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Abstract 

We study the problem of scheduling n given jobs on m uniform processors 
to minimize expected makespan (maximum finishing time). Job execution 
times are not known in advance, but are known to be exponentially 
distributed, with identical rate parameters depending solely on the executing 
processor. For m = 2 and 3, we show that there exist optimal scheduling rules 
of a certain threshold type, and we show how the required thresholds can 
be easily determined. We conjecture that similar threshold rules suffice for 
m > 3 but are unable to prove this. However, for m > 3 we do obtain a 
general bound on problem size that permits Bellman equations to be used to 
construct an optimal scheduling rule for any given set of m rate parameters, 
with the memory required to represent that scheduling rule being independent 
of the number of remaining jobs. 
STOCHASTIC SCHEDULING; STOCHASTIC OPTIMIZATION ALGORITHMS 

1. Introduction 

We study the problem of scheduling given sets of jobs on 
m_ 

2 processors 
Pi, - - - , P,,,, which differ only in the rates at which they operate. Job execution 
times are not known in advance, but on a processor with rate y they are known 
to be independent samples from the exponential distribution with parameter P; 
i.e. P[job-length > x] = exp (-ylx), x 

_ 
0. Scheduling is to be non-preemptive, 

i.e. once a job is assigned to a processor, it must be executed to completion. 
The rate of Pi is denoted by ~i, 1 -i -m, and we assume the ordering 

pl P 2 ' 
/m > O0. We shall adopt the convenient normalization 

pl 
= 1. 

Agrawala et al. [1] define the expected flow time (sum of finishing times) as 
the objective function and derive an optimal scheduling rule that minimizes 
this expected value. For the case of m = 2 processors this result was 
generalized by Lin and Kumar [2] and Walrand [3] to systems with arrivals. 
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178 E. G. COFFMAN JR ET AL. 

In this paper we adopt the expected makespan (maximum finishing time) as 
the objective function. As we shall see, the problem of finding simple, 
non-enumerative optimization rules under this objective function is substan- 
tially more difficult. Indeed, our results will show that an algorithm with the 
simplicity of that in [1] is not possible for the makespan problem. This remark 
will be made more concrete after the definitions of Section 2. 

In Section 3 we prove a number of results that characterize optimal 
algorithms. From these results very efficient optimization rules for m = 2 and 3 
are derived in Section 4. In Section 5 it is proved that feasible, though less 
efficient algorithms can be found for general m. Section 6 concludes the paper 
with a discussion of open problems. 

2. Definitions 

Because of our exponential assumptions, remaining execution times are 
independent of elapsed execution times. It follows that scheduling decisions 
need to be made only at job completion times, and that a system state need 
only specify the number of waiting jobs and which processors are currently 
busy (i.e. assigned jobs). This is accomplished in our state notation (a, k), 
where k _ 0 denotes the number of waiting jobs and a = a, a2, ' ' ', ,m is a 
bit vector with ai = 1, 1 ! i - m, if and only if Pi is currently busy. We let 
I ca 

= aE denote the number of busy processors. We write 0 and 1 when 
referring to the vectors of m O's and m l's, respectively. 

A scheduling policy is defined by specifying for each state (a, k), with a 1 
and k > 0, which available processors, if any, are to have waiting jobs assigned 
to them. Implicitly, if an assignment role decides that no assignments are to be 
made when the system is in state (at, k), then the system executes or performs 
in (a, k) until the state changes as the result of one or more job completions. 
States (a, k) in which the system executes will be termed stable states. 

We define C(a, k) as the minimum expected makespan assuming that the 
system is initially in state (a, k). This of course generalizes the initial condition 
a = 0 that would normally apply in practice. The minimum expected makespan 
can be effectively defined by the Bellman equations that we now develop for 
C(a, k). Let I, be the set of indices i for which ai = 1 and let J, be the set of 
indices for which ai = 0. Define Ei as the vector of all O's except for a 1 in the 
ith position. 

First, we have 

(2.1) C(, 0) = 0. 

Next, the state (a, 0) with a 4#0 is obviously stable. Therefore, C(a, 0), a # 0, 
can be written as the expected delay, 1/i2 #i, to the first job completion plus 
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the minimum expected makespan in the resulting state. The probability that 
the first completion is on PI, j EI,, is simply i1j/EEI Mi, and hence 

C(a, 0) = - + C(a - E, 0), a 0O, 
F Mi i Mi, 

E 
j['• 

or 

(2.2) 
C(a•, 

O)= 1+ iC(a-E1iO), a*O. 

Since a state (1, k) with no available processors must also be stable, (2.2) also 
applies in this case; i.e. 

(2.3) C(1, k)=- 
1 + 1 LiC(1- Ei, k)}, 

k 

= 
O. 

M Mi 1<im 

As a final boundary condition we observe that the state (0, k) is unstable for all 
k - 1, and an assignment must be made to at least one processor. Thus, 

(2.4) C(O, k)= min C(Ei, k- 1), k - 1. 

In the general case, C(ac, k) can be expressed as the minimum over the two 
choices determined by whether or not (a, k) is taken as stable. Thus, 

(2.5) C(a, k) = min 

{f• 

(1 + 
•Z tiC(a 

- ei, k)), min C(a + i, k -1) 

k-1, a 0, 1. 

Note that evaluations of the recurrence represented by (2.1)-(2.5) must be 
performed in increasing lexicographic order of the pairs (k, I a). For this 
reason we shall refer to the pair (k, I 1a) as the size of state (a, k). 

In terms of (2.5) state (a, k) is stable if C(a, k) = (1 + 
-E 

MiC(a - Ei, k))/ 
E 

•Mi. 

It will be convenient to refer to (as, k) as weakly stable if it is stable and 
C(a, k) = C(ar + Ei, k - 1) for some i EJ,; i.e. the decision to execute in state 

(a, k) is not uniquely optimal. The state (a, k) is strongly stable if it is stable, 
but not weakly stable. 

Equations (2.1)-(2.5) will be referred to collectively as the Bellman 
equations. clearly, for any given initial state (at, k) the Bellman equations 
allow us to compute an optimal policy inductively from the optimal policies for 
all smaller states. The policy is representable as a transition function that 
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defines a stable successor state for (a, k) and each state smaller than (a, k). 
However, to represent such a transition function for scheduling a set of n jobs, 
it may be necessary to retain a list of (state, stable successor state) pairs whose 
length is on the order of n2m, the number of possible states. As in [1] our 
objective is an optimal policy whose transition function can be represented in 
O(2m) space, independent of n and the initial state. For example, in [1] a 
policy of the following threshold type was found to be optimal: a waiting job is 
assigned to the fastest available processor, PI, if and only if the number, k, of 
waiting jobs satisfies 

k> +•- (j 
- 1). 

According to this rule, if ever a processor 
P. 

is allowed to remain idle while 
other processors are busy executing jobs, then no waiting job will be assigned 
to P, throughout the remainder of the schedule. 

Unfortunately, a threshold rule of this simplicity is not possible for our 
problem, except when m = 2. The above monotonicity property does not apply 
in general. In particular, for m = 3 we shall illustrate in Section 4 choices for 
P1, t2, ~3 and k such that an optimal policy must not assign a waiting job to P2 
in state (101, k), but it must do so in state (100, k), which would follow 
(101, k) with a job completion on P3. Moreover, there are initial states such 
that (101, k) is reached with positive probability. 

However, in Section 5 we shall prove that there exists an integer, K, which 
is a function only of p,1, ? " ', m, such that the optimal decision in any state 
(a, k), k > K, is to assign a waiting job to every available processor in a. Thus, 
after a calculation using the Bellman equations, whose time complexity is 
bounded by a function only of pl, ... , 

Mim, 
we can obtain an optimal transition 

function representable in O(K2m) space. 
For the cases m = 2 and 3 we shall show that substantial improvements are 

possible. In particular, Section 4 shows that a more general policy of threshold 
type can be proved optimal for m = 2 and 3. With these policies, thresholds are 
identified with processor states rather than processors. In particular, for each 
processor state a = 1 there will exist a threshold t, - 0 such that a waiting job 
is assigned to a fastest available processor if and only if the number of waiting 
jobs exceeds t,. 

The following notation will be helpful in the remainder of the paper. We 
write (a, k) g (P, 1) if and only if ai 5 i, 1 -5 i - m, and Ia + k = IP + 1; i.e. 
we can go from (a, k) to (P, 1) by assigning jobs to some of the idle processors. 
Accordingly, (a, k) 

_ 
(P, 1) implies that C(a, k) - C(P, 1). Moreover, for 

every (at, k) there exists a stable state (P, 1) such that (a, k) (I , 1) and 
C(a, k) = C(P, 1). Similarly, if (a, k) 

_ 
(y, j) (13, 1) and C(a, k)= C(P, 1), 

then C(a, k)= C(y, j). 
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We conclude this section with a useful property of the maximum of 
independent random variables. 

Lemma 2.1. Let T and T' be the times required to finish the jobs executing 
on P, ..., Pj at rates 

p•i, . 
, # and ', ... 1, 

, 
respectively. If i. ;, 

1 4 i :j, with inequality holding for at least one i, then E(T) > E(T'). 

A direct proof of this result is easily supplied. However, as we shall see, it is 
a special case of (3.1) below. 

3. Properties of an optimal algorithm 

Several simplifying properties of optimal algorithms will be proved in this 
section for general 

m- 
2. In Section 4 we shall see that these properties 

establish rather easily the existence of simple threshold rules for m = 2 and 3. 
As our first objective, Theorem 3.1 will show that an optimal policy must 
always keep P1 busy whenever jobs are waiting to be assigned. 

It is convenient in the proof of Theorem 3.1 to make use of the intuitive 
observation, C(a•, 

k + 1) - C(a, k), k - 0, i.e. for a given processor state, 
increasing the number can only increase the expected makespan under an 
optimal algorithm. After a preliminary result in Lemma 3.1, we shall in fact 
show that this inequality is strict and give a tight (positive) lower bound to the 
difference C(a, k + 1) - C(a, k). 

Let us define the number 

1 1 1 
-1- 

+ 1 
25j5m l+1j 

25i<j<:m1 
+ 1i + 

-lj 
1 + 

"2 
+ + m 

It is easy to verify that A may be represented more compactly as the integral 

A = (m - 1)! 
•2 

dXm 
o(1 + x2 + .X ' Xm)m) 

from which A > 0 follows directly. 

Lemma 3.1. Let a #1. Then for each j E J, 

(i) C(a + E, O) - C(a, O) >-C(1, O) - C(1- El, O)= A, 
(ii) C(aL + E,, 0) - C(aL, 0) - C(Ej, 0) - C(O, 0) = 1/i. 
Proof. For a* #0 let Ti, iE I,, denote the time required to finish the job 

currently assigned to P,. Then 

(3.1) C(a, 0) = P 
max 

i> 
t dt = 1 - (1 - exp (-it)) dt, L la• la• 
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with a similar formula holding for C(a + ej, 0). Hence, for a # 0 

(3.2) C(a + 
ej, 0) - C(ao , 0) = exp (-pit) (1 - exp (-it)) dt. 

We extend this formula to a = 0 simply by defining 1-o () = 1. Using (3.2) we 

get (ii) from 

C(a + e, 0) - 
C(a, 

0) _ exp (-Lt) dt = 

To derive (i) we bound the integrand in (3.2) as follows: 

exp (- iyt) 1 (1 - exp (-pit)) 
- 

exp (-yit) H (1 - exp (-pit)) 
la iA, 

1m (3.3) H(1 - exp (-pit)) 
exp ( 

1ct)- 
1=1 

> 1 H(1 - exp (- pit)). 
exp (t) - 1 i=1 

From (3.2) and (3.3) we conclude that 

C(a + Ej, 0) - C(Oa, 0) C(1, 0) - C(1- El, 0) 

= exp (-t) fI (1 - exp (-.it)) 
dt. 

0 i=2 

Finally, the integral can be expanded to 

Sexp ( 1 - exp (-pit)) dt = exp (-t) - exp (-(1 + p)t) 
0 i=2 i0=2 

+ - - - exp (-(1 + 

Y2+" + 
+ m)t) dt, 

from which C(1, 0) - C(1- el, 0) = A follows easily. 

Lemma 3.2. For all a and k 

C(a, k + 1) - C(a, k) 
- 

C(1 - e1, 1) - C(1 - E1, 0) = A > 0. 

Proof. It suffices to prove C(a, k + 1) - C(x, k) 
- 

A, for then 

A -- C(1 - El, 1) - C(1 - El, 0) -- C(1, 0) - C(1 - El, 0)= A, 

so that A = C(1- E1, 1) - C(1- el, 0). 
We proceed by induction on the size, (k, I al), of state (a, k). The result 

holds for k=0 and a=0, since by Lemma 3.2(i) C(0, 1) - C(0, 0) = 

C(Eo1, 0) - C(O, 0) A. 
Consider k = 0 and suppose the result holds for all states smaller than (ar, 0). 
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We have 

(3.4) C(a, 0)= 1 + jC(a - Ej, 0) . 

If C(a, 1) = C(ar+ Ej, 0) for some j EJ,, then by Lemma 3.1 C(ac, 1) - 
C(ac, 0) = C(ac + ej, 0) - C(a, 0) - A, as desired. But if (a, 1) is stable and 

C(a, 1) = 1 +Luic(ar- , 1)], 

then by (3.4) and the inductive hypothesis 

1 
C(a, 1) - C(a, 0) = 1 E [c(a - yp, 1) - C(a - j, 0)] ?A, 

again as desired. 
Finally, suppose the result holds for all states smaller than (ar, k) where 

k - 1. We have 

(3.5) C(a, k) = min 
1 

1 + 
LijC(a 

- 
Ej, 

k)], min C(a+ 
j, k-1)}. QifE Y L 0 J0 

By (3.5) and the inductive hypothesis, if C(a•, 
k + 1) = 

C(a• 
+ Ej, k) for some 

jE J,, then 

C(a, k + 1) - C(a, k) C(ar + Ej, k) - C(a + yE, k - 1) - A, 

whereas if 

C(a, k + 1) =1+E11 MC(a - 
j, k) , 

then 

1 

C(a, 
k + 1) - C(av, 

k)_ 

C L[C(a - 4, k + 1) - C(a - 4, k)] 
_ 

A. 

Theorem 3.1. In (ar, k) let ac = 0 and k - 1. Then (a, k) is unstable. 

Corollary 3.1. From this result and Lemma 2.1 we conclude that P1 should 
be assigned a waiting job whenever it is available. Hence, when ar =0, 
C(ar, k) = C(ar + 

EI, 
k - 1). It also follows that, in the Bellman equations, 

(2.4) can be simplified to C(0, k) = C(E1, k - 1), k 
- 

1. 



184 E. G. COFFMAN JR ET AL. 

Proof of the theorem. The result holds for a = 0 and k = 1 since (0, 1) is 
unstable. Thus, suppose the result holds for all states smaller than (a, k), and 
assume (a, k) is stable. Then al > 0 and we conclude from the remark above 
that our inductive hypothesis can be written as 

C(Q , k)- - 
1 + MiC( - Ei, k) 

(3.6) 

1 + t C(a- i 
+ 1, k-1)]. 

Now let S, be the following scheduling policy with the initial state (a, k). In 
addition to executing the jobs initially on P,, ie I,, S, also executes a job on 
PI1, thus reducing the number of waiting jobs to k - 1. No further assignments 
are made by S, until some Pi (i 0 1) finishes its job, at which point S, proceeds 
optimally; i.e. in any such resulting state S, is assumed to be an optimal policy. 
Let Ci(at, k) be the expected makespan under S1. The probability that P1 
finishes before any P,, i E I,, is 1/(1 + F 

ti•). Hence, 

1F 1 
C1(ac, k) = Cl(Qa + El, k - 1) 1 + 

li 

C(a - Ei, k- 1) 

(3.7) 

Y-i 
1? 

+ 
El, 

k- 
1). 

From (3.6), (3.7) and Lemma 3.2 we obtain the contradiction Cl(a, k) < 

C(a, k). Hence, (a, k) is not stable. 

Another intuitive result that we shall now prove is that if waiting jobs are 
assigned in any state (a, k) by an optimal policy, then they must be assigned to 
fastest available processors. This property follows easily from the following 
result. 

Theorem 3.2. Let a be such that p, q e•J, Jp lq. Then C(a + ep, k) 
C(a + Eq, k) for all k. 

Proof. For k = 0 the theorem follows immediately from Lemma 2.1. Thus, 
let k >0 and suppose the theorem holds for any state (lexicographically) 
smaller than (ar, k). For * 40 let 

C'(fl(p, l)= 
~ 

1 
+ 

C( 
- 

E, 1) . 
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The Bellman equations give 

C(a + Ep, k)= min C'(a + Ep,k), C(a + Ep + Eq, k- 1), 

mm C(Ca+E,+E, k-1), 

C(a + 
Eq, k)= min {C'(c + 

Eq, k),C(c + Ep + Eq, k -1), 

mm C(a + Eq +c E, k- 1)}. 
Jc,- {p, q} 

The theorem for (a, k) will therefore follow from C'(a + ep, k) 5 C'(a + 

Eq, k). 
From the formulas for C'(a + Ep, k) and C'(a + Eq, k) we get 

(lPP+ Zii)C'(a + ep, k)(-Pq+?iZ P) C'(&i + Eq, k) 

pi[C(a + ep - ej, k) - C(a+ Eq - E, k)] + (pp - q)C(at, k), 

which we rewrite as 

(P 
+ Z Pi)[C'(a + ep, k) - C'(a + Eq, k)] 

(3.8) = (Pp - Pl,)[C(a, k) - C'(a + Eq, k)] 
+ E li[C(a + Ep - Ei, k)- C(c + Eq - E,, k)]. 

By Lemma 3.2 

C(a, k)-5 C'(a + Eq, k - 1)-5 C'(a + Eq, k). 
Hence the first term on the right of (3.8) is negative. The second term on the 
right of (3.8) is negative by assumption. We conclude from (3.8) that 
C'(&i + Ep, k) - C'(a + Eq, k). 

With Theorem 3.2 a further simplification of the Bellman equations is 
possible. In (2.5) the expression min;j, C(a + Ei, k - 1) can be replaced by 
C(ar + Ep, k - 1), where p is the least index in J,. 

Next, we shall identify additional sets of states for which optimal decisions 
have the structure of a threshold rule, i.e. those states (a, k) for which there 
are thresholds 

t,• 
0 such that (ar, k) is unstable if and only if k > t,. Note that 

if al = 0, then t, = 0 by Theorem 3.1. We now consider states 
(El, 

k), k 
- 

1. 

Theorem 3.3. Let k 1. If 
(El, 

k) is stable, then (El, k - 1) is strongly 
stable. 
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Proof. Suppose (E1, k) is stable but (El, k - 1) is not strongly stable. Then 
k 

= 
2. By the Bellman equations, Corollary 3.1 and Theorem 3.2 

(3.9) C(E1, k)= 1 + C(0, k)= 1 + C(E1, k - 1)= 1 + C(E1 + E2, k - 2). 

Let S1 be the following policy starting in state (El, k). In addition to the job 
on P1 suppose that S, executes a job on P2, thus reducing the number of 
waiting jobs to k - 1. When either P1 or P2 finishes, S, assigns a new job to the 
processor just finished and then proceeds optimally. If C1(E1, k) = C1(E1 + 
E2, k - 1) denotes the expected makespan under S1, then 

1 
(3.10) 

CI(E1, 
k) = + C(E1 + E2, k - 2). 

1 + Y2 

From (3.9) and (3.10) we get the contradiction, C1(E1, k) < C(E1, k). Hence, if 
(El, k) is stable, then (El, k - 1) is strongly stable. 

It follows immediately from Theorems 3.1 and 3.3 that an optimal threshold 
rule exists for m = 2. In particular, too= to, =0 by Theorem 3.1, and by 
Theorem 3.3 either (10, k) is stable for all k ? 0, or there exists a threshold t1o 
such that in state (10, k) a job is assigned to P2 if and only if k > tio. In the 
next section we shall express t1o as a simple function of 02, which is finite for 
all M2 > 0. 

For general m. Theorems 3.1 and 3.3 show that any state (a, k) for which 

arl 
= 

1 can be handled optimally by a threshold decision. We shall now extend 
this property to states (a, k) for which IaI| = 2. Then, by analogy with the 
above remarks for m = 2, we shall be able to derive an optimal threshold rule 
for m = 3. First, we need some preliminary results. 

Let T? denote the time required by P, to execute k consecutive jobs. We 
shall write T = T$1). Introducing the vector notation k = (k, - - - , km), we 
define E(k) = E(kl, 

- - , km)= E(maxi:5m { Ti'}). The following lemma gives 
the value of E(k) for 1 ! m ?- 3 and certain values of k which will be useful 
later. 

Lemma 3.3. Let Fk(x) = l/x(1 + x)k. Then 

(i) E(k) = k, 
(ii) E(k, 1) = k + Fk(M2), 

(iii) E(k, 1, 1) = k + Fk(M2) + Fk(M3)- Fk(GZ2 + 
-3). 

Proof. We have Ti = X + . . + Xk where the Xj's are independent and 
identically distributed with P(Xj > t) = exp (-t), t - 0. Thus, (i) follows from 

k 

E(k)= E(Tk) = E(X) = k. 
j=1 
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For (ii) let T = max (Tk, T2). Then 

E(k, 1)=JP(T >t)dt 

o 

fo fo k l k-1 ti 
= E(T) + E(T2) - exp (-Y2t) dt 

0 i=0 * 

1 k-1 1 
= k+ -- Z. +1= k + 

Fk(P2). 
Y2 i=(1 + 2)i+ 

By extending this reasoning to the calculation of E(k, 1, 1)= 
E(max (Tk, max (T2, T3)), we obtain (iii). 

Lemma 3.4 below proves an important property of the function E(k) which 
is then used in Lemma 3.5 to relate this function on C(at, k). 

Lemma 3.4. For some fixed j suppose that two vectors k and k' of 

non-negative integers differ only in the first and jth elements, and that for 
these elements k, = k + 1, k' = k and ki= 0, k' = 1. Then if E(k) 5 E(k') 
when the remaining elements are chosen to be 0 (i.e. ki, k' = 0, i * 1, j), then 
E(k) ? E(k') must hold for all choices of ki = kl' 0, i # 1, j. Moreover, strict 
inequality in the first instance implies strict inequality in the second. 

Proof. We shall take j=2 and prove that if E(k + 1, 0, 0, ... , 0) 5 

E(k, 1, 0, .. *,0), then E(k + 1, 0, k3,..., km) -E(k, 1, k3, 1 * , km) for ar- 
bitrary non-negative integers k3, - - - , km, with strict inequality implying strict 
inequality. Examination of the proof will show that it applies mutatis mutandis 
for general j > 1. 

Let FT(x) = P(T ?-x) where T = max3,5im I{Ti)}. For c 
_0 

define 

E(kx, 
k2; c) = E(max {Tk , Tki , c}) and note that E(kj, k2; 0) = 

E(kx, 
k2). We 

have 

E(k + 1, 0, k3, 
" " , km)= E(k + 1, 0; c)dFT(c) 

and 

E(k, 1, k3, , km) = fE(k, 1; c) dFT(c). 

Thus, our result will follow from a proof that for any constant c _0, 
if 

E(k + 1, 0) 
Z 

E(k, 1), then E(k + 1, 0; c) 
Z 

E(k, 1; c) for all k ? O, with strict 
inequality implying strict inequality. 

To prove this define Xc = max (X, c), where X is a non-negative random 
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variable and c 0 is a constant. Then 

E(Xc) = P(Xc > t) dt = dt + P(X > t) dt = E(X) + P(X - t) dt. 

Letting X first be Ti+1 and then max (Ti, T2) we obtain 

(3.11) E(k + 1, 0; c)= k + 1 + P(TI1 t)dt, 

E(k, 1; c) = k + fexp (-2t)P(Tr•( t) dt 

(3.12) + P(T 
<- 

t)(1 - exp (-M2t)) dt 

= k + JP(T 
-t) 

j dt + fP(T t) exp (-M2t) dt. 

Routine calculations similar to those in Lemma 3.3 yield 

k-1 t] 

(3.13) P(TI x) = 1 - exp (-t)- 
j=0 j! 

and 

o00 

1 
(3.14) Joexp (-P2t)P(rT~ t) dt = 

2(1 

where the sum in (3.13) is interpreted to be 0 for k = 0. From (3.11)-(3.14) it 
follows that 

(3.15) 
E(k + 1, 0) 5 E(k, 1) if and only if 

0 :5 2 a where a(1 + a)k = 1, a > 0, 
and 

E(k + 1, 0; c) 5 E(k, 1; c) if and only if 

(3.16) 

oC ktfc0 

[P(T t) 
- P(T+' t)] dt + P(T t) exp (-M2t) dt - 1. 

We observe here that a = 1 for k = 0 and a <1 for k > 1. We conclude from 
(3.13)-(3.16) that a proof of our result is equivalent to showing that 
G(r, c) - 1 for 0 < r a, 0- 5 c < oo, where 

G(r, c)= exp (-t)tk 

cr 

k-1 
exp (-t)t] 

o k! ;= o !! 
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For this purpose we note first that 

1 
G(r, 0)= r( + r)k1, 

< r a, 

(3.17) 
G (r, oo) 

= 

o0eXp 

t)tkdt = 1. 

In the following let a subscript c denote the derivative with respect to c. If 
k = 0, Then Gc = exp (-c) - exp (-rc) 5 O, so that G(r, c) 

- 
G(r, oo) = 1. If 

k 1, then 

Ck k-1 cj 

Gc = exp (-rc)f(r, c), f(r, c) exp (-(1 - r)) + exp(-c)= 1 
(3.18) k-1 

c c 
fe = exp (-(1 - r)c) g(r, c), g(r, c) r) exp (-rc). 

For fixed 0 < r _ a < 1, 
gc(r, 

c) = -(1 - r)/k + r exp (-rc) is a decreasing 
function of c with 

(k + 1)r- 1 1-r 
go(r, O) 

= I gc(r, oo) = - --< 0. k k 

Thus, if r 5 1/(k + 1) then g(r, c) < 0 for 0 < c < oo and if r > 1/(k + 1) then 
there exists a function of r only, co(r) > 0, such that g(r, c) > 0 for 0 < c < co(r) 
and g(r, c)< 0 for c > co(r). Integrating first fc and then Gc with respect to c, 
we reach a similar conclusion for G(r, c), co(r) being replaced by a similar 
function cl(r) >0. From this fact and (3.17) it follows that G(r, c) ! 1 for 
0 < r 

-a, 
0 c < oo. 

It remains to show that strict inequality implies strict inequality. First, 
E(k + 1, 0) < E(k, 1) means that 0 < I2 < a. Differentiating G(r, c) with resp- 
ect to r we find 

c0 

k-1 
t1 

G,(r, c) = - t 1 -E exp (-t)' exp (-rt) dt < 0 
jc=O 

=0! 

so that for 0 < r < a, G(r, c) > G(a, c) _ 
1. We conclude that E(k + 1, 0; c) < 

E(k, 1; c). 

It is worth remarking that Lemma 3.4 is not true in general; the reader will 
have little difficulty in finding other distributions of execution time for which 
the lemma is false. The next result establishes the proper connection between 
the functions E(k) and C(a, k). 

Lemma 3.5. Let 
a1 

= 1. If 
(El, 

k) is stable, then C(a, k) = E(k + 1, 
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2 2,' &, m). Furthermore, if (El, k) is stable (strongly stable), then (a, k) is 
stable (strongly stable). 

Proof. For k = 0 the result is trivial so let k ? 1 and suppose the result holds 
for all states smaller than (a, k). Consider first 2-5 Ial -m - 1. 

Suppose (El, k) is stable. by Theorem 3.3, (El, k - 1) is also stable. Let S, 
be a policy that executes in (a, k) and is otherwise optimal. Let S2 be a policy 
that in state (ar, k) makes an assignment to Pp, j E J,, and is optimal thereafter. 
Let Cl(a&, k) and C2(ad, k) denote the respective expected makespans of S, and 
S2 with the initial state (a., k). 

Letting k = (k + 1, &2, 
'.', am) we have by the inductive hypothesis and 

Corollary 3.1 

C1(a, k) = 1 + C(a, k - 1) + ~ 
iC( 

- E;, k) 

(3.19) 

S 1 + YE(k - 
1)] 

= E(k). 

Again by the inductive hypothesis 

(3.20) C2(a, k) = C( + Ey, k - 1) = E(k - E1 + E). 
Since (El, k) is stable, Theorem 3.3 gives 

(3.21) C(E1, k)=E(k + 1, 0, ..., O)5E(k, 0,..., 1,.., 0) 

where the 1 in the last expression appears in position j. Moreover, (3.21) 
becomes an inequality if (El, k) is strongly stable. We conclude from (3.21) 
and Lemma 3.4 that 

(3.22) E(k) - E(k - 
E1 + 

Ej), 

inequality holding if (El, k) is strongly stable. Clearly, (3.19), (3.20) and (3.22) 
jointly imply that C(a, k) = Cl(a, k) = E(k + 1, 

a2E, 
' ' 

', m) and that (ar, k) 
is stable (strongly stable) when (El, k) is stable (strongly stable). 

Finally, if IaI = m, then we apply (3.19) to C(ca, k) = 
Cl(a, 

k) to obtain 
C(Q, k)= E(k). 

We are now poised for our next threshold result. 

Theorem 3.4. Let 
a• 

= 1 and Iari = 2. For all 
k- 

0, if (a, k + 1) is stable, 
then (ar, k) is strongly stable. 

Remark. We can prove this type of result for yet another special case: if 
(cx, 1) is unstable then so is (a, 2). The proof appears to require considerable 
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effort; however, since the result is not needed in what follows, we omit the 
proof. 

Proof. It is convenient to consider separately the two cases &2 = 0, 1. In 
both cases we suppose that (ar, k) is not strongly stable, so that k - 1, and 
show that (a, k + 1) is unstable. 

Case 1: (&2 = 1 and hence a; = 0, j > 2). Let S1 be a policy that executes in 

(ar, k + 1) and is otherwise optimal. If the expected makespan under S1 is 
denoted by C1('), 

then we can write 

1 
(3.23) 

Cl(a, 
k + 1)= [1 + C(a, k) + Y2C(E1, k + 1)]. 

1+ y2 

Since (ar, k) is not strongly stable we have that C(a, k) = C(a + E3, k - 1) by 
Theorem 3.2. Moreover, 

(El, 
k) cannot be strongly stable by Lemma 3.5, and 

this in turn implies that (e1, k + 1) is unstable by Theorem 3.3. Hence, 
C(E1, k + 1) = C(a, k) by Theorem 3.2. We conclude from these facts and 
(3.23) that 

1 
(3.24) Cl(a, k + 1)= + C(a + 3, k - 1). 1+ Y2 

Now let S2 be the following policy: in state (a, k + 1) S2 assigns a job to P3 
and executes in state (a + e3, k). Upon the first completion, s2 assigns a job to 
the processor that just finished a job and then executes again in state 
(a + E3, k - 1). Apart from the above prescriptions, S2 makes optimal 
decisions. If C2(-) denotes the expected makespan under S2, then 

1 
(3.25) C2(a, k + 1) = C2( + 3, k) = + C(Ca + 3, k - 1). 1 + Y2 + 3 

Comparison of (3.24) and (3.25) yields C2(a, k + 1) < 
Cl(a, 

k + 1). Thus, 
(a, k + 1) is unstable and the theorem follows. 

Case 2: (&2 = 0 and hence aj = 1 for exactly one j * 1, 2). With S1 and C1 as 
in Case 1, we have 

1 
(3.26) 

Cl(a, 
k + 1)= [1 + C(a, k) + 1C(E1, k + 1)]. 

Since (a, k) is not strongly stable, we have C(a, k) = C(a + e2, k - 1). Also, 
(El, k) is not strongly stable and this in turn implies that (El, k + 1) is 
unstable. Hence, C(E1, k + 1) = C(E1 + E2, k) so that 

1 
(3.27) C1(a, k + 1) =1+ [1+ C(at + E2, k - 1) + 1;C(e1 + E2, k)]. 
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Next, let S2 be the following policy: in (a, k + 1) S2 assigns a job to P2 and 
then executes in the stable state (a + E2, k). In subsequent states S2 performs 
optimally. If C2(-) denotes the expected makespan under S2, then we have 

1 
CQ(a, k + 1)+= [1 + C(a + E2, k - 1) 

(3.28) 1 + 2 + ILj 
+ M2C(a, k) + 

[ijC(E1+ 
E2, k)]. 

By (3.27) and (3.28) C2(a, k + 1) < Cl(ar, k + 1) is equivalent to 

1 
(3.29) C(a, k) < [1 + C(a + E2, k - 1) + jIC(E1 + E2, k)]. 

To verify (3.29) let S3 be the policy that executes in (a, k + 1), assigns a job to 
P2 after the first completion and proceeds optimally thereafter. The expected 
makespan, C3(-), under S3 is given by the right-hand side of (3.29). Thus, 
(3.29) follows from 

C(a, k) < C(a, k + 1) C3(a, k + 1). 

We conclude that C2(a, k + 1) < Cl(ca, k + 1), i.e. (ar, k + 1) is unstable. 

For m = 3, a l 1 implies I aI ? 2. Thus, a threshold rule for m = 3 follows 
immediately from Theorems 3.1, 3.3 and 3.4. The thresholds that have yet to 
be calculated are t, for a = (100), (110) and (101). In Section 4 we shall verify 
that these thresholds are bounded for fixed P3 > 0. Detailed calculations will 
also be discussed. 

Although we conjecture that for all m every state is a threshold state, we 
have been unable to prove this; the methods used here appear quite 
inadequate for the general case. We shall return to this conjecture in the final 
section. 

4. Optimal policies for m = 2, 3 

We consider first the two-processor problem. From Theorem 3.1 we have 
too = to, = 0, so for an optimal threshold policy it remains to find t1o. This is 
provided by the following result, where, for simplicity, the symbol r is used in 
place of M2. 

Theorem 4.1. Let 
1 

log - 
(4.1) t(r) = r 

log (1 + r) 

Then the state (10, k) is strongly stable for k < t(r) and unstable for k > t(r). If 
t(r) is a positive integer then (10, t(r)) is weakly stable. 
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Remark. Clearly, the thresholds too= to, =0 and t1o = t(r)I define an op- 
timal threshold rule. However, there are two optimal threshold rules when t(r) 
is a positive integer; it is immaterial whether or not an assignment is made in 
state (10, t(r)), so we can choose t1o = t(r) or t(r) - 1. 

Proof. Let k 
_ 1. Let (10, k) be stable and hence C(10, k) = k + 1. Since we 

are assuming (10, k) is stable, we have 

(4.2) C(10, k) - E(k, 1), 

which by Lemma 3.3 is equivalent to 

(4.3) r(1 + 
r)k1. 

Observe that (4.2) also holds when k = 0; thus, (4.3) holds whenever (10, k) is 
stable. Since r(1 + r)k > 1 for k > t(r), we conclude that (10, k) is unstable for 
k > t(r). 

Now (10, 0) is strongly stable, so for the inductive hypothesis let 15 k 5 

t(r), and suppose that (10, k - 1) is stable. By Lemmas 3.3 and 3.5 

C(10, k-1)-= 
k 

(4.4) 1 
C(11, k - 1)= E(k, 1)= k +( 

)k' r(1 + r) 
If k < t(r) then we can conclude from (4.4) that 

C(11, k - 1) > 1 + C(10, k - 1) 
- 

C(10, k), 

which means that (10, k) is strongly stable. If k = t(r)> 0 then we conclude 
from (4.4) that 

1 + C(10, t(r) - 1) = C(11, t(r) - 1), 

which means that (10, t(r)) is weakly stable. 

With t1o determined by Theorem 4.1, explicit forms for minimum expected 
makespans on two processors are easily found. Let X1, X2, - - - be a sequence 
of independent exponential random variables with rate parameter 1 + r. Then 
the makespan for an initial state (11, k), k > t1o, is obtained from the 
observation that after k - t1o completions on P1 and P2, we reach the state 
(11, tlo) where P2 must be executing its last job. Thus, the expected makespan 
is 

C(11, k) = E[X1 +... + 
Xk-to] 

+ E(t1o + 1, 1), k > t1o. 

For k 
5- 

t1o we easily have C(11, k) = E(k + 1, 1). Thus, 

i E(k + 1, 1), k < 
tlo 

E(tlo 

+ 1, 1) + k > 

tlo. 

1+r 
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A similar argument gives 

k+1, 
k< tlo (4.5) C(10, k) = {k - tlO - 1+ + 1, 1), k>t1O. l+r 

In these expressions tlo and E(j, 1) are obtained from Theorem 4.1 and (4.1), 
respectively. Finally, C(00, k) and C(01, k) can be obtained from the relations 
C(00, k + 1)= C(10, k) and C(01, k + 1)= C(11, k). 

We turn now to the case m = 3, where r and s will be used in place of ~2 and 
Y3, respectively. Before discussing how the thresholds t0oo, t1ol and t110 can be 
found, we shall describe an anomaly which shows that the simpler threshold- 
type policy in [1] cannot be used for our problem when m = 3. First, we need 
the following result. 

Theorem 4.2. Let (101, k) be strongly stable. According to any optimal 
policy P3 must be executing its last job and P2 cannot be used while P3 is busy. 

Proof. Suppose we start in (101, k) and P1 finishes first. By Corollary 3.1 the 
system transits to (101, k - 1), and by Theorem 3.4 this state must be strongly 
stable. Thus, the system must continue executing jobs in state (101, k - 1). 
Repeating this reasoning P2 will not be used so long as P3 is busy. When P3 
finishes the state will be either (000, 0) or (100, 1) for some 0 1-5 k. In the 
latter case it follows from Theorems 3.2-3.4 that P3 will not be assigned 
another job for the remainder of the schedule. 

Now consider the following example. Let a(1 + a) = 1, a >0, and hence 
a = (1 + /5)/2. Let r = s = a + E, E > 0. By Theorem 4.1 (100, 1) is unstable, 
so that 

C(100, 1)= C(110, 0)= 1 + 
r(1 + r)' 

C(101, 1) =min + C(101 0) + 
C(110, 0), C(111, O) 1+r l+r l+r 

= min 1 + C(110, 0), C(111, 0) 

=min[ 1+ 2 1 

r r(l + r) 2r(l + 2r) 

Using a(1 + a) = 1 the inequality 

1 2 1 
1+-<1+ 

a a(1 + a) 2a(l + 2a) 
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reduces to a >. But 1(1 + <) = 1, so that indeed a > 3. Thus, for E >0 
sufficiently small 

1 2 1 
1+-<1+ 

r r(1 + r) 2r(l + r) 
and hence 

1 
C(101, 1) = + C(110, 0) < C(111, 0). 

Thus, in state (101, 1) we must not use P2 and in state (100, 1), which follows 
(101, 1) with a completion on P3, we must use P2 or P3. To obtain the desired 
anomaly we can choose r = s + E = a + 2e, for it is easy to verify that for E > 0 
sufficiently small we will reach the same conclusion, except that in state 
(100, 1) we no longer have a choice between P2 and P3; we must use the faster 
processor P2. 

Now for k sufficiently large any optimal policy will lead with positive 
probability from (000, k) to (101, 1) so that the anomaly can occur. To verify 
this we note that for k large enough the initial stable state will be (111, k - 3). 
Thus by Theorem 4.1 state (101, 1) will be produced by k - 4 consecutive 
completions on P1 followed by a completion on P2. 

We return now to the problem of calculating thresholds. It is readily verified 
that t1oo = tlo and therefore t1oo can be calculated directly from Thorem 4.1. 
From a practical point of view the simplest approach to finding the thresholds 

tlo1 and t10o is by an evaluation of the Bellman equations. The values of 
C(a, k) are found in increasing lexicographic order of (k, Ijal) until the first 
occurrences of the inequality 

C(ct, k) = min C(a + Ei, k - 1) < 1 + i 
CiC(? 

- 
ei, k) i EJ,, Y, 

have been encountered for each of a = (101), (110). At these times we record 
t, =k-1. 

The following result which is an easy consequence of Theorem 3.2, states 
that the evaluations may be terminated once the threshold t10o has been found. 

Corollary 4.1. For all k - 0, C(110, k) -i C(101, k), and if (101, k) is stable 
then so is (110, k). 

Next, for m = 3 we shall provide a bound on the number of states for which 
C(a, k) must be evaluated; as we shall see this bound is significantly tighter 
than the general bound proved in the next section. 
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Theorem 4.3. States (100, k), (101, k) and (110, k) are unstable for 

1 1+r 
log- log 

l (4.6) k 
>lg 

+ 11+1. 
L 

log (1 + 
r)- log (1+ S 

Proof. We shall prove the result for (110, k). The analogous result for 
(100, k) follows easily, and Corollary 4.1 takes care of the state (101, k). 

Let S1 be a policy that executes t1o +1+2 jobs optimally on P1 and P2 while 
it executes just one on P3. Let Y denote the maximum finishing time between 

P1 and P2 and let Z be the finishing time on P3. If C1(110, k) = C1(111, k - 1), 
k = t1o + 1 + 1, denotes the expected makespan of the schedule produced by S1, 
then 

C1(110, k) = E[max (Y, Z)] 

= P(Y > t) dt + P(Z > t) dt - P(Y > t)P(Z > t) dt, 

whereupon substitution of 1 - P(Y > t) = P(Y - t) gives 

C1(110, k) = fP(Y> t) dt + fP(Z > t)P(Y 5 t) dt. 

The first integral is simply C(11, k - 1), and the second can be bounded by the 
use of 

P(Y 5 t) 5 P(X1 + 
" 

+ Xt t), 

where the X,'s are independent exponentials with parameter 1 + r. 
Substitutions yield 

C1(110, k) - C(11, k - 1) + f exp (-st)P(X1 +... + Xt - 
t) dt 

SC(11, k) + exp (-st) exp (-(1 
+ r)t) (1 

dt 
n= n! 

1 
l1+r 

'" 
= C(11, k - 1)+-. 

s 1+r+s 

Suppose (110, k) were stable. Then C(110, k) = C(11, k) = C(11, k - 1) + 1/ 
(1 + r), so that 

(4.7) 
Cl(110, 

k) C(110, k) +r 
s 

l+r+s 
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But if 

l+r 
log s 

(4.8) 1 + 1, 
log( 1+l ) 

then 

1 1+r t 1 
s 1+r+s 1+r 

and we conclude from (4.7) that C1(110, k)< C(110, k), a contradiction. It 
follows that (110, k) is unstable when (4.8) holds. 

An obvious upper bound to the number of states for which C(ac, k) must be 
evaluated is given by 8(K + 1), where K denotes the right-hand side of (4.6). 
Hence, the time required by the calculation is a function only of r and s. As an 
alternative to the Bellman equation approach t1ol and t11o can be obtained from 
the roots of certain transcendental equations. (Note that this statement also 
applies to tlo = [t(r)] where t(r) is the solution of r(1 + r)k = 1; see (4.1).) 

The combinatorial basis for the calculations is straightforward and cor- 
responds in the m = 2 case to the calculations in (4.4). To compute t101 one 
finds the largest k such that C(101, k) - C(111, k - 1). In the calculation of 
each expected makespan P3 is assumed to be executing its last job. Thus, the 
problems reduce to two processor problems when the completion on P3 occurs. 
We note also from Theorem 4.2 that in calculating C(101, k) no assignments to 
P2 need be considered while P3 is busy. Thus, if the completion on P3 is the 
(i + 1)th completion event after state (101, k) for i 5 k, then the expected 
remaining makespan is simply C(10, k - i), which is obtainable from (4.5). To 
complete this example, the probability of the above event is simply 

( 1 )' s 
l+s 1+s' 

and hence 
k 

SC(10,k- li). C(101, k) =-+ C(10 ki). 

A similar approach to calculating C(111, k - 1) must also take into account the 
fact that since k 5 t101 no more waiting jobs can be assigned to P2 until P3 
finishes. 

Similarly, for t110i one finds the largest k such that C(110, k) 
- 

C(111, k - 1). 
Note that C(110, k)= C(11, k) is immediately a two-processor problem, and 
that the calculation of C(111, k- 1) uses the fact that P3 is executing its last 
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job. Also, of course, the calculation must reflect the fact that while P3 is busy, 
waiting jobs can be assigned to P2 as it becomes available only while more than 
t101 waiting jobs remain. 

The detailed calculations that we have outlined are routine but lengthy, and 
the final results from which thresholds are found numerically are quite 
awkward. Thus, in the interests of conserving space, we omit them. 

5. An optimal algorithm for general m 

The burden of this section is a proof that for any a * 1 the state (a, k) is 
unstable for sufficiently large k. This means that there exists a K such that for 
k > K any state 

(ta, k), ca * 1, is unstable and an optimal algorithm must assign 
waiting jobs to all processors in J, to produce the stable state (1, k - IJ'I). We 
begin by stating bounds on C(0, k). 

Lemma 5.1. For all k m 

k-m m 1 k-m m 1 
+ Q 1 C(O, k) +E 1 

+l " '''+' • "+0+"•tm"=i 
iJ'' i+ 

"+ •m 

Proof. The lower bound is simply the expected makespan of a preemptive 
algorithm that always employs the fastest available processors; clearly, no 
non-preemptive algorithm can do this well. 

For the upper bound consider an algorithm that keeps all processors busy 
until state (1, 0) is reached after a time interval of expected length, 
(k - 

m)/(ya 
+... 

"- 
+ m). At this point the remaining expected time to 

completion of the last job is C(1, 0). But C(1, 0) is clearly less than the 
expected makespan achieved by a preemptive algorithm that always employs 
the slowest available processors, i.e. 

m 1 
C(1, O):5Y 

The upper bound follows. 

We now prove that it is optimal to use all m processors for sufficiently 
large k. 

Theorem 5.1. There exists a k 5 [m3/y2J + 1 such that starting in state 
(0, k) any optimal algorithm will assign jobs to all processors and continue 
execution in state (1, k - m). 

Proof. Let k Im and suppose that for all j, m 
l 

j k, there is an optimal 
policy for the initial state (0,j) which does not make assignments to all 
processors. This means that for each j we may choose a stable state (ar, 1), 
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a = 1, such that (0, j) 
_ 

(a, 1) and 

(5.1) C(0, j) = C(a, 1) = 1 
1 + Y C(a- e, 1) . 

Since (0, j - 1) g (a - Ei, 1), we have C(0, j - 1) _ C(a - Ei, 1) and we con- 
clude from (5.1) that 

(5.2) C(0, j) + C(O, j - 1), m j k. 

Reasoning as in Lemma 5.1 we obtain 

m-1 (5.3) C(0, m - 
1)r_ Y, +- - -+ Ym-1 

With (5.3) as a basis the recurrence in (5.2) gives 

(5.4) C(0, k)i _ 
Y•+ 

+ 

"" 

- + 

m--1 
This inequality and the right-hand inequality of Lemma 5.1 lead to 

m 1 
(Y3 

+ . + tM)2 < 3 
(5.5) k 

m 
2 

i=1 i + 
" " 

+ m Ym 
Ymn 

It follows that there exists a k 5 [m3//m + 1, such that any optimal policy 
starting from (0, k) assigns jobs to all processors. 

We now prove that every state (a, k), a = 1, is unstable for sufficiently 
large k. 

Theorem 5.2. Let K be the least integer k such that in state (0, k) any 
optimal algorithm will assign jobs to all available processors and continue 
processing from state (1, k - m). Then state (a, k), a = 1, is unstable for all k 
satisfying k + Iac > K. 

Proof. Whenever k + I a K we have 

k+l l-K k+c al-K 
(5. 6) + C(0, K) 5 C(a, k) 

- 
+ C(1, K - m). 

The lower bound follows from the fact that 1/(Ml + ' - + m) is a lower bound 
on the expected time between successive job completions. The upper bound is 
just the expected makespan of an algorithm that keeps all processors busy until 
k + 

caj 
- K job completions have occurred, and is optimal thereafter. By the 

definition of K we have C(0, K) = C(1, K - m) and so the bounds in (5.6) are 
achieved with equality. 
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Now suppose that k + IaI > K, a * 1, and (as, k) is stable. Then 

(5.7) C(a, k)= 
• 

1 + E 
iC(o 

- e1, k) . 

Applying (5.6) to each C(a - 
E., 

k) in (5.7) we conclude that 

k+Ia -K 
C(o , k) >, 

which contradicts (5.6). Hence (a, k) is unstable for k + Ial > K. 

The implications of Theorems 5.1 and 5.2 are that if the Bellman equations 
are to be solved numerically then their solution need only continue until the 
number of waiting jobs K is such that an optimal action in state (0, K) is to 
assign jobs to all processors and continue processing in state (1, K - m). 

We conjecture that this K has an alternative characterization as the least k 
for which the state (11 ... 10, k) is unstable. (Recall that this was proved for 
m = 2, 3.) 

6. Conclusions and open problems 

We have shown that for m = 2 and 3 there exist simple threshold rules for 
minimizing expected makespans, and we have given simple methods for 
evaluating the corresponding thresholds. We have also conjectured that similar 
threshold rules, depending only on processor states, exist for all larger values 
of m, although this seems quite difficult to prove. Direct computation using the 
Bellman equations and the bound of Section 5 have verified the existence of 
such threshold rules for m = 4, 5 and all values of ~P = 1 P •2 113 4 1>4 •5 
that are multiples of 0.1. But it is not clear how much these results should 
increase one's confidence in the general validity of the conjecture. 

If our conjecture is true, it follows immediately that for any fixed {M;} the 
process of scheduling jobs on processors with those rates to minimize expected 
makespan is a relatively simple one, requiring only that one determine and 
store a single threshold for each processor state. However, it does not follow 
that the task of finding the correct thresholds is necessarily also simple. 
Indeed, the finite algorithm implied by the bound of the preceding section, for 
fixed Mi, is potentially quite laborious for m much greater than 5. Notice that 
the algorithm applies independently of the validity of our conjecture, although 
the optimal scheduling rules it finds need not be of threshold type. Clearly, it 
would be useful to find alternative algorithms capable of extending the range 
within which optimal scheduling rules can be derived in practice. 
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In a more mathematical vein, it is apparent from the content of this paper 
that there is a great need for new mathematical techniques useful for 
simplifying the derivation of results about expected makespan scheduling. At 
present even quite natural and intuitive 'facts' require non-trivial proofs, and 
this is further complicated by the observation that such 'facts' do not always 
even turn out to be true. Thus it would be a valuable contribution simply to 
find a more elegant way to obtain the results we have presented. It is to be 
hoped that such methods will lead the way towards resolving the conjecture we 
have mentioned and towards analyzing extensions of our model, e.g. general 
distributions for job execution times, job-up times, preemptive scheduling with 
preemption costs, etc. 
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