
BIN PACKING WITH DISCRETE ITEM SIZES, PART I: PERFECT
PACKING THEOREMS AND THE AVERAGE CASE BEHAVIOR OF

OPTIMAL PACKINGS∗

E. G. COFFMAN, JR.† , C. COURCOUBETIS‡ , M. R. GAREY§ , D. S. JOHNSON¶,
P. W. SHOR¶, R. R. WEBER‖, AND M. YANNAKAKIS§

SIAM J. DISCRETE MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 13, No. 3, pp. 384–402

Abstract. We consider the one-dimensional bin packing problem with unit-capacity bins and
item sizes chosen according to the discrete uniform distribution U{j, k}, 1 < j ≤ k, where each item
size in {1/k, 2/k, . . . , j/k} has probability 1/j of being chosen. Note that for fixed j, k as m → ∞
the discrete distributions U{mj,mk} approach the continuous distribution U(0, j/k], where the item
sizes are chosen uniformly from the interval (0, j/k]. We show that average-case behavior can differ
substantially between the two types of distributions. In particular, for all j, k with j < k − 1, there
exist on-line algorithms that have constant expected wasted space under U{j, k}, whereas no on-line
algorithm has even o(n1/2) expected waste under U(0, u] for any 0 < u ≤ 1. Our U{j, k} result is
an application of a general theorem of Courcoubetis and Weber [C. Courcoubetis and R.R. Weber,
Probab. Engrg. Inform. Sci., 4 (1990), pp. 447–460] that covers all discrete distributions. Under
each such distribution, the optimal expected waste for a random list of n items must be either
Θ(n), Θ(n1/2), or O(1), depending on whether certain “perfect” packings exist. The perfect packing
theorem needed for the U{j, k} distributions is an intriguing result of independent combinatorial
interest, and its proof is a cornerstone of the paper.

Key words. bin packing, on-line, average-case analysis, approximation algorithms

AMS subject classifications. 68W25, 68W40

PII. S0895480197325936

1. Introduction. Suppose one is given items of sizes 1, 2, 3, . . . , j, one of each
size, and is asked to pack them into bins of capacity k with as little wasted space as
possible, i.e., one is asked to find a least cardinality partition (packing) of the set of
items such that the sizes of the items in each block (bin) sum to at most k. For what
values of j and k can the set be packed perfectly (i.e., so that the sizes of the items in
each block sum to exactly k)? Clearly the sum of the item sizes must be divisible by k,
but what other conditions must be satisfied? Surprisingly, the divisibility constraint
is not only necessary but sufficient. Readers might want to try their hand at proving
this. Relatively short proofs exist, as illustrated in the next section, but a certain
ingenuity is required to find one. The exercise serves as a warm-up for the following
more general and more difficult theorem, also proved in the next section, in which
there are r copies of each size, for some r ≥ 1.

Theorem 1 (perfect packing theorem). For positive integers k, j, and r, with
k ≥ j, one can perfectly pack a list L consisting of rj items, r each of sizes 1 through
j, into bins of size k if and only if the sum of the rj item sizes is a multiple of k.

∗Received by the editors August 11, 1997; accepted for publication (in revised form) October 14,
1999; published electronically May 26, 2000.

http://www.siam.org/journals/sidma/13-3/32593.html
†New Jersey Institute of Technology, Newark, NJ 07102 (coffman@homer.njit.edu). The research

of this author was completed while at Bell Labs.
‡Department of Computer Science, Athens University of Economics and Business, Athens, Greece

(courcou@csi.forth.gr).
§Bell Labs, Murray Hill, NJ 07974 (mihalis@research.bell-labs.com). M.R. Garey is now retired.
¶AT&T Labs–Research, Florham Park, NJ 07932 (dsj@research.att.com, shor@research.att.com).
‖Statistical Laboratory, University of Cambridge, Cambridge CB2 1SB, UK

(R.R.Weber@statslab.cam.ac.uk).

384

PERFECT PACKING THEOREMS 385

In set-theoretic terms, the question answered by Theorem 1 is an intriguing puzzle
in pure combinatorics. But our motivation to work on it came from its relevance
to certain fundamental questions about the average-case analysis of algorithms. In
particular, consider the standard bin packing problem, in which one is given a list of
items L = (a1, a2, . . . , an), where each ai has a positive size si ≤ 1, and is asked to
find a packing of these items into a minimum number of unit-capacity bins. Clearly,
Theorem 1 can be cast in these terms by a simple rescaling.

In most real-world applications of bin packing, as in Theorem 1, the item sizes are
drawn from some finite set. However, the usual average-case analysis of bin packing
heuristics has assumed that item sizes are chosen according to continuous probability
distributions, which by their nature allow an uncountable number of possible item
sizes (see [1, 8], for example). The assumption of a continuous distribution has the
advantage of sometimes simplifying the analysis, and has been justified on the grounds
that continuous distributions should serve as reasonable approximations for discrete
ones. But there are reasons to ask whether this is actually true. For example, let
U(0, u] denote the continuous uniform distribution over the interval (0, u] and let
U{j, k} denote the discrete uniform distribution on the set {1/k, . . . , j/k}. Then the
limit of the distributions U{mj,mk}, as m → ∞ is U(0, j/k], but in the limit com-
binatorial questions such as those addressed by Theorem 1 evaporate. This suggests
that something important (and interesting) may in fact be lost in the transition from
discrete to continuous models. The results in this paper illustrate that, indeed, fun-
damental aspects of the average-case behavior of classical bin packing algorithms are
obscured by the continuous models.

To describe these results, we need the following notation. If A is an algorithm
and L is a list of items, then A(L) is the number of bins used when A is applied
to L, and s(L) is the sum of the item sizes in L. The waste in the packing of L
by A is denoted by WA(L) = A(L) − s(L). Note that this equals the sum of the
gaps in the bins used by A’s packing of L, where the gap in a bin containing items
of total size σ is 1 − σ. Let OPT(L) denote the length of an optimal packing; OPT
also denotes a corresponding optimal off-line packing algorithm. In what follows, Ln
is a list of n items whose sizes are independent samples from a given distribution.
To avoid trivialities, we disallow the item size k, and hence ignore the distribution
U{k, k}. Further, we will ignore the (deterministic) distribution U{1, k}. Thus, only
the distributions U{j, k}, 1 < j < k, will be of interest.

This paper is the first in a series of articles covering the results announced in [2, 6],
all dealing with classical bin packing under discrete distributions and showing quali-
tative differences between algorithmic behavior under such discrete distributions and
their continuous analogues. The specific problems addressed by the series are sum-
marized in Table 1, and are shown along with the continuous analogues for contrast.
The present paper, Part I of the series, proves the results marked by a bullet (•) in
the table. In this table Ω(f(n)) has the Knuthian sense of “greater than cf(n) for
some c > 0 and all sufficiently large n” and Ω(f(n)) has the weaker sense of Hardy
and Littlewood’s “not o(f(n)),” i.e. “greater than cf(n) for some c > 0 and infinitely
many n.” We say g(n) is Θ(f(n)) (respectively, Θ(f(n))) when g(n) is both O(f(n))
and Ω(f(n)) (respectively, Ω(f(n))). A subscript of u or k indicates that the hidden
multiplicative constants depend on u or k and so we have asymptotics in n that hold
for fixed u or k. Where more than one growth rate is possible, we list all that have
been observed for distributions of the stated type, using “. . . ” to indicate when other
possibilities have not been ruled out. In the case of general discrete distributions it
is NP-hard to determine which possibilities apply under first fit decreasing (FFD),

386 COFFMAN ET AL.

Table 1
Results for expected waste.

U(0, 1] Ref U{j, k}, j = k − 1, k Ref

OPT Θ(n1/2) [17, 16] Θ(n1/2) [8]

FFD, BFD Θ(n1/2) [17, 16] Θ(n1/2) [8]

FF Θ(n2/3) [7] Θ(n1/2k1/2), k = O(n1/3) [7]

Θ(n2/3), k = Ω(n1/3) [7]

BF Θ(n1/2 log3/4 n) [19] Θ(n1/2 log3/4 k), k = O(n) [5]

Θ(n1/2 log3/4 n), k = Ω(n) [5]

Best on-line Θ(n1/2 log1/2 n) [19, 20] Ωk(n
1/2)† [–]

U(0, u], u < 1 Ref U{j, k}, 1 ≤ j ≤ k − 2 Ref
OPT Θu(1) [1] Θk(1) [•]
FFD Θu(1), u ≤ 1/2 [1, 13] Θk(1), Θk(n

1/2)‡, Θk(n)§ [3]

Θu(n1/3), u > 1/2 [1]

FF Θu(n)∗ [2] Θk(1), Θk(n
1/2)‡, Θk(n)∗ [6, 4]

BF Θu(n)∗ [2] Θk(1), Θk(n
1/2)‡, Θk(n) [6, 4, 15]

Best on-line Ωu(n1/2) [•] Θk(1) [•]

General continuous Ref General discrete Ref

OPT Θu(1), Θu(n1/2), [1, 17, 16] Ok(1), Θk(n
1/2), Θk(n) [9]

Θu(n), . . .

FFD Θu(1), Θu(n1/3), [1, 17, 16] Ok(1), Θk(n
1/2), Θk(n)§ [3]

Θu(n1/2), Θu(n), . . .

Best on-line Θ(n1/2 log1/2 n), [19, 20] Ok(1), Θk(n
1/2), Θk(n) [9]

Θu(n), . . .

§ These results also hold for BFD.
† Easily shown to be Ω(n1/2); O(n1/2 log3/4 k) by the results for Best Fit;

conjectured to be Θ(n1/2 log1/2 k), k = O(n) and Θ(n1/2 log1/2 n), k = Ω(n).
‡ Not ruled out by theorems, but no occurrences known either. For FFD and j ≤ k − 2,

Θk(n
1/2) is known not to occur for any k ≤ 10, 000 [3].

∗ Conjecture supported by simulation studies.

best fit decreasing (BFD), and the best on-line algorithm, although exponential-time
decision algorithms exist [9, 4].

Our primary focus in this paper is on the distributions U{j, k} with 1 < j ≤ k−2.
The marked results for these distributions are both contained in the following theorem,
which is proved in section 3.

Theorem 2. For any j, k, 1 < j ≤ k − 2, there exists an on-line algorithm A
with running time bounded by a polynomial in n and k such that if Ln has item sizes
generated according to U{j, k} then E[WA(Ln)] = Θ(1).

The corresponding result in the continuous model, which is proved in section 5,
shows substantially worse behavior.

Theorem 3. If Ln has item sizes generated according to U(0, u] for 0 < u <
1, and A is any on-line algorithm, then there exists a constant c > 0 such that
E[WA(Ln)] > cn1/2 for infinitely many n.

We should note that the comparison between discrete and continuous cases is
much closer in the case of U{k − 1, k}, which corresponds to U(0, 1]. In fact, for
unconstrained (off-line) optimal packings, one obtains the same Θ(n1/2) expected
waste results in both cases. The proof of this fact in the discrete case can be assembled
from standard techniques in the continuous theory, for example by observing that the
algorithm MATCH and its analysis in [8, p. 100] carry over to the discrete case. Note
that this bound is independent of k. There does appear to be a dependence on k

PERFECT PACKING THEOREMS 387

in the on-line case, but one can obtain Ok(n
1/2) behavior in a quite straightforward

manner. Simply keep a pool of 	k/2
 bin types, one each for each matching pair of
item sizes (i, k− i), 1 ≤ i ≤ k/2 and one for item size k/2 if k is even. When an item
of size i arrives, we look to see if there is a partially full bin of its type containing an
item of size k − i and if so, add the new item to the bin, filling it. Otherwise a new
bin of the given type is started. It is easy to show that this procedure has Ok(n

1/2)
expected waste.

The plan for the remaining papers in this series is as follows. Part II of the series
[7] proves the first fit (FF) results under U{k − 1, k}, and in so doing, the O(n2/3)
upper bound for U(0, 1]. Part III [3] will cover the results on FFD and BFD under
discrete distributions (both uniform and general). Parts IV [4] and V [5] will present
the results for best fit (BF) under U{j, k}, 1 < j ≤ k−2 and U{k−1, k}, respectively
(see also [15] which generalizes the results of [6, 4] for the case U{k − 2, k}).

The current paper is organized as follows. The proof of the perfect packing
theorem (Theorem 1) appears in section 2. In addition to being of independent
combinatorial interest, this result contributes to the proof of Theorem 2, which we
present in sections 3 and 4. In section 3, we describe a general result of Courcoubetis
and Weber [9] which implies that for any discrete item-size distribution, E[WOPT(Ln)]
must be one of Θ(n), Θ(n1/2), or O(1), and no matter which case applies, there is an
on-line algorithm A whose expected waste obeys the same bounds. Which case applies
depends on the existence of certain perfect packings, and here is where Theorem 1
comes in. The algorithms provided by [9] for U{j, k}, 1 < j ≤ k − 2, are randomized
algorithms, and in section 4 we present corresponding deterministic algorithms and
give the somewhat more difficult proof that they also have O(1) expected waste.
Theorem 3, this paper’s contribution to the theory of continuous distributions is
proved in section 5.

We conclude in section 6 with a brief discussion of the significance of Theorem 2
and possible extensions to it. As stated, the theorem provides algorithms that are
tailored to the particular distribution U{j, k} in question. We can, however, provide
a single algorithm A with running time bounded by a polynomial in n and k that
yields E[WA(Ln)] = Θ(1) for any such distribution, even if j and k are not known in
advance and have to be discovered on-line. We also discuss the possibility of extending
Theorem 2 to more general classes of discrete distributions and mention some more
recent developments. In particular, in [10, 11] a simple new deterministic on-line
algorithm is introduced that supersedes the algorithms presented in this paper, in that
it has O(1) expected waste for every discrete distribution that has E[WOPT(Ln)] =
O(1), and has a running time O(nk) for all U{j, k} distributions.

2. The perfect packing theorem. We begin our proof of Theorem 1 with
three lemmas that list a number of special instances that lead to perfect packing.
The first lemma takes care of the special case, r = 1.

Lemma 4. Suppose m, j, and k are positive integers such that j ≤ k and mk =
j(j + 1)/2. Then the set of j items, one each of sizes 1, . . . , j, perfectly packs into m
bins of size k.

Proof. The proof is by induction. Pick j and k and assume the theorem is true
for all pairs that are smaller in lexicographic order than (k, j). The theorem is clearly
true for k ≤ 2 or j ≤ 2, so assume k, j > 2.

If j > k/2 then we can start by perfectly packing bins with pairs of items (j −
i, k − j + i), 0 ≤ i < j − k/2, after which the remaining items are those of sizes
1, . . . , k − j − 1, plus the item of size k/2 if k is even. Since the sum of the sizes of

388 COFFMAN ET AL.

the items that have been packed at this point is a multiple of k, the sum of the sizes
of remaining items is also a multiple of k. If k is odd, the unpacked items are an
instance of (k, k − j − 1), with k − j − 1 < j and the induction hypothesis applies.
If k is even then k/2 divides j(j + 1)/2 and all remaining items are no larger than
k/2. Thus the items 1, . . . , k − j − 1 form an instance of (k/2, k − j − 1) and by the
induction hypothesis can be perfectly packed into bins of size k/2. These half-bins
and the item of size k/2 can then be combined into bins of size k.

Now suppose j ≤ k/2. If k is even then we have an instance of (k/2, j) and the
induction hypothesis applies. If k is odd, first note that k/2 ≥ j and j > 2 implies
k > j + 1, which together with mk = j(j + 1)/2 implies j > 2m. Thus we can
construct m pairs of items each of total size k′ = 2j− 2m+1 by combining j− i with
k′ − j + i, 0 ≤ i ≤ m − 1. If we place one pair in each of our m bins, we now have
m bins with gaps of size k − k′ = k − 2j + 2m − 1 and items of sizes 1, . . . , j − 2m.
Because mk = j(j + 1)/2, the sum of these item sizes must be m(k − k′), and so an
application of the induction hypothesis to the instance (k− k′, j− 2m) completes the
proof.

Lemma 5. Consider r > 1 sets, the ith of which consists of j items of consecutive
sizes, �i + 1, . . . , �i + j, for some �i ≥ 0. Suppose either (a) r is even or (b) j is odd.
Then these rj items perfectly pack into j bins of size equal to the sum of the average
item sizes in the r groups, i.e., r(j + 1)/2 +

∑r
i=1 �i.

Proof. The lemma will follow if we can show that for �i = 0, 1 ≤ i ≤ r, and bins
of size r(j + 1)/2 it is possible to pack perfectly the items into the j bins in such a
manner that each bin contains exactly one item from each of the r sets.

If r is even then we simply take two of the sets and pack the ith largest item
in one set with the ith smallest item in the other set, i.e., as the pair (i, j − i + 1),
i = 1, . . . , j. This fills j bins to level j + 1. By repeating this r/2 times we fill j bins
of size r(j + 1)/2.

If r and j are both odd then an extra step is required. The idea is first to pack
items in triples, one item from each of three sets, such that the sum of each triple is
the same. It is easiest to appreciate the construction by considering an example, say
j = 9. The triples, which each sum to 15, are given in the columns below.

1 2 3 4 5 6 7 8 9
6 7 8 9 1 2 3 4 5
8 6 4 2 9 7 5 3 1

In general, the triples are (i, i + (j + 1)/2, j + 1 − 2i), i = 1, . . . , (j − 1)/2, and
(i, i− (j − 1)/2, 2j − 2i+1), i = (j +1)/2, . . . , j. The result of packing these one per
bin is to fill all j bins to level 3(j + 1)/2. The number of remaining sets is even and
the remaining spaces in the j bins are equal. Thus, the procedure for case (a) can be
applied to complete the packing in each bin.

The following lemma provides part of the induction step used in the proof of
Theorem 1.

Lemma 6. Consider a quadruple (k, j, r,m) of positive integers such that k ≥ j
and mk = rj(j + 1)/2. Then there exists a perfect packing of r copies of 1, . . . , j
into m bins of size k if there exists a perfect packing for each lexicographically smaller
quadruple of this form, and if any one of the following holds:

(a) j ≥ k/2.
(b) r does not divide k.
(c) k or r is even.

PERFECT PACKING THEOREMS 389

(d) j ≤ (r − 1)k/2r.

Proof. First, using the arguments of Lemma 4, we demonstrate how to reduce the
problem to a smaller instance if (a) holds. If j ≥ k/2 and k is odd, then we can pack
bins with pairs (j− i, k− j + i), i = 0, . . . , j− (k+1)/2. The remaining items, which
are of sizes 1, . . . , k − j − 1, define the smaller instance (k, k − j − 1, r,m′), where
m′ = m−r(2j+1−k)/2. If j > k/2 and k is even, then we can pack bins in the same
way, i = 0, . . . , j − 1 − k/2. The remaining items, which are of sizes 1, . . . , k − j − 1
and k/2, can be packed into bins of size k/2, by the induction hypothesis that there
exists a perfect packing for (k/2, k − j − 1, r,m′), where m′ = 2m− r(2j − k).

If (b) holds then r and m must have a common factor p > 1 and the problem
reduces to the instance (k, j, r/p,m/p).

Now suppose neither (a) nor (b) holds but (c) does. If k is even then k/2 divides
rj(j + 1)/2. Since (a) doesn’t hold, j < k/2. Thus the problem reduces to a smaller
instance in which the bin size is k/2. If r is even, then since (b) does not hold, k is
divisible by r and so must be even too. Thus the same argument applies.

Finally, for case (d), assume that (a), (b), and (c) do not hold, i.e., j < k/2, r
divides k and k and r are both odd. Let r1 = (r+1)/2, k1 = kr1/r and r2 = (r−1)/2,
k2 = kr2/r. Note that r1+r2 = r and k1+k2 = k. The fact that r is odd implies that
r1 and r2 are integers. The fact that r divides k implies that k1 and k2 are integers,
with mk1 = r1j(j + 1)/2 and mk2 = r2j(j + 1)/2. Since by assumption j < k/2, we
have k1 ≥ j, and hence by hypothesis for the instance (k1, j, r1,m), we can pack r1

copies of 1, . . . , j into m bins of size k1. Similarly, if also j ≤ k2 then we can pack
r2 copies of 1, . . . , j into m bins of size k2. Since k1 + k2 = k we can combine pairs
of bins of sizes k1 and k2 into bins of size k. Thus there is a reduction to smaller
instances if j ≤ k2 = (r − 1)k/2r, i.e., if (d) holds.

Proof of the perfect packing theorem. Instances for which the theorem is to be
proved are described by the quadruples of Lemma 6. Notice that it would be enough
to specify the triple (k, j, r); however, it is helpful to mention m explicitly. The proof
of the theorem is by induction on (k, j, r) under lexicographical ordering. By Lemma 4
it is true for r = 1. Assume all quadruples that are smaller than (k, j, r,m) can be
perfectly packed and r > 1. We show there exists a perfect packing of r copies of
1, . . . , j into m bins of size k. By Lemma 6, we need only consider the case when
k and r are odd, r divides k and (r − 1)k/2r < j < k/2. Note that in this case
(r − 1)k/2r is an integer and k/2r is 0.5 more than an integer. We show below that
we can perfectly pack all the items of sizes from j + 1 − (r − 1)k/2r through j into
bins of size k. (Note that the lower bound on this range is greater than 1 because
of the above lower bound on j.) The theorem then follows because the remaining
items form a smaller quadruple, so by the induction hypothesis they can be perfectly
packed into bins of size k.

To follow the construction below, the reader may find it helpful to consider a
specific example. Consider the quadruple (k, j, r,m) = (165, 77, 5, 91). Note that k
and r are odd, r divides k, and j lies between (r − 1)k/2r = 66 and k/2 = 82.5. We
show below how to perfectly pack all items of sizes 12, . . . , 77. The remaining items
form the smaller quadruple (165, 11, 5, 2).

To pack all items of sizes from j+1−(r−1)k/2r through j, we divide the range of
item sizes into intervals, i.e., sets of consecutive integers. Each interval is symmetric
about a multiple of k/2r and has one of two lengths depending on whether the interval
is symmetric about an odd or even multiple of k/2r. To form the intervals, we first
take the largest interval that is symmetric about (r − 1)k/2r; this is the interval

390 COFFMAN ET AL.

[(r−1)k/r−j, j]. Note that this interval does not include (r−2)k/2r since j < k/2 =
rk/2r. Next we take the largest interval that can be formed from the remaining items
that is symmetric about (r−2)k/2r, obtaining the interval [j−k/r+1, (r−1)k/r−j−1].
Continuing in this fashion and taking intervals symmetric about further multiples of
k/2r, we end up with intervals of two kinds. First, there are (r − 1)/2 intervals
centered on even multiples of k/2r, with the interval centered on (r − 1 − 2i)k/2r
being [(r− 1− i)k/r− j, j − ik/r], where i ranges from 0 to (r− 3)/2. Second, there
are an equal number of interval centered on odd multiples of k/2r, with the interval
centered on (r− 2i)k/2r being [j− ik/r+1, (r− i)k/r− j− 1], where i ranges from 1
to (r − 1)/2. Note that the smallest endpoint is j − ik/r + 1 for i = (r − 1)/2, which
equals j + 1− (r − 1)k/2r as claimed above.

For the numerical example above, there are two intervals of each type. Intervals
of the first type are [22, 44] and [55, 77]; they are of length 23 and symmetric about 33
and 66. Intervals of the second type are [12, 21] and [45, 54]; they are of length 10 and
symmetric about 16.5 and 49.5. In general, intervals of the first type have odd length
2j − (r − 1)k/r + 1 and are symmetric about an even multiple of k/2r. Intervals of
the second type have even length k−2j−1 and are symmetric about an odd multiple
of k/2r. Our plan is to use Lemma 5 to perfectly pack into bins of size k those items
whose sizes lie in intervals of the same type.

We begin by considering all those intervals of the first type. These have odd
lengths and they are symmetric about points ik/r, i = 1, . . . , (r − 1)/2. There are
r items of each size in each of these intervals. Our strategy is to partition these
intervals into groups that satisfy the hypotheses of Lemma 5 (b). That is, we arrange
for the midpoints of the intervals within each group to sum to k. Since the midpoints
correspond to the average item sizes for the corresponding intervals, and the number
of items in the intervals is odd, Lemma 5 (b) implies that we can perfectly pack
the items in the intervals of each group. Constructing these groups is a bin packing
problem in which the midpoints of the intervals take on the role of item sizes. In what
follows we write ‘items’ in single quotes when speaking of the midpoints of intervals,
possibly normalized, and viewing them as items to be perfectly packed in bins of some
required size. In considering intervals of the first type, it is as though we had r ‘items’
of each of the sizes ik/r, i = 1, . . . , (r − 1)/2, and wished to pack them into bins of
size k. After a normalization that multiplies each item size by r/k, this is equivalent
to the problem of packing r ‘items’ of each of the sizes 1, . . . , (r − 1)/2 into bins
of size r. That is, we have a smaller version (k′, j′, r′,m′) of our packing problem,
with j′ = (r − 1)/2, k′ = r′ = r and m′ = r′j′(j′ + 1)/2k′. But by the induction
hypothesis this means that the desired packing can be achieved. In the example, it is
as though we had 5 ‘items’ of sizes 33 and 66 that are to be packed in bins of size 165.
Normalizing by a factor of 1/33, this is equivalent to the problem instance (5, 2, 5, 3).

We must now pack items whose sizes lie in intervals of the second type. These
intervals are of even length, symmetric about the points ik/2r, for i odd and i =
1, . . . , r − 2. Again, there are r items of each size in these intervals. As above, we
exhibit a reduction to a smaller perfect packing problem. After multiplying item sizes
by 2r/k the problem is equivalent to perfectly packing r copies of ‘items’ of sizes
1, 3, 5, . . . , r−2 into bins of size 2r. For the example, this is 5 copies of ‘items’ of sizes
1 and 3, to be perfectly packed into 2 bins of size 10. Unfortunately, if the sum of the
‘item’ sizes is an odd multiple of r the ‘items’ cannot be perfectly packed into bins of
size 2r. For this reason, and also because it is convenient to do so even when the sum
of the ‘item’ sizes is a multiple of 2r, we consider perfect packings into bins of sizes
r and 2r. Assume for the moment that r copies of ‘items’ of sizes 1, 3, 5, . . . , r − 2

PERFECT PACKING THEOREMS 391

can be perfectly packed into bins of sizes r and 2r. If they are packed entirely into
bins of size 2r, then the number of ‘items’ in each bin must be even (as all ‘item’
sizes are odd), and so Lemma 5 applies and implies that the original items can be
perfectly packed into bins of size k. On the other hand, suppose a bin of size r is
required. The set of ‘items’ that are packed into a bin of size r corresponds to a set
of intervals whose midpoints sum to k/2. Recall that the intervals are of even length.
We divide each such interval into its first half and its second half, obtaining twice as
many intervals, whose midpoints now sum to k. Now we can again use Lemma 5 to
construct the perfect packing.

The final step in the proof is to show that we can indeed perfectly pack r copies
of each of the item sizes 1, 3, 5, . . . , r − 2 into bins of sizes r and 2r. We shall use a
different packing depending upon whether r = 4α + 1 or r = 4α + 3.

For the case r = 4α + 1, the ‘items’ are perfectly packed by the following simple
procedure. We begin by packing one bin with (1, 1, r − 2), one bin with (2i + 1, 2i +
1, r−2i−2, r−2i), for each i = 1, . . . , α−1, and one bin with (2i−1, 2i+1, r−2i, r−2i),
for each i = 1, . . . , α, (noting that in the final case, when i = α, we get three ‘items’ of
size 2i+1 = r−2i). This packs four ‘items’ of each size larger than 1, and three ‘items’
of size 1. We can apply this packing α times, leaving us with one ‘item’ of each size
larger that 1 and α+1 ‘items’ of size 1. Then we pack one bin with (1, 2i− 1, r− 2i)
for each i = 1, . . . , α. This uses up all the remaining ‘items’ (where α + 1 items of
size 1 are used because there are two ‘items’ of size 1 when i = 1). For the numerical
example, in which α = 1, this construction says that we should pack 5 copies of 1
and 3 into bins of size 5 and 10 by first packing one bin with (1, 1, 3) and then one
bin with (1, 3, 3, 3). This leaves one ‘item’ of size 3 and two of size 1. These perfectly
pack into a bin of size 5.

When r = 4α + 3 the procedure is very similar to that above. We begin by
packing one bin with (1, 1, r − 2), one bin with (2i + 1, 2i + 1, r − 2i − 2, r − 2i), for
each i = 1, . . . , α, and one bin with (2i−1, 2i+1, r−2i, r−2i), for each i = 1, . . . , α.
As before, this packs four ‘items’ of each size larger than 1, and three ‘items’ of size 1.
We apply this packing α times, leaving us with three ‘items’ of each size larger than
1, and α+3 ‘items’ of size 1. Then we pack one bin with (2i− 1, 2i+1, r− 2i, r− 2i),
for each i = 1, . . . , α. This leaves us with α + 2 ‘items’ of size 1, two ‘items’ of size
2α + 1, and one ‘item’ of each other size. Finally, as before, we pack one bin with
(1, 2i− 1, r− 2i), for each i = 1, . . . , α+ 1, which uses up all remaining items.

3. Proof of Theorem 2 using randomized algorithms. Recall the theo-
rem statement: For any distribution U{j, k}, with 1 < j ≤ k − 2, there is an on-
line algorithm A with running time bounded by a polynomial in n and k, and with
E[WA(Ln)] = Θ(1). In this section we show that this is true if we are willing to
consider randomized algorithms.

We rely on the following general result of Courcoubetis and Weber [9]. Let �p =
(p1, . . . , pd) be a discrete distribution on the set S = {s1, . . . , sd}; pi is the probability
of item size si. Any packing of items with sizes from S into a bin of size k can be
viewed as a nonnegative integer vector �c = (c1, . . . , cd), where

∑d
i=1 cisi ≤ k. Of

particular interest are those vectors that give rise to a sum of exactly k, which we
shall call perfect packing configurations. For instance, if S = {1, 2, 3} and k = 7, one
such configuration would be (1, 0, 2). Let PS,k denote the set of all perfect packing
configurations for a given S and k. Let ΛS,k be the convex cone in R

d spanned by all
nonnegative linear combinations of configurations in PS,k.

392 COFFMAN ET AL.

Theorem (Courcoubetis and Weber [9]).

(a) If �p lies in the interior of ΛS,k, then there is a polynomial-time randomized
on-line bin packing algorithm A with E[WA(Ln)] = O(1).

(b) If �p lies on the boundary of ΛS,k, then E[WOPT (Ln)] = Θ(n1/2) and there
is a polynomial-time randomized on-line bin packing algorithm A with E[WA(Ln)] =
Θ(n1/2).

(c) If �p lies outside of ΛS,k, then E[WOPT (Ln)] = Θ(n).

Case (a) is the relevant one here. Case (b) holds for the distributions U{k−1, k},
but we already have shown in the introduction how the conclusion of (b) can be proved
by more direct means for those distributions. We explain below how the algorithm
implicit in case (a) works, but first we use that case to prove the version of Theorem 2
involving randomized algorithms. In general it is NP-hard to determine which of the
three cases applies to a given distribution (as can be proved by a straightforward
transformation from the PARTITION problem [14]). However, for the distributions
U{j, k} we can use the following lemma, which we shall prove using the perfect packing
theorem.

Lemma 7. For each i, j, k with i ≤ j < k − 1, there exist positive integers
ri, si,mi < 2k2 such that the set of rij + si items consisting of ri + si items of size i
together with ri items of each of the other j − 1 sizes can be packed perfectly into mi
bins of size k.

Note that this lemma implies that the j-dimensional vector ē = (1, 1, . . . , 1) is
strictly inside the appropriate cone when S = {1, 2, . . . , j}, j < k − 1. This is be-
cause ē is in the interior of the cone spanned by vectors of the form (ri, . . . , ri, ri +
si, ri, . . . , ri), i = 1, . . . , j, and those vectors are sums of perfect packing config-
urations by Lemma 7. The proof of Theorem 2 thus follows from case (a) of the
Courcoubetis and Weber theorem.

Proof of Lemma 7. We make use of the perfect packing theorem. There are two
cases. If k ≥ i + j, we simply set ri = k − i and si = mi = j(j + 1)/2. Note
that the total size of ri items each of the sizes 1, . . . , j equals rij(j + 1)/2, so by the
perfect packing theorem, we can perfectly pack them into j(j+1)/2 = mi bins of size
ri = k− i. The remaining si = mi items of size i can then go one per bin to fill these
bins up to size precisely k.

On the other hand, suppose k < i + j. Now things are a bit more complicated.
We have ri = 2(k − i), si = (k − j)(k − j − 1), and mi = si + ri(2j − k + 1)/2. By
the perfect packing theorem ri items each of the sizes 1, . . . , k − j − 1 perfectly pack
in si bins of size k − i. (Such items exist because by assumption j < k − 1.) We
then add the additional si items of size i to these bins, one per bin, to bring each
bin up to size k. There remain ri items each of sizes k − j through j, for a total of
ri(j−(k−j−1)) = 2(mi−si) items. These can be used to completely fill the remaining
mi− si bins with pairs of items of sizes (j, k− j), (j−1, k− j+1), . . . , (k/2
, �k/2�).
Note that if k is even, the last bin type contains two items of size k/2, but we have an
even number of such items by our choice of ri = 2(k− i), so this presents no difficulty.

It is easy to verify that in both cases the values of ri, si,mi are all less than
2k2.

We now describe how the algorithms implicit in the Courcoubetis and Weber
theorem [9] work for our distributions. Each bin can be labeled with a “type” that
specifies the configuration of items it contains. Given a distribution U{j, k}, we choose
a set of perfect packing configurations {�cq : 1 ≤ q ≤ Q} that spans a cone having
(1, 1, . . . , 1) in its interior, say those configurations generated in the proof of Lemma 7.

PERFECT PACKING THEOREMS 393

Let cq,i denote the number of items of size i used in configuration �cq. (Note that by

the lemma, we may assume that Q ≤ ∑j
i=1 mi < 2jk2 = O(k3).) We imagine that

there is a separate packing facility for each configuration �cq, and that each arriving
item is routed to one such packing facility, where it finds space in a partially full bin
of that type or starts a new bin of that type. Let eq,i denote the number of different
item sizes amongst those used in �cq for which there are presently fewer spaces at
facility q than there are for item size i. Note that eq,i = 0 for i such that cq,i = 0.
The routing probabilities are determined by finding an ε > 0 such that the following
linear program has a feasible solution:

Q∑
q=1

αq(cq,i + εeq,i) = 1/j, i = 1, . . . , j.

αq > 0, 1 ≤ q ≤ Q.

Such an ε exists because (1, 1, . . . , 1) is in the interior of the cone spanned by the cq’s;
a precise value for ε can be computed directly from the distance of (1, 1, . . . , 1) from
the boundary of the cone, which itself can be derived from the proof of Lemma 7.
Moreover, it is not difficult to see that this distance is such that the number of bits of
precision needed to describe ε is O(log k). Thus the linear program can be constructed
and solved in time polynomial in k, or in constant time for fixed k.

When an item of size i is to be packed, it is randomly routed for packing at facility
q with probability

αq(cq,i + εeq,i)/(1/j).

The impact of this construction is to ensure that facility q receives items of size i at
a faster rate than items of size i′ whenever there are more spaces for items of size i
than i′ in partially full bins of type q. For the details of why this suffices, see [9].

4. A deterministic algorithm. The algorithm described at the end of the pre-
vious section is randomized but relatively straightforward. Our deterministic algo-
rithm is a bit more complicated and works on slightly different principles. (Designing
a new algorithm from scratch turns out to be easier than attempting to derandomize
the above algorithm directly.) We shall use the following consequence of Lemma 7.

Lemma 8. For each i, j, k with i ≤ j < k − 1, there exist positive integers
r′i, s

′
i,m

′
i < 4k5, with s′i ≤ r′i, such that the set of r′ij − s′i items consisting of r

′
i − s′i

items of size i together with r′i items of each of the j − 1 other sizes can be packed
perfectly into m′

i bins of size k.
Proof. Let ri, si,mi > 0 be as given in the conclusion of Lemma 7. This means

that for 1 ≤ i ≤ j, the set Ri consisting of ri items each of sizes 1, 2, . . . , j together
with an additional si items of size i can be packed perfectly into mi bins. Note that
by the proof of Lemma 7, we may assume that si = (k− j)(k− j− 1) if i > k− j and
otherwise si = j(j + 1)/2. Denote the first quantity by s and the second by s.

First let us suppose j ≤ k/2, in which case there is no i for which i > k − j. We
can thus construct the set desired for i, j, k by merging together one copy each of the
sets Rh for all h, 1 ≤ h ≤ j except i. This set has the parameters r′i =

∑
q �=i rh + s

and s′i = s, and packs perfectly into m′
i =

∑
q �=imh bins by Lemma 7.

The situation is a bit more complicated if j > k/2 and si can take on both values
s and s. Now we construct our desired set by merging together s copies of each Rh,

394 COFFMAN ET AL.

1 ≤ h ≤ k − j, with s copies of each Rh, k − j < h ≤ j, and then deleting one
copy of Ri. This set has the parameters r′i =

∑k−j
h=1 rhs +

∑j
h=k−j+1 rhs + ss − ri

and s′i = s or s depending on whether or not i ≤ k − j. It packs perfectly into

m′
i =

∑k−j
h=1 mhs +

∑j
h=k−j+1 mhs−mi bins by Lemma 7.

The fact that in both cases r′i, s
′
i,m

′
i < 4k5 can be derived from the above argu-

ments and the proof of Lemma 7.
We now begin the description of our deterministic algorithm for U{j, k}. As in

the randomized algorithm of the previous section, we shall build our packing based
on the fixed set of Q < 2k3 perfect packing configurations {�cq : q = 1, . . . , Q} derived
from Lemma 7 for j and k. (Note that these are the only bin configurations needed in
the proof of Lemma 8, since that proof constructs its packings based on the packings
of Lemma 7.) Every time we start a new bin in our packing, we permanently assign
one of these configurations to it, as in the previous algorithm. The bin remains open
until it is completely packed in the manner required by its assigned configuration.
During certain phases of the algorithm we may also open some empty bins and assign
them configurations, with the bins losing those assignments (and open status) if they
remain empty at the end of the phase.

If �c = (c1, c2, . . . , cj) is one of our perfect packing configurations, let (c1 : a1, c2 :
a2, . . . , cj : aj) be a labeled configuration denoting a bin with configuration �c that
contains ai ≤ ci items of size i, 1 ≤ i ≤ j. As far as the packing process is concerned,
the “state” of the system can at any time be described by giving the current number
of open bins of each possible labeled configuration.

Let In be the state after the nth item has been packed; I0 denotes the empty
state in which there are no partially packed bins. We define two functions of In that
are of use in the description and subsequent analysis of our algorithm. Suppose there
are xi as-yet-unfilled spaces for items of size i in the open bins. Let X(In) =

∑j
i=1 xi

denote the total number of items that are required to complete the packing of the
open bins of state In. Let T (In) = j

∑j
i=1 r

′
i�xi/s′i�, where r′i and s′i are the numbers

given in Lemma 8. Note that by Lemma 8, we can assign configurations to additional
(empty) bins in such a manner that if there were exactly T (In)/j items of each of
the sizes 1, . . . , j to be packed then these could be used to perfectly pack these newly
configured empty bins, with s′i�xi/s′i� items of size i left over, 1 ≤ i ≤ j: For each i
we would use (r′i − s′i)�xi/s′i� items of size i and r′i�xi/s′i� items of each of the other
sizes to perfectly pack m′

i�xi/s′i� empty bins. The s′i�xi/s′i� surplus items of size i
could be used to fill all but ui = xi − s′i�xi/s′i� of the spaces for items of size i that
already existed in our packing of the first n items. Note that 0 ≤ ui < s′i. Let
Rmin = min{r′i/s′i : 1 ≤ i ≤ j}, and note that Rmin ≥ 1 since by Lemma 8, s′i ≤ r′i
for all i. It is easy to see that by definition of T (In),

jRminX(In)− j

j∑
i=1

r′i ≤ T (In) < 4k6X(In).(4.1)

The algorithm proceeds in phases, depending on the value of X(In) at the end
of the previous phase. The final state of one phase will also be viewed as the initial
state of the following phase. We denote the indices of the final states of the phases
by nh, h ≥ 0, with n0 = 0. The sequence of nh’s is defined inductively as follows.
Suppose there are more than nh items so the current phase is not the last.

If X(Inh) < L, where L is specified below, we take nh+1 = nh + 1, that is, the
next phase involves only the packing of the next item. This item is placed in the

PERFECT PACKING THEOREMS 395

first bin in the list having a space for it or, if necessary, a new bin. For the purpose
of defining “first,” we assume the open bins are ordered lexicographically according
to their labeled configuration, with ties broken according to the order in which the
bins were opened. (Any definition of “lexicographic” will do, although presumably
we would want all the empty labeled configurations to come after all the partially full
ones.) When no open bin has space for the item, the new bin where it is placed is
assigned the lexicographically first configuration that includes an item of the given
size.

If, on the other hand, X(Inh) ≥ L then nh+1 = nh+T (Inh). The phase proceeds
as follows: Initially, a set of m ≡∑im′

i�xi/s′i� < 2k5X(Inh) empty bins are opened
with configurations assigned in the manner described above. Thereafter, as each item
arrives during the phase, it is packed in the first bin that has a space for an item of
that size, with “first” defined as above. If during the phase we encounter more than
ui+T (Inh)/j items of some size i then it is necessary to open additional bins for items
of size i. Each time such an item arrives, the new bin is assigned the lexicographically
first configuration that includes items of size i. The phase terminates after T (Inh)
items have been packed or after the last item has been packed, whichever comes first.
At the end of the phase, any still-empty bin that has a configuration assigned to it is
stripped of that assignment and returned to the pool of unopened empty bins.

This completes our description of the algorithm (except for specifying the constant
L, which we shall do below). We now begin our analysis. Our first goal is to show
that X and X2 are well behaved. Lemma 9 bounds the expected change in these
functions during a phase.

Lemma 9. For all h ≥ 0,

X(Inh+1
) ≤ X(Inh) + k − 1 if X(Inh) < L(4.2)

E
[
X(Inh+1

)2|X(Inh)
] ≤ 100k18X(Inh) if X(Inh) ≥ L.(4.3)

Proof. When X(Inh) < L the phase lasts for the packing of a single item. In the
worst case, this item starts a new bin. Since no configuration can contain more than
k items, this means that X(Inh+1

) has at most k − 1 more items, so (4.2) holds.

Now assume X(Inh) ≥ L, in which case the phase lasts for T ≡ T (Inh) ≤
4k6X(Inh) items by (4.1). The number Ni of items of size i amongst the T items that
are packed during this interval has a binomial distribution with mean T/j and vari-
ance (T/j)(1 − 1/j). If these T items contained exactly T/j items of each size then,
using the scheme described above, we would have X(Inh+1

) =
∑
i ui. Any shortfall or

surplus of Ni over T/j can produce at most |Ni−T/j| extra partially full bins. Since
by Lemma 8, ui < s′i < 4k5, 1 ≤ i ≤ j,

X(Inh+1
) ≤

j∑
i=1

(ui + (k − 1)|Ni − T/j|) < 4jk5 + k
∑
i

|Ni − T/j| .

Squaring the above, taking expected values, and using (4.1), knowledge of the mean

396 COFFMAN ET AL.

and variance of Nj , and Cauchy–Schwarz inequalities, we derive (4.3) from

E[X(Inh+1
)2] < 16k12 + 8k7E

[∑
i

|Ni − T/j|
]

+ k2E

(∑
i

|Ni − T/j|
)2

≤ 16k12 + 8k7
∑
i

√
E(Ni − T/j)2 + k2E

[
j
∑
i

|Ni − T/j|2
]

≤ 16k12 + 8k7j
√

(T/j)(1− 1/j) + k2j2(T/j)(1− 1/j)

≤ 16k12 + 8k7.5
√
T + k3T

< 25k12T

≤ 100k18X(Inh) .

The analysis which follows begins by considering the Markov chain {Inh}, re-
stricted to the set of states Z reachable from the empty state z = φ by a sequence of
phases of the algorithm — note that in the chain {Inh} a step corresponds to an entire
phase of the algorithm. It is easily verified that {Inh} restricted to Z is irreducible,
since any state can eventually be converted to φ by an arrival sequence having positive
probability. We may also assume {Inh} is aperiodic. To ensure this, we need only to
augment the set {�cq : q = 1, . . . , Q} of perfect packing configurations used by our
algorithm to include the following two configurations, assuming they are not already
present: (a) the configuration consisting of k items of size 1 and (b) the configuration
consisting of one size-2 item and k − 2 items of size 1. (The latter configuration is
possible since we are already assuming that j > 1.) Now whenever we are in empty
state φ there will be ways of returning to it in either k or k−1 steps, depending on the
next items to arrive. This will prevent φ and every other state from being periodic.

Let P
(t)
y (z) be the t-step transition probability from state y to state z. We have

the following convergence result.
Lemma 10. For any j, k, and L ≥ 200k18, Pφ(z) converges to a stationary

distribution {π(z)} geometrically quickly in the X2 norm, i.e., there exists constants
K > 0 and ρ > 1 such that for all x ∈ Z,∣∣∣∣∣

∑
z∈Z

X(z)2P (h)
x (z)−

∑
z∈Z

X(z)2π(z)

∣∣∣∣∣ ≤ Kρ−h, h ≥ 1.(4.4)

Proof. We use the following result on geometric ergodicity, a specialization of
Theorem 15.0.1 of [18] to countable chains, which uses the function 1C(x) = 1 if
x ∈ C and 0 otherwise.

Theorem (Meyn and Tweedie [18]). Suppose {Φk} is an irreducible, aperiodic

Markov chain on a countable state space Z, and let P
(t)
y (z) be the t-step transition

probability from state y to state z for {Φk}. If there is a function V : Z → [1,∞),
constants b < ∞, β > 0, and a finite subset C ⊂ Z such that for all x ∈ Z,∑

z∈Z
Px(z)V (z) ≤ (1− β)V (x) + b1C(x),

then P
(h)
φ (z) converges to a stationary distribution π(z) geometrically quickly in the

V norm in the sense that there exist constants K > 0, ρ > 1 such that for all x ∈ Z,

sup
|f |≤V

∣∣∣∣∣
∑
z∈Z

f(z)P (h)
x (z)−

∑
z∈Z

f(z)π(z)

∣∣∣∣∣ ≤ Kρ−h.

PERFECT PACKING THEOREMS 397

To apply the theorem, suppose L ≥ 200k18. Then by (4.2) and (4.3)

(4.5)

X(Inh+1
)2 ≤ (1/2)X(Inh)

2 + (1/2)L2 + 2(k − 1)L + (k − 1)2 if X(Inh) < L,

(4.6)

E[X(Inh+1
)2|X(Inh)] ≤ 100k18(X(Inh)/L)X(Inh) ≤ (1/2)X(Inh)

2 if X(Inh) ≥ L.

Let V (z) = X(z)2 for all z ∈ Z except φ, for which we take V (φ) = 1, and let
C = {z : X(z) < L}. By (4.5)–(4.6) we can then take β = 1/2 and b = L2/2 + 2(k −
1)L + (k − 1)2.

Now note that if we needed only to prove that the expected waste of our algorithm
was bounded at the times nh at which phases end, we would be done. This is because
the waste in any state z is bounded by X(z) (and so by X(z)2) and Lemma 10 tells
us that the Markov chain that considers only the states at the ends of phases has an
equilibrium distribution and that the expected value of X(z)2 under that equilibrium
distribution (i.e.,

∑
z∈Z X(z)2π(z)) is a finite constant; moreover, E[X(Inh)

2] con-
verges geometrically to this constant. Unfortunately, we need to prove that E[X(In)]
is bounded by a fixed constant for all sufficiently large n, not just those n at which
phases end, and this latter result is not implied by Lemma 10. So further argument
is needed.

Let us now construct a Markov chain that changes state after each item is packed,
not after each phase. Note that {In} is not Markov since we need to retain more
information in a state than simply the current packing state, given that the number
of steps to the end of a phase depends not only on the current packing state but also
on the packing state that existed at the beginning of the phase and the number of
steps taken since then. For a given beginning-of-phase state z ∈ Z, let t(z) denote
the length of the phase beginning at z. That is, t(z) = 1 if X(z) < L and t(z) = T (z)
otherwise. The set of states of our Markov chain, which we denote by {I ′n}, is Z ∪W ,
where

W =
{
w(z, ξ, i) : z ∈ Z, ξ ∈ {1, 2, . . . , j}t(z), 1 ≤ i < t(z)

}
.

The state w(z, ξ, i) corresponds to the packing state (the ordered set of partially empty
and empty bins to which configurations have been assigned) that would be obtained
from z after the beginning-of-phase assignment of configurations to empty bins has
been made and after items of sizes ξ1, ξ2, . . . , ξi have been packed (in that order),
where ξ = (ξ1, ξ2, . . . , ξt(z)). The norm X(w(z, ξ, i)) is simply the number of empty
slots in this derived set of bins.

The transition function p for {I ′n} is defined as follows: For states z ∈ Z,
pz(w(z′, ξ, i)) is nonzero only if z′ = z and i = 1, with all jt(z) such states being
equally likely. We have pw(z,ξ,i)(w(z, ξ, i + 1)) = 1 for states w(z, ξ, i) ∈ W with
i < t(z) − 1, and 0 for all other states, i.e., the transition is deterministic. Finally,
the transition from w(z, ξ, t(z) − 1) is also deterministic, with the state to which the
transition is made being the state z′ ∈ Z that would result from the phase starting
at z if the t(z) items to arrive had the sizes and order specified by ξ. Note that {I ′n}
inherits from {Inh} the properties of being irreducible and aperiodic.

Lemma 11. Let π be the equilibrium distribution for {Inh}, and let Eπ[t] denote
the expected value of t(z) under π, i.e.,

∑
z∈Z π(z)t(z). Then {I ′n} has an equilibrium

398 COFFMAN ET AL.

distribution π′ where

π′(z) =
π(z)

Eπ[t]
, z ∈ Z,

π′ (w(z, ξ, i)) =
π(z)

jt(z)Eπ[t]
, z ∈ Z, ξ ∈ {1, 2, . . . , j}t(z), 1 ≤ i < t(z).

Proof. Note that Eπ[t] is a well-defined constant, since Eπ[X] ≡∑z∈Z π(z)X(z)
is bounded by Lemma 10, and t(z) ≤ 4k6X(z) by (4.1). Thus π′ is well defined. To
prove Lemma 11 we use a standard result from [12, p. 393].

Theorem (Feller [12]). Suppose we are given an aperiodic, irreducible Markov
chain on a countable state space S with transition function p, and there exists a
function µ : S → [0, 1] such that (a)

∑
s∈S µ(s) = 1 and (b) for all states s′ ∈ S,

µ(s′) =
∑
s∈S µ(s)ps(s

′). If we let sn denote the state after n steps, then we have for
all states s, s′ ∈ S,

lim
n→∞P [sn = s′|s0 = s] = µ(s′).

Given this theorem, we prove Lemma 11 by showing that (a) and (b) hold for π′.
For (a), we have

∑
z∈Z

π′(z) +
∑
w∈W

π′(w) =

∑
z∈Z π(z)

Eπ[t]
+
∑
z∈Z

t(z)−1∑
i=1

∑
ξ∈{1,2,... ,j}t(z)

π(z)

jt(z)Eπ[t]

=
∑
z∈Z

π(z)

Eπ[t]
+
∑
z∈Z

π(z)(t(z)− 1)

Eπ[t]

=
∑
z∈Z

π(z)t(z)

Eπ[t]
= 1.

Property (b) holds for all states w(z, ξ, i) ∈ W by design, and for states z ∈ Z by
the fact that π is the equilibrium distribution for {Inh}. Thus the above theorem of
Feller applies and the proof of Lemma 11 is complete.

There are now only two more steps to completing a proof that our deterministic
algorithm has bounded expected waste. We must simply verify the following two
claims:

Eπ′ [X] ≡
∑

x∈Z∪W
π′(x)X(x) < ∞,(4.7)

lim
n→∞

∑
x∈Z∪W

P [I ′n = x] ·X(x) = Eπ′ [X].(4.8)

Claim (4.8) follows from (4.7) and Theorem 14.0.1 of [18], which when specialized
to countable chains goes as follows.

Theorem (Meyn and Tweedie [18]). Suppose {Φk} is an irreducible, aperiodic
Markov chain on a countable state space Z having equilibrium distribution π. Let πn
be the distribution of states at step n for some fixed initial configuration, and suppose
f : Z → [0,∞]. Then if Eπ[f(z)] < ∞, we have

lim
n→∞Eπn [f(z)] = Eπ[f(z)].

PERFECT PACKING THEOREMS 399

For (4.7) we first need to bound X(x) for x ∈ W . Since X(x) can increase by no
more than k − 1 each time an item is packed, we conclude by (4.1) that

X(w(z, ξ, i)) ≤ X(z) + (k − 1)t(z) < 4k7X(z).(4.9)

Thus

∑
x∈Z∪W

π′(x)X(x) ≤
∑
z∈Z

π(z)X(z)

Eπ[t]
+
∑
z∈Z

t(z)−1∑
i=1

∑
ξ∈{1,2,... ,j}t(z)

π(z)X(w(z, ξ, i))

jt(z)Eπ[t]

≤ 1

Eπ[t]

∑
z∈Z

π(z)t(z)4k7X(z)

≤ 1

Eπ[t]

∑
z∈Z

π(z)16k13X(z)2 =
16k13

Eπ[t]

∑
z∈Z

π(z)X(z)2.

Lemma 10 says that
∑
z∈Z π(z)X(z)2 is bounded. Hence (4.7) holds.

5. Proof of Theorem 3. Recall the theorem statement: If Ln has item sizes
generated according to U(0, u] for 0 < u < 1, and A is any on-line algorithm, then
there exists a constant c > 0 such that E[WA(Ln)] > cn1/2 for infinitely many n.

Proof. Let w(t) denote the amount of empty space in partially filled bins after t
items have been packed. We show that for any n > 0 the expected value of the average
of w(1), . . . , w(n) is Ω(n1/2u3). This implies that E[w(n)] must be Ω(n1/2u3), i.e.,
not o(n1/2).

Consider packing item at+1. Let υ(t) denote the number of nonempty bins that
have a gap of at least u2/8 after the first t items have been packed. There are at most
υ(t) bins into which one can put an item larger than u2/8. Therefore, if at+1 is to
leave a gap of less than δ in its bin, either it must have size less than u2/8 or its size
must be within δ of the empty space in one of these υ(t) bins with gaps larger than
u2/8. The probability of this is at most [u2/8+δυ(t)]/u. By choosing δ = u2n−1/2/8,
conditioning on whether υ(t) is greater or less than n1/2 and noting that the size of
at+1 is distributed as U(0, u] independent of υ(t), we have

P (at+1 leaves gap < δ) ≤ P (υ(t) ≥ n1/2) + u/4.

Now

E[w(t)] ≥ δ
∑t−1
s=0 P (as+1 is last in a bin and leaves gap ≥ δ)

= δ
∑t−1
s=0[P (as+1 is last in a bin)

− P (as+1 is last in a bin and leaves gap < δ)]

≥ δ
∑t−1
s=0[P (as+1 is last in a bin)− P (as+1 leaves gap < δ)]

≥ δ
∑t−1
s=0

[
P (as+1 is last in a bin)−∑t−1

s=0 P (υ(s) ≥ n1/2)−∑t−1
s=0 u/4

]
.

Let St be the sum of the first t item sizes and note that St is a lower bound on
the number of bins and hence on the number of items that are the last item in a bin.
We thus have

E

[
t−1∑
s=0

P (as+1 is last in a bin)

]
≥ E[St] = tu/2.

400 COFFMAN ET AL.

Using the fact that δ = u2n−1/2/8, we then have

E[w(t)] ≥ (u2n−1/2/8)

[
tu/4−

t−1∑
s=0

P (υ(s) ≥ n1/2)

]
.

If
∑n−1
s=0 P (υ(s) ≥ n1/2) ≤ nu/24, we have for all t ≥ n/2,

E[w(t]) ≥ (u2n−1/2/8)[nu/8− nu/24] = u3n1/2/96.

This implies

E

[
1

n

n∑
t=1

w(t)

]
≥ u3n1/2/192.

On the other hand, if
∑n−1
s=0 P (υ(s) ≥ n1/2) ≥ nu/24 then

E

[
1

n

n∑
t=1

w(t)

]
≥ 1

n

n∑
t=1

P (υ(t) ≥ n1/2)n1/2(u2/8)

≥ n1/2(u2/8)(u/24) = u3n1/2/192.

These imply that E[w(n)] is Ω(n1/2).
It should be noted that the above proof relies heavily on the fact that the distri-

bution is continuous, since this is the reason why the union of n1/2 intervals of size
δ cannot cover the full probability space. Our discrete distributions U{j, k} do not
have this failing and for this reason we can obtain significantly better average-case
behavior for them.

6. Concluding remarks. In this paper we have proved a combinatorial theorem
about perfect packings and used it to derive results about the expected behavior
of online bin packing algorithms under the discrete uniform distributions U{j, k},
1 < j ≤ k − 2, in which item sizes are restricted to the finite set {i/k : 1 ≤ i ≤ j},
each item size being equally likely. These results, which imply that for any such
distribution there exist on-line algorithms with bounded expected waste, contrast
distinctly with the result proved in section 5 about the corresponding continuous
uniform distributions U [0, j/k], for which expected waste must grow as n1/2. We
presented both randomized algorithms and deterministic ones, with the price for the
deterministic ones being an apparent increase in both running time and expected
waste. It should be noted, however, that in both cases the upper bounds we have
proved on expected waste are quite large, and even though more careful arguments
might enable us to lower the estimated bounds substantially, it is not clear that the
“constant” waste provided by our algorithms would in practice be better than the
slowly growing waste that other heuristics might provide, especially for large values
of k.

One additional weakness of our results as proved in sections 3 and 4 is that they
require a distinct algorithm for each j, k, rather than yielding a single algorithm that
works and provides bounded expected waste for all U{j, k}, 1 < j ≤ k − 2. It is not
difficult to see, however, that our underlying lemmas and their proofs can be used to
provide general on-line algorithms (both randomized and deterministic) with running
times of the form O(np(k)), where p(k) is a polynomial in k that bounds the time to

PERFECT PACKING THEOREMS 401

pack an individual item. The parameters k and j can either be given as part of the
input or, better yet, derived empirically by observing the first-arriving items.

Given j and k, the general algorithms determine the required set of perfect packing
configurations {�ch : 1 ≤ h ≤ H} by implementing the proof of Lemma 7. The required
values of ri, si,mi and (in the deterministic case) r′i, s

′
i,m

′
i can be determined using

the arguments in the proofs of that lemma and Lemma 8. It is then a simple exercise
in data structures (which we leave to the reader) to verify that the packing operations
for both the randomized and deterministic algorithms can be performed in worst-case
polynomial time (in k), independent of n.

Note, however, that these “generalized” algorithms are still quite limited, in that
they only know how to pack items generated according to the set of probability dis-
tributions U{j, k}. They may not even construct legal packings for other discrete
distributions, even though many such distributions also have on-line algorithms that
yield constant expected waste. This follows from the theorem of Courcoubetis and
Weber [9] cited in section 3, which relates the existence of such algorithms for a dis-
tribution �p to the existence of appropriate perfect packing configurations. Although
as we have remarked it is NP-complete to tell for an arbitrary distribution which
case of the Courcoubetis–Weber theorem applies, it is easy to construct individual
distributions other than the U{j, k} that satisfy the hypotheses of this theorem, and
it is likely that there are other general classes of interesting distributions for which the
needed perfect packing configurations can be proved to exist by appropriate analogues
of our perfect packing theorem. We leave the investigation of such questions to future
research.

One useful tool may be the recent result of [10, 11] that for discrete distributions
with integer item sizes one can determine which case of the Courcoubetis–Weber
theorem applies in pseudopolynomial time (time bounded by a polynomial in the
bin capacity B, rather than polynomial in logB as is required by the definition of
polynomial time). For the integer item size case, these references also show that com-
plicated algorithms such as those presented here will not be necessary when dealing
with distributions for which E[WOPT(Ln)] is sublinear. In [10] it is shown that a
simple deterministic O(nB)-time on-line variant on the Sum-of-Squares algorithm of
[11] has O(1) expected waste for all distributions with E[WOPT(Ln)] = O(1) and
Θ(

√
n) expected waste for all distributions with E[WOPT(Ln)] = Θ(

√
n).

Acknowledgment. We are grateful to a referee for many helpful comments,
including a major simplification to the proof of (4.7).

REFERENCES

[1] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, and L. A. McGeoch,
Some unexpected expected behavior results for bin packing, in Proceedings of the 16th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1984, pp. 279–288.

[2] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, L. A. McGeoch,
P. W. Shor, R. R. Weber, and M. Yannakakis, Fundamental discrepancies between
average-case analyses under discrete and continuous distributions, in Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, ACM, New York, 1991, pp. 230–
240.

[3] E. G. Coffman, Jr., D. S. Johnson, L. A. McGeoch, P. W. Shor, and R. R. Weber, Bin
Packing with Discrete Item Sizes, Part III: Average Case Behavior of FFD and BFD, in
preparation.

[4] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber, Bin Packing with Dis-
crete Item Sizes, Part IV: Markov Chains, Computer Proofs, and Average-Case Analysis
of Best Fit Bin Packing, in preparation.

402 COFFMAN ET AL.

[5] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber, Bin Packing with
Discrete Item Sizes, Part V: Tight Bounds on Best Fit, in preparation.

[6] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber, Markov chains, com-
puter proofs, and average-case analysis of best fit bin packing, in Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 412–421.

[7] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber, Bin packing with
discrete item sizes, part II: Tight bounds on first fit, Random Structures Algorithms, 10
(1997), pp. 69–101.

[8] E. G. Coffman, Jr., and G. S. Lueker, An Introduction to the Probabilistic Analysis of
Packing and Partitioning Algorithms, Wiley, New York, 1991.

[9] C. Courcoubetis and R. R. Weber, Stability of on-line bin packing with random arrivals
and long-run average constraints, Probab. Engrg. Inform. Sci., 4 (1990), pp. 447–460.

[10] J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin, P. W. Shor, and R. R. Weber, On the
sum-of-squares algorithm for bin packing, in Proceedings of the 32nd ACM Symposium on
Theory of Computing, ACM, New York, 2000, to appear.

[11] J. Csirik, D. S. Johnson, C. Kenyon, P. W. Shor, and R. R. Weber, A self organizing
bin packing heuristic, in Algorithm Engineering and Experimentation, M. Goodrich and
C. C. McGeoch, eds., Lecture Notes in Comput. Sci. 1619, Springer-Verlag, Berlin, 1999,
pp. 246–265.

[12] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3rd ed., Wiley,
New York, 1968.

[13] S. Floyd and R. M. Karp, FFD bin packing for item sizes with distributions on [0, 1/2],
Algorithmica, 6 (1991), pp. 222–240.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman, New York, 1979.

[15] C. Kenyon, Y. Rabani, and A. Sinclair, Biased random walks, Lyapunov functions, and
stochastic analysis of best fit bin packing, in Proceedings of the Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, Atlanta, GA, 1996, pp. 351–358.

[16] W. Knödel, A bin packing algorithm with complexity o(nlogn) in the stochastic limit, in
Proceedings of the 10th Symposium on Mathematical Foundations of Computer Science,
J. Gruska and M. Chytil, eds., Lecture Notes in Comput. Sci. 118, Springer-Verlag, Berlin,
1981, pp. 369–378.

[17] G. S. Lueker, An Average-Case Analysis of Bin Packing with Uniformly Distributed Item
Sizes, Tech. Report 181, Dept. of Information and Computer Science, University of Cali-
fornia, Irvine, CA, 1982.

[18] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag,
Berlin, 1993.

[19] P. W. Shor, The average case analysis of some on-line algorithms for bin packing, Combina-
torica, 6 (1986), pp. 179–200.

[20] P. W. Shor, How to pack better than Best Fit: Tight bounds for average-case on-line bin pack-
ing, in Proceedings of the 32nd Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 752–759.

