1)= 1 + C(E1 + E2, k - 2).

Let S1 be the following policy starting in state (El, k). In addition to the job
on P1 suppose that S, executes a job on P2, thus reducing the number of
waiting jobs to k - 1. When either P1 or P2 finishes, S, assigns a new job to the
processor just finished and then proceeds optimally. If C1(E1, k) = C1(E1 +
E2, k - 1) denotes the expected makespan under S1, then

1
(3.10)

CI(E1,
k) = + C(E1 + E2, k - 2).

1 + Y2

From (3.9) and (3.10) we get the contradiction, C1(E1, k) < C(E1, k). Hence, if
(El, k) is stable, then (El, k - 1) is strongly stable.

It follows immediately from Theorems 3.1 and 3.3 that an optimal threshold
rule exists for m = 2. In particular, too= to, =0 by Theorem 3.1, and by
Theorem 3.3 either (10, k) is stable for all k ? 0, or there exists a threshold t1o
such that in state (10, k) a job is assigned to P2 if and only if k > tio. In the
next section we shall express t1o as a simple function of 02, which is finite for
all M2 > 0.

For general m. Theorems 3.1 and 3.3 show that any state (a, k) for which

arl
=

1 can be handled optimally by a threshold decision. We shall now extend
this property to states (a, k) for which IaI| = 2. Then, by analogy with the
above remarks for m = 2, we shall be able to derive an optimal threshold rule
for m = 3. First, we need some preliminary results.

Let T? denote the time required by P, to execute k consecutive jobs. We
shall write T = T$1). Introducing the vector notation k = (k, - - - , km), we
define E(k) = E(kl,

- - , km)= E(maxi:5m { Ti'}). The following lemma gives
the value of E(k) for 1 ! m ?- 3 and certain values of k which will be useful
later.

Lemma 3.3. Let Fk(x) = l/x(1 + x)k. Then

(i) E(k) = k,
(ii) E(k, 1) = k + Fk(M2),

(iii) E(k, 1, 1) = k + Fk(M2) + Fk(M3)- Fk(GZ2 +
-3).

Proof. We have Ti = X + . . + Xk where the Xj's are independent and
identically distributed with P(Xj > t) = exp (-t), t - 0. Thus, (i) follows from

k

E(k)= E(Tk) = E(X) = k.
j=1

Minimizing expected makespans on uniform processor systems 187

For (ii) let T = max (Tk, T2). Then

E(k, 1)=JP(T >t)dt

o

fo fo k l k-1 ti
= E(T) + E(T2) - exp (-Y2t) dt

0 i=0 *

1 k-1 1
= k+ -- Z. +1= k +

Fk(P2).
Y2 i=(1 + 2)i+

By extending this reasoning to the calculation of E(k, 1, 1)=
E(max (Tk, max (T2, T3)), we obtain (iii).

Lemma 3.4 below proves an important property of the function E(k) which
is then used in Lemma 3.5 to relate this function on C(at, k).

Lemma 3.4. For some fixed j suppose that two vectors k and k' of

non-negative integers differ only in the first and jth elements, and that for
these elements k, = k + 1, k' = k and ki= 0, k' = 1. Then if E(k) 5 E(k')
when the remaining elements are chosen to be 0 (i.e. ki, k' = 0, i * 1, j), then
E(k) ? E(k') must hold for all choices of ki = kl' 0, i # 1, j. Moreover, strict
inequality in the first instance implies strict inequality in the second.

Proof. We shall take j=2 and prove that if E(k + 1, 0, 0, ... , 0) 5

E(k, 1, 0, .. *,0), then E(k + 1, 0, k3,..., km) -E(k, 1, k3, 1 * , km) for ar-
bitrary non-negative integers k3, - - - , km, with strict inequality implying strict
inequality. Examination of the proof will show that it applies mutatis mutandis
for general j > 1.

Let FT(x) = P(T ?-x) where T = max3,5im I{Ti)}. For c
_0

define

E(kx,
k2; c) = E(max {Tk , Tki , c}) and note that E(kj, k2; 0) =

E(kx,
k2). We

have

E(k + 1, 0, k3,
" " , km)= E(k + 1, 0; c)dFT(c)

and

E(k, 1, k3, , km) = fE(k, 1; c) dFT(c).

Thus, our result will follow from a proof that for any constant c _0,
if

E(k + 1, 0)
Z

E(k, 1), then E(k + 1, 0; c)
Z

E(k, 1; c) for all k ? O, with strict
inequality implying strict inequality.

To prove this define Xc = max (X, c), where X is a non-negative random

188 E. G. COFFMAN JR ET AL.

variable and c 0 is a constant. Then

E(Xc) = P(Xc > t) dt = dt + P(X > t) dt = E(X) + P(X - t) dt.

Letting X first be Ti+1 and then max (Ti, T2) we obtain

(3.11) E(k + 1, 0; c)= k + 1 + P(TI1 t)dt,

E(k, 1; c) = k + fexp (-2t)P(Tr•(t) dt

(3.12) + P(T
<-

t)(1 - exp (-M2t)) dt

= k + JP(T
-t)

j dt + fP(T t) exp (-M2t) dt.

Routine calculations similar to those in Lemma 3.3 yield

k-1 t]

(3.13) P(TI x) = 1 - exp (-t)-
j=0 j!

and

o00

1
(3.14) Joexp (-P2t)P(rT~ t) dt =

2(1

where the sum in (3.13) is interpreted to be 0 for k = 0. From (3.11)-(3.14) it
follows that

(3.15)
E(k + 1, 0) 5 E(k, 1) if and only if

0 :5 2 a where a(1 + a)k = 1, a > 0,
and

E(k + 1, 0; c) 5 E(k, 1; c) if and only if

(3.16)

oC ktfc0

[P(T t)
- P(T+' t)] dt + P(T t) exp (-M2t) dt - 1.

We observe here that a = 1 for k = 0 and a <1 for k > 1. We conclude from
(3.13)-(3.16) that a proof of our result is equivalent to showing that
G(r, c) - 1 for 0 < r a, 0- 5 c < oo, where

G(r, c)= exp (-t)tk

cr

k-1
exp (-t)t]

o k! ;= o !!

Minimizing expected makespans on uniform processor systems 189

For this purpose we note first that

1
G(r, 0)= r(+ r)k1,

< r a,

(3.17)
G (r, oo)

=

o0eXp

t)tkdt = 1.

In the following let a subscript c denote the derivative with respect to c. If
k = 0, Then Gc = exp (-c) - exp (-rc) 5 O, so that G(r, c)

-
G(r, oo) = 1. If

k 1, then

Ck k-1 cj

Gc = exp (-rc)f(r, c), f(r, c) exp (-(1 - r)) + exp(-c)= 1
(3.18) k-1

c c
fe = exp (-(1 - r)c) g(r, c), g(r, c) r) exp (-rc).

For fixed 0 < r _ a < 1,
gc(r,

c) = -(1 - r)/k + r exp (-rc) is a decreasing
function of c with

(k + 1)r- 1 1-r
go(r, O)

= I gc(r, oo) = - --< 0. k k

Thus, if r 5 1/(k + 1) then g(r, c) < 0 for 0 < c < oo and if r > 1/(k + 1) then
there exists a function of r only, co(r) > 0, such that g(r, c) > 0 for 0 < c < co(r)
and g(r, c)< 0 for c > co(r). Integrating first fc and then Gc with respect to c,
we reach a similar conclusion for G(r, c), co(r) being replaced by a similar
function cl(r) >0. From this fact and (3.17) it follows that G(r, c) ! 1 for
0 < r

-a,
0 c < oo.

It remains to show that strict inequality implies strict inequality. First,
E(k + 1, 0) < E(k, 1) means that 0 < I2 < a. Differentiating G(r, c) with resp-
ect to r we find

c0

k-1
t1

G,(r, c) = - t 1 -E exp (-t)' exp (-rt) dt < 0
jc=O

=0!

so that for 0 < r < a, G(r, c) > G(a, c) _
1. We conclude that E(k + 1, 0; c) <

E(k, 1; c).

It is worth remarking that Lemma 3.4 is not true in general; the reader will
have little difficulty in finding other distributions of execution time for which
the lemma is false. The next result establishes the proper connection between
the functions E(k) and C(a, k).

Lemma 3.5. Let
a1

= 1. If
(El,

k) is stable, then C(a, k) = E(k + 1,

190 E. G. COFFMAN JR ET AL.

2 2,' &, m). Furthermore, if (El, k) is stable (strongly stable), then (a, k) is
stable (strongly stable).

Proof. For k = 0 the result is trivial so let k ? 1 and suppose the result holds
for all states smaller than (a, k). Consider first 2-5 Ial -m - 1.

Suppose (El, k) is stable. by Theorem 3.3, (El, k - 1) is also stable. Let S,
be a policy that executes in (a, k) and is otherwise optimal. Let S2 be a policy
that in state (ar, k) makes an assignment to Pp, j E J,, and is optimal thereafter.
Let Cl(a&, k) and C2(ad, k) denote the respective expected makespans of S, and
S2 with the initial state (a., k).

Letting k = (k + 1, &2,
'.', am) we have by the inductive hypothesis and

Corollary 3.1

C1(a, k) = 1 + C(a, k - 1) + ~
iC(

- E;, k)

(3.19)

S 1 + YE(k -
1)]

= E(k).

Again by the inductive hypothesis

(3.20) C2(a, k) = C(+ Ey, k - 1) = E(k - E1 + E).
Since (El, k) is stable, Theorem 3.3 gives

(3.21) C(E1, k)=E(k + 1, 0, ..., O)5E(k, 0,..., 1,.., 0)

where the 1 in the last expression appears in position j. Moreover, (3.21)
becomes an inequality if (El, k) is strongly stable. We conclude from (3.21)
and Lemma 3.4 that

(3.22) E(k) - E(k -
E1 +

Ej),

inequality holding if (El, k) is strongly stable. Clearly, (3.19), (3.20) and (3.22)
jointly imply that C(a, k) = Cl(a, k) = E(k + 1,

a2E,
' '

', m) and that (ar, k)
is stable (strongly stable) when (El, k) is stable (strongly stable).

Finally, if IaI = m, then we apply (3.19) to C(ca, k) =
Cl(a,

k) to obtain
C(Q, k)= E(k).

We are now poised for our next threshold result.

Theorem 3.4. Let
a•

= 1 and Iari = 2. For all
k-

0, if (a, k + 1) is stable,
then (ar, k) is strongly stable.

Remark. We can prove this type of result for yet another special case: if
(cx, 1) is unstable then so is (a, 2). The proof appears to require considerable

Minimizing expected makespans on uniform processor systems 191

effort; however, since the result is not needed in what follows, we omit the
proof.

Proof. It is convenient to consider separately the two cases &2 = 0, 1. In
both cases we suppose that (ar, k) is not strongly stable, so that k - 1, and
show that (a, k + 1) is unstable.

Case 1: (&2 = 1 and hence a; = 0, j > 2). Let S1 be a policy that executes in

(ar, k + 1) and is otherwise optimal. If the expected makespan under S1 is
denoted by C1('),

then we can write

1
(3.23)

Cl(a,
k + 1)= [1 + C(a, k) + Y2C(E1, k + 1)].

1+ y2

Since (ar, k) is not strongly stable we have that C(a, k) = C(a + E3, k - 1) by
Theorem 3.2. Moreover,

(El,
k) cannot be strongly stable by Lemma 3.5, and

this in turn implies that (e1, k + 1) is unstable by Theorem 3.3. Hence,
C(E1, k + 1) = C(a, k) by Theorem 3.2. We conclude from these facts and
(3.23) that

1
(3.24) Cl(a, k + 1)= + C(a + 3, k - 1). 1+ Y2

Now let S2 be the following policy: in state (a, k + 1) S2 assigns a job to P3
and executes in state (a + e3, k). Upon the first completion, s2 assigns a job to
the processor that just finished a job and then executes again in state
(a + E3, k - 1). Apart from the above prescriptions, S2 makes optimal
decisions. If C2(-) denotes the expected makespan under S2, then

1
(3.25) C2(a, k + 1) = C2(+ 3, k) = + C(Ca + 3, k - 1). 1 + Y2 + 3

Comparison of (3.24) and (3.25) yields C2(a, k + 1) <
Cl(a,

k + 1). Thus,
(a, k + 1) is unstable and the theorem follows.

Case 2: (&2 = 0 and hence aj = 1 for exactly one j * 1, 2). With S1 and C1 as
in Case 1, we have

1
(3.26)

Cl(a,
k + 1)= [1 + C(a, k) + 1C(E1, k + 1)].

Since (a, k) is not strongly stable, we have C(a, k) = C(a + e2, k - 1). Also,
(El, k) is not strongly stable and this in turn implies that (El, k + 1) is
unstable. Hence, C(E1, k + 1) = C(E1 + E2, k) so that

1
(3.27) C1(a, k + 1) =1+ [1+ C(at + E2, k - 1) + 1;C(e1 + E2, k)].

192 E. G. COFFMAN JR ET AL.

Next, let S2 be the following policy: in (a, k + 1) S2 assigns a job to P2 and
then executes in the stable state (a + E2, k). In subsequent states S2 performs
optimally. If C2(-) denotes the expected makespan under S2, then we have

1
CQ(a, k + 1)+= [1 + C(a + E2, k - 1)

(3.28) 1 + 2 + ILj
+ M2C(a, k) +

[ijC(E1+
E2, k)].

By (3.27) and (3.28) C2(a, k + 1) < Cl(ar, k + 1) is equivalent to

1
(3.29) C(a, k) < [1 + C(a + E2, k - 1) + jIC(E1 + E2, k)].

To verify (3.29) let S3 be the policy that executes in (a, k + 1), assigns a job to
P2 after the first completion and proceeds optimally thereafter. The expected
makespan, C3(-), under S3 is given by the right-hand side of (3.29). Thus,
(3.29) follows from

C(a, k) < C(a, k + 1) C3(a, k + 1).

We conclude that C2(a, k + 1) < Cl(ca, k + 1), i.e. (ar, k + 1) is unstable.

For m = 3, a l 1 implies I aI ? 2. Thus, a threshold rule for m = 3 follows
immediately from Theorems 3.1, 3.3 and 3.4. The thresholds that have yet to
be calculated are t, for a = (100), (110) and (101). In Section 4 we shall verify
that these thresholds are bounded for fixed P3 > 0. Detailed calculations will
also be discussed.

Although we conjecture that for all m every state is a threshold state, we
have been unable to prove this; the methods used here appear quite
inadequate for the general case. We shall return to this conjecture in the final
section.

4. Optimal policies for m = 2, 3

We consider first the two-processor problem. From Theorem 3.1 we have
too = to, = 0, so for an optimal threshold policy it remains to find t1o. This is
provided by the following result, where, for simplicity, the symbol r is used in
place of M2.

Theorem 4.1. Let
1

log -
(4.1) t(r) = r

log (1 + r)

Then the state (10, k) is strongly stable for k < t(r) and unstable for k > t(r). If
t(r) is a positive integer then (10, t(r)) is weakly stable.

Minimizing expected makespans on uniform processor systems 193

Remark. Clearly, the thresholds too= to, =0 and t1o = t(r)I define an op-
timal threshold rule. However, there are two optimal threshold rules when t(r)
is a positive integer; it is immaterial whether or not an assignment is made in
state (10, t(r)), so we can choose t1o = t(r) or t(r) - 1.

Proof. Let k
_ 1. Let (10, k) be stable and hence C(10, k) = k + 1. Since we

are assuming (10, k) is stable, we have

(4.2) C(10, k) - E(k, 1),

which by Lemma 3.3 is equivalent to

(4.3) r(1 +
r)k1.

Observe that (4.2) also holds when k = 0; thus, (4.3) holds whenever (10, k) is
stable. Since r(1 + r)k > 1 for k > t(r), we conclude that (10, k) is unstable for
k > t(r).

Now (10, 0) is strongly stable, so for the inductive hypothesis let 15 k 5

t(r), and suppose that (10, k - 1) is stable. By Lemmas 3.3 and 3.5

C(10, k-1)-=
k

(4.4) 1
C(11, k - 1)= E(k, 1)= k +(

)k' r(1 + r)
If k < t(r) then we can conclude from (4.4) that

C(11, k - 1) > 1 + C(10, k - 1)
-

C(10, k),

which means that (10, k) is strongly stable. If k = t(r)> 0 then we conclude
from (4.4) that

1 + C(10, t(r) - 1) = C(11, t(r) - 1),

which means that (10, t(r)) is weakly stable.

With t1o determined by Theorem 4.1, explicit forms for minimum expected
makespans on two processors are easily found. Let X1, X2, - - - be a sequence
of independent exponential random variables with rate parameter 1 + r. Then
the makespan for an initial state (11, k), k > t1o, is obtained from the
observation that after k - t1o completions on P1 and P2, we reach the state
(11, tlo) where P2 must be executing its last job. Thus, the expected makespan
is

C(11, k) = E[X1 +... +
Xk-to]

+ E(t1o + 1, 1), k > t1o.

For k
5-

t1o we easily have C(11, k) = E(k + 1, 1). Thus,

i E(k + 1, 1), k <
tlo

E(tlo

+ 1, 1) + k >

tlo.

1+r

194 E. G. COFFMAN JR ET AL.

A similar argument gives

k+1,
k< tlo (4.5) C(10, k) = {k - tlO - 1+ + 1, 1), k>t1O. l+r

In these expressions tlo and E(j, 1) are obtained from Theorem 4.1 and (4.1),
respectively. Finally, C(00, k) and C(01, k) can be obtained from the relations
C(00, k + 1)= C(10, k) and C(01, k + 1)= C(11, k).

We turn now to the case m = 3, where r and s will be used in place of ~2 and
Y3, respectively. Before discussing how the thresholds t0oo, t1ol and t110 can be
found, we shall describe an anomaly which shows that the simpler threshold-
type policy in [1] cannot be used for our problem when m = 3. First, we need
the following result.

Theorem 4.2. Let (101, k) be strongly stable. According to any optimal
policy P3 must be executing its last job and P2 cannot be used while P3 is busy.

Proof. Suppose we start in (101, k) and P1 finishes first. By Corollary 3.1 the
system transits to (101, k - 1), and by Theorem 3.4 this state must be strongly
stable. Thus, the system must continue executing jobs in state (101, k - 1).
Repeating this reasoning P2 will not be used so long as P3 is busy. When P3
finishes the state will be either (000, 0) or (100, 1) for some 0 1-5 k. In the
latter case it follows from Theorems 3.2-3.4 that P3 will not be assigned
another job for the remainder of the schedule.

Now consider the following example. Let a(1 + a) = 1, a >0, and hence
a = (1 + /5)/2. Let r = s = a + E, E > 0. By Theorem 4.1 (100, 1) is unstable,
so that

C(100, 1)= C(110, 0)= 1 +
r(1 + r)'

C(101, 1) =min + C(101 0) +
C(110, 0), C(111, O) 1+r l+r l+r

= min 1 + C(110, 0), C(111, 0)

=min[1+ 2 1

r r(l + r) 2r(l + 2r)

Using a(1 + a) = 1 the inequality

1 2 1
1+-<1+

a a(1 + a) 2a(l + 2a)

Minimizing expected makespans on uniform processor systems 195

reduces to a >. But 1(1 + <) = 1, so that indeed a > 3. Thus, for E >0
sufficiently small

1 2 1
1+-<1+

r r(1 + r) 2r(l + r)
and hence

1
C(101, 1) = + C(110, 0) < C(111, 0).

Thus, in state (101, 1) we must not use P2 and in state (100, 1), which follows
(101, 1) with a completion on P3, we must use P2 or P3. To obtain the desired
anomaly we can choose r = s + E = a + 2e, for it is easy to verify that for E > 0
sufficiently small we will reach the same conclusion, except that in state
(100, 1) we no longer have a choice between P2 and P3; we must use the faster
processor P2.

Now for k sufficiently large any optimal policy will lead with positive
probability from (000, k) to (101, 1) so that the anomaly can occur. To verify
this we note that for k large enough the initial stable state will be (111, k - 3).
Thus by Theorem 4.1 state (101, 1) will be produced by k - 4 consecutive
completions on P1 followed by a completion on P2.

We return now to the problem of calculating thresholds. It is readily verified
that t1oo = tlo and therefore t1oo can be calculated directly from Thorem 4.1.
From a practical point of view the simplest approach to finding the thresholds

tlo1 and t10o is by an evaluation of the Bellman equations. The values of
C(a, k) are found in increasing lexicographic order of (k, Ijal) until the first
occurrences of the inequality

C(ct, k) = min C(a + Ei, k - 1) < 1 + i
CiC(?

-
ei, k) i EJ,, Y,

have been encountered for each of a = (101), (110). At these times we record
t, =k-1.

The following result which is an easy consequence of Theorem 3.2, states
that the evaluations may be terminated once the threshold t10o has been found.

Corollary 4.1. For all k - 0, C(110, k) -i C(101, k), and if (101, k) is stable
then so is (110, k).

Next, for m = 3 we shall provide a bound on the number of states for which
C(a, k) must be evaluated; as we shall see this bound is significantly tighter
than the general bound proved in the next section.

196 E. G. COFFMAN JR ET AL.

Theorem 4.3. States (100, k), (101, k) and (110, k) are unstable for

1 1+r
log- log

l (4.6) k
>lg

+ 11+1.
L

log (1 +
r)- log (1+ S

Proof. We shall prove the result for (110, k). The analogous result for
(100, k) follows easily, and Corollary 4.1 takes care of the state (101, k).

Let S1 be a policy that executes t1o +1+2 jobs optimally on P1 and P2 while
it executes just one on P3. Let Y denote the maximum finishing time between

P1 and P2 and let Z be the finishing time on P3. If C1(110, k) = C1(111, k - 1),
k = t1o + 1 + 1, denotes the expected makespan of the schedule produced by S1,
then

C1(110, k) = E[max (Y, Z)]

= P(Y > t) dt + P(Z > t) dt - P(Y > t)P(Z > t) dt,

whereupon substitution of 1 - P(Y > t) = P(Y - t) gives

C1(110, k) = fP(Y> t) dt + fP(Z > t)P(Y 5 t) dt.

The first integral is simply C(11, k - 1), and the second can be bounded by the
use of

P(Y 5 t) 5 P(X1 +
"

+ Xt t),

where the X,'s are independent exponentials with parameter 1 + r.
Substitutions yield

C1(110, k) - C(11, k - 1) + f exp (-st)P(X1 +... + Xt -
t) dt

SC(11, k) + exp (-st) exp (-(1
+ r)t) (1

dt
n= n!

1
l1+r

'"
= C(11, k - 1)+-.

s 1+r+s

Suppose (110, k) were stable. Then C(110, k) = C(11, k) = C(11, k - 1) + 1/
(1 + r), so that

(4.7)
Cl(110,

k) C(110, k) +r
s

l+r+s

Minimizing expected makespans on uniform processor systems 197

But if

l+r
log s

(4.8) 1 + 1,
log(1+l)

then

1 1+r t 1
s 1+r+s 1+r

and we conclude from (4.7) that C1(110, k)< C(110, k), a contradiction. It
follows that (110, k) is unstable when (4.8) holds.

An obvious upper bound to the number of states for which C(ac, k) must be
evaluated is given by 8(K + 1), where K denotes the right-hand side of (4.6).
Hence, the time required by the calculation is a function only of r and s. As an
alternative to the Bellman equation approach t1ol and t11o can be obtained from
the roots of certain transcendental equations. (Note that this statement also
applies to tlo = [t(r)] where t(r) is the solution of r(1 + r)k = 1; see (4.1).)

The combinatorial basis for the calculations is straightforward and cor-
responds in the m = 2 case to the calculations in (4.4). To compute t101 one
finds the largest k such that C(101, k) - C(111, k - 1). In the calculation of
each expected makespan P3 is assumed to be executing its last job. Thus, the
problems reduce to two processor problems when the completion on P3 occurs.
We note also from Theorem 4.2 that in calculating C(101, k) no assignments to
P2 need be considered while P3 is busy. Thus, if the completion on P3 is the
(i + 1)th completion event after state (101, k) for i 5 k, then the expected
remaining makespan is simply C(10, k - i), which is obtainable from (4.5). To
complete this example, the probability of the above event is simply

(1)' s
l+s 1+s'

and hence
k

SC(10,k- li). C(101, k) =-+ C(10 ki).

A similar approach to calculating C(111, k - 1) must also take into account the
fact that since k 5 t101 no more waiting jobs can be assigned to P2 until P3
finishes.

Similarly, for t110i one finds the largest k such that C(110, k)
-

C(111, k - 1).
Note that C(110, k)= C(11, k) is immediately a two-processor problem, and
that the calculation of C(111, k- 1) uses the fact that P3 is executing its last

198 E. G. COFFMAN JR ET AL.

job. Also, of course, the calculation must reflect the fact that while P3 is busy,
waiting jobs can be assigned to P2 as it becomes available only while more than
t101 waiting jobs remain.

The detailed calculations that we have outlined are routine but lengthy, and
the final results from which thresholds are found numerically are quite
awkward. Thus, in the interests of conserving space, we omit them.

5. An optimal algorithm for general m

The burden of this section is a proof that for any a * 1 the state (a, k) is
unstable for sufficiently large k. This means that there exists a K such that for
k > K any state

(ta, k), ca * 1, is unstable and an optimal algorithm must assign
waiting jobs to all processors in J, to produce the stable state (1, k - IJ'I). We
begin by stating bounds on C(0, k).

Lemma 5.1. For all k m

k-m m 1 k-m m 1
+ Q 1 C(O, k) +E 1

+l " '''+' • "+0+"•tm"=i
iJ'' i+

"+ •m

Proof. The lower bound is simply the expected makespan of a preemptive
algorithm that always employs the fastest available processors; clearly, no
non-preemptive algorithm can do this well.

For the upper bound consider an algorithm that keeps all processors busy
until state (1, 0) is reached after a time interval of expected length,
(k -

m)/(ya
+...

"-
+ m). At this point the remaining expected time to

completion of the last job is C(1, 0). But C(1, 0) is clearly less than the
expected makespan achieved by a preemptive algorithm that always employs
the slowest available processors, i.e.

m 1
C(1, O):5Y

The upper bound follows.

We now prove that it is optimal to use all m processors for sufficiently
large k.

Theorem 5.1. There exists a k 5 [m3/y2J + 1 such that starting in state
(0, k) any optimal algorithm will assign jobs to all processors and continue
execution in state (1, k - m).

Proof. Let k Im and suppose that for all j, m
l

j k, there is an optimal
policy for the initial state (0,j) which does not make assignments to all
processors. This means that for each j we may choose a stable state (ar, 1),

Minimizing expected makespans on uniform processor systems 199

a = 1, such that (0, j)
_

(a, 1) and

(5.1) C(0, j) = C(a, 1) = 1
1 + Y C(a- e, 1) .

Since (0, j - 1) g (a - Ei, 1), we have C(0, j - 1) _ C(a - Ei, 1) and we con-
clude from (5.1) that

(5.2) C(0, j) + C(O, j - 1), m j k.

Reasoning as in Lemma 5.1 we obtain

m-1 (5.3) C(0, m -
1)r_ Y, +- - -+ Ym-1

With (5.3) as a basis the recurrence in (5.2) gives

(5.4) C(0, k)i _
Y•+

+

""

- +

m--1
This inequality and the right-hand inequality of Lemma 5.1 lead to

m 1
(Y3

+ . + tM)2 < 3
(5.5) k

m
2

i=1 i +
" "

+ m Ym
Ymn

It follows that there exists a k 5 [m3//m + 1, such that any optimal policy
starting from (0, k) assigns jobs to all processors.

We now prove that every state (a, k), a = 1, is unstable for sufficiently
large k.

Theorem 5.2. Let K be the least integer k such that in state (0, k) any
optimal algorithm will assign jobs to all available processors and continue
processing from state (1, k - m). Then state (a, k), a = 1, is unstable for all k
satisfying k + Iac > K.

Proof. Whenever k + I a K we have

k+l l-K k+c al-K
(5. 6) + C(0, K) 5 C(a, k)

-
+ C(1, K - m).

The lower bound follows from the fact that 1/(Ml + ' - + m) is a lower bound
on the expected time between successive job completions. The upper bound is
just the expected makespan of an algorithm that keeps all processors busy until
k +

caj
- K job completions have occurred, and is optimal thereafter. By the

definition of K we have C(0, K) = C(1, K - m) and so the bounds in (5.6) are
achieved with equality.

200 E. G. COFFMAN JR ET AL.

Now suppose that k + IaI > K, a * 1, and (as, k) is stable. Then

(5.7) C(a, k)=
•

1 + E
iC(o

- e1, k) .

Applying (5.6) to each C(a -
E.,

k) in (5.7) we conclude that

k+Ia -K
C(o , k) >,

which contradicts (5.6). Hence (a, k) is unstable for k + Ial > K.

The implications of Theorems 5.1 and 5.2 are that if the Bellman equations
are to be solved numerically then their solution need only continue until the
number of waiting jobs K is such that an optimal action in state (0, K) is to
assign jobs to all processors and continue processing in state (1, K - m).

We conjecture that this K has an alternative characterization as the least k
for which the state (11 ... 10, k) is unstable. (Recall that this was proved for
m = 2, 3.)

6. Conclusions and open problems

We have shown that for m = 2 and 3 there exist simple threshold rules for
minimizing expected makespans, and we have given simple methods for
evaluating the corresponding thresholds. We have also conjectured that similar
threshold rules, depending only on processor states, exist for all larger values
of m, although this seems quite difficult to prove. Direct computation using the
Bellman equations and the bound of Section 5 have verified the existence of
such threshold rules for m = 4, 5 and all values of ~P = 1 P •2 113 4 1>4 •5
that are multiples of 0.1. But it is not clear how much these results should
increase one's confidence in the general validity of the conjecture.

If our conjecture is true, it follows immediately that for any fixed {M;} the
process of scheduling jobs on processors with those rates to minimize expected
makespan is a relatively simple one, requiring only that one determine and
store a single threshold for each processor state. However, it does not follow
that the task of finding the correct thresholds is necessarily also simple.
Indeed, the finite algorithm implied by the bound of the preceding section, for
fixed Mi, is potentially quite laborious for m much greater than 5. Notice that
the algorithm applies independently of the validity of our conjecture, although
the optimal scheduling rules it finds need not be of threshold type. Clearly, it
would be useful to find alternative algorithms capable of extending the range
within which optimal scheduling rules can be derived in practice.

Minimizing expected makespans on uniform processor systems 201

In a more mathematical vein, it is apparent from the content of this paper
that there is a great need for new mathematical techniques useful for
simplifying the derivation of results about expected makespan scheduling. At
present even quite natural and intuitive 'facts' require non-trivial proofs, and
this is further complicated by the observation that such 'facts' do not always
even turn out to be true. Thus it would be a valuable contribution simply to
find a more elegant way to obtain the results we have presented. It is to be
hoped that such methods will lead the way towards resolving the conjecture we
have mentioned and towards analyzing extensions of our model, e.g. general
distributions for job execution times, job-up times, preemptive scheduling with
preemption costs, etc.

References

[1] AGRAWALA, A. K., COFFMAN, E. G. JR., GAREY, M. R. AND TRIPATHI, S. K. (1984) A
stochastic optimization algorithm minimizing expected flow times on uniform processors. IEEE
Trans. on Computers, 33, 351-356.

[2] LIN, W. AND KUMAR, P. R. (1982) Optimal control of a queueing system with two

heterogeneous servers. Preprint.
[3] WALRAND, J. (1983) A note on optimal control of a queueing system with two

heterogeneous servers. Technical Report, EECS, University of California, Berkeley.

	Article Contents
	p. 177
	p. 178
	p. 179
	p. 180
	p. 181
	p. 182
	p. 183
	p. 184
	p. 185
	p. 186
	p. 187
	p. 188
	p. 189
	p. 190
	p. 191
	p. 192
	p. 193
	p. 194
	p. 195
	p. 196
	p. 197
	p. 198
	p. 199
	p. 200
	p. 201

	Issue Table of Contents
	Advances in Applied Probability, Vol. 19, No. 1 (Mar., 1987), pp. 1-291
	Front Matter
	The Analysis of Finite Security Markets Using Martingales [pp. 1-25]
	A Nucleation-Growth Process on the Integers [pp. 26-43]
	Asymptotic Analysis for Interactive Oscillators of the van der Pol Type [pp. 44-80]
	One-Dimensional Classical Scattering Processes and the Diffusion Limit [pp. 81-105]
	Poisson and Extreme Value Limit Theorems for Markov Random Fields [pp. 106-122]
	Multivariate Hazard Rates and Stochastic Ordering [pp. 123-137]
	Some Multivariate Lifetime Distributions [pp. 138-155]
	Optimal Capacity Expansion under Uncertainty [pp. 156-176]
	Minimizing Expected Makespans on Uniform Processor Systems [pp. 177-201]
	Optimal Control of Service Rates in Networks of Queues [pp. 202-218]
	Asymptotic Analysis and Computational Methods for a Class of Simple, Circuit-Switched Networks with Blocking [pp. 219-239]
	On the Stationary Waiting-Time Distribution in the GI/G/1 Queue, I: Transform Methods and Almost-Phase-Type Distributions [pp. 240-265]
	The Single-Server Queue with Independent GI/G and M/G Input Streams [pp. 266-286]
	Letters to the Editor
	A Non-Renewal Process with Renewal Counting Distributions [pp. 287-288]
	Note sur un modele de file GI/G/1 a service autonome (avec vacances du serveur) [pp. 289-291]

	Back Matter

