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Abstract. We consider the average case behavior of one-

dmensional bin paekmg algorithms in the case where bins have

unit capacity and item sizes are chosen according to the ‘ ‘dficrete

uniform” distribution U~; k), 1 s j < k, where each item size in
the set {llk,21k,..., ji k) has probability 1/j of beiig chosen.

Note that for fixed j,k the distributions U{?nj;mk]’ approach the

continuous distribution U(O, jlk] as m A W, where in U(O, jl k]
the item sizes are chosen uniformly horn the half-open interval
(O,jik]. In this paper, we show that average case behavior can

differ substantially under the two types of distributions. We show

that for all j, k, j < k-1, there exist on-line algorithms that have

constant expected waste under U~; k], whereas no on-line algo-

rithm can have less than C2(n1’2) waste under U(O, U] for any
u s 1. Conmariwise, although the First Fit Decreasing (off-line)
algorithm has constant expected waste under U(O, u] for all
u < 1/2, there are many combinations j,k with j < k/2 such that
First Fit Decreasing has t3(tI) expected waste under U(j;k). The
constant of proportionality is maxtilzed for j = 6 and k = 13, in

which case the expected waste k nl 624.

1. Introduction.

Suppose you are given items of sizes 1,2,3, . . . . j, one

of each size, and are asked to pack them into bins of capac-
ity k with as little wasted space as possible. For what val-

ues of j and k can you pack them perfectly (with no waste)?

Clearly the sum of the item sizes must be divisible by k, but

what other conditions must be satisfied?

Surprisingly, the divisibility constraint is not only nec-

essary, but suffices. Readers might want to try their hand at
proving this. Relatively short proofs exist, but a certain
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amount of ingenuity is required to find one. The exercise

can serve as a warm up for the following more general (and

more difficult to prove) theorem:

Theorem 1 (Perfect Packing Theorem). For positive

integers k, j, and r, with k 2 j, the list L of rj items, r each

of the sizes 1 through j, can be packed pe~ectly into bins of

size k if and only if the sum of the rj item sizes is a multiple

of k.

Our proof of this theorem is by induction. Using rela-

tively simple packing strategies, we first show that we may

assume that certain relations hold between j, k, and r (e.g., k

and r are odd, k(r – 1)/2r < j < k/2, and r < k). We then

perform a complicated analysis to reduce the remaining

possibilities for j,k,r to the conjunction of two subprob-

lems: (1) a “smaller” instance of the original problem in

which the new bin size k equals the old number of items r,

and (2) a directly solvable instance of a related problem in

which item sizes go up by 2 rather than one, and bins of

two different sizes must be filled. (Full details will appear

in the journal version of this paper.)

The question answered by Theorem 1 is more than just

an intriguing puzzle in pure combinatorics. Our motivation

to work on it came from its relevance to certain fundamen-

tal questions about the average-case analysis of algorithms.

Consider the standard bin packing problem, in which

one is given a list of items L = a 1,a2, ..0 ,a., where each

a i has a positive size s (a i ) <1, and is asked to find a pack-

ing of these items into a minimum number of unit-capacity

bins. Clearly we could recast Theorem 1 into this setting.
In most real-world applications of bin packing, as in Theo-

rem 1, the item sizes are drawn from some finite set. The

usual average-case analysis of bin packing heuristics, how-

ever, has assumed that item sizes are chosen according to

continuous probability distributions, which by their nature

allow an uncountable number of possible item sizes (e.g.,

see [3,4,7,9,12-14,16-21]). The assumption of a continu-

ous distribution has the advantage of sometimes simplify-

ing the analysis, and has been justified on the grounds that
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continuous distributions should serve as reasonable approx-

imations for discrete ones, It seems fair, however, to ask

whether this is actually true. For example, if we let LJ(O,UI
denote the continuous uniform distribution over the interval

(O,u] and U~;k] denote the “discrete uniform” distribu-

tion in which each value i/k, 1< i <j, is chosen with equal

probability 1/j, then the limit of the distributions

U(rnj; mk] as m + co is U(O,j/k]. Note, however, that

combinatorial questions such as those addressed by Theo-

rem 1 evaporate when one reaches the limit. This suggests

that something important (and interesting) may in fact be

lost in the transition from discrete to continuous.

In this paper, we shall show that it is not just combina-

torial questions that evaporate, but that fundamental aspects

of the average-case behavior of classical bin packing algo-

rithms are completely obscured by the continuous approxi-

mation.

For example, consider the following two results. If A is

an algorithm and L is a tist of items, let A(L) denote the

number of bins used when A is applied to L, and let s(L)

denote the sum of the item sizes in L (an obvious lower

bound on the optimal number of bins, since the bin size is

1). Then we have the following contrasting results:

Theorem 2. For all u < 1, ifL. is an n-item list with

item sizes drawn independently from U(O, u ] and A is any

on-line bin packing algorithm, then EIA(Lfl) – s(L. )] =

i2(n1’2).

Theorem 3. For any pair j,k with js k – 2, there is an

on-line algorithm A that packs the n-item list L., having

item sizes drawn independently from U{j;k}, so that

E[A(L.) – s(Lm)] = O(l).

In order to prove this, we borrow techniques from the

proof of Theorem 1 to show that the distribution U(j;k)

lies in the interior of a specified cone in “packing space,”

and then apply a geometric theorem of Courcoubetis and

Weber [5,6]. The nature of our construction ensures that

the running times of the algorithms are polynomial in both

n and k. Our proof techniques differ markedly from those

associated with the continuous case @st as the results do).

As a second example, let us consider the behavior of

the well-known First Fit Decreasing bin packing heuristic

(FFD). This is an off-line algorithm, and in the continuous

case can do better than the best possible on-line algorithms.

This would not seem to be possible for the distributions

U(j;k), in light of Theorem 3, but FFD’s generality, sim-

plicity, and robustness still make it worthy of study.

FFD works as follows: We begin by sorting the items

into decreasing order, so that s(a 1) 2 s (a z ) 2 . . . . (This

is the operation that requires off-line processing.) We then

apply the “FIRST FIT” packing rule, in which the ftrst
item is placed in the first bin, and thereafkr each item in

turn is placed in the lowest indexed (i.e., first) bin that still

has room enough for it. It was proved in [3] that for

u < 1/2 in the continuous cay+ the “expected waste”

E[FFD(Ln) – s(Ln)] = O(1) (the same botmd as in The-

orem 3 for the discrete case, and significantly better than

the lower bound of Q(n 1’2) for on-line algorithms under

the continuous uniform distribution). For 1/2 < u <1,

FFD still beats the on-line lower bound, but not by quite as

much: the expected waste grows as @(n 1’3). When we

turn to discrete uniform distributions, the behavior of FFD

becomes significantly more erratic. A ftrst result is the fol-
lowing:

Theorem 4. (a) For any pair j,k, j < k, ifL. is the n-

item list with sizes drawn independently from U{j; k], then

E[FFD(Lm)–s(Ln)] is either O(l), @(nl’2), or O(n).

(b) Waste @(n 1’2) occurs whenever j ~ {k- 1,k], and

wastes 0(1 ) and @(n) both occur for specific pairs j,k

with jlk < 1/2 and with jlk > 1/2, and with j arbitrarily

large.

‘l%e patterns of j,k values for which rates O(1) and

@(n) occur are not at all straightforward. See Figure 1,

which covers all pairs ( j,k) with j c k/2 and k <500, with

a dot placed at point ( j,k) if the expected waste under

U~;k) is El(n). We have omitted pairs with

k – 22 j 2 k12 since for each such pair the growth rate is

the same as that for the pair (k – j– 1,k) to within a con-

stant factor. All the unmarked pairs yield O(1) expected

waste. The growth rate @(n 1‘2) does not occur for any pair

j,k with k S 1,000 and js k – 2, and in fact is not known to

hold for any pair with j < k – 2. Our prcof techniques do

not rule this out, however, and they do show that the

expected waste is @(n 1’2) whenj G {k-l, k}.

The first pair with linear expected waste is (6,13), in

which case the precise asymptotic growth rate is n/624.

Observe in Figure 1 that for a given fixed k, the values of j

that yield linear waste are often broken up into separate

intervals. The maximum number of separate intervals in

this figure is 5 (at k = 151), but 2 is a more typical number.

For a significant numker of k’s, the minimum vahte of j that

yields linear waste is about k/3; less frequent but similar

trends occur along the lines j = k14 and j = k/5.

Our proof of Theom?m 4 does not yield any closed-form
formula that might help to explain these behaviors, but it

does provide us with a computational procedure that, given

j,k, determines which of the three options applies and, in
the case of @(n) waste, computes the constant of propor-

tionality. The basic idea is to use a different sort of contin-

uous approximation. Instead of letting the item sizes range

continuously over (O, 1], we let the numbers of items be

continuous quantities in that range, viewing the items as

part of an infinitely divisible fluid rather than as discrete

units. We then algorithmicatty pack this fluid (starting with

equal amounts for each item size) into appropriately frac-
tional numbers of bins. The “answer” for a particular pair

j,k depends on how the fluid for items of size 1/k ends up

being packed. (To prove this latter claim, we combinatori-
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FIGURE1. Values ofj,k, j < ks 500, for which expected waste is ~(n) under U~; k}.

ally bound the effects of departures from the “perfectly

uniform” sample in which all items occur the same number

of times.)

When the fluid algorithm reports that the waste for a

given pairj,k grows linearly, we can determine the constant

of proportionrdity by looking more closely at the ‘ ‘frac-

tional” packing produced. This only gives us one data

point, however, and one might reasonably be interested in

more global questions. For instance, how bad cart the lin-

ear growth rate for waste be under a discrete uniform distri-

bution? We address this latter question by analyzing the

performance of the fluid algorithm from a worst-case point

of view. The analysis only becomes tractable for large k, so

we augment it by actual runs of the fluid algorithm for all

pairsj,k with k <1,000, obtaining the following results.

Theorem 5. (a) For all pairs j,k with k > j >1, the

expected waste for FFD when item sizes are drawn accord-

ing to U{j;k} is no more than 0.00614 n/k1J2.

(b) The worst possible growth rate for expected waste

of FFD over all pairs j,k is n1624 = (.00160... ) n, the rate

attained by the pair (6,13).

The actual constants revealed by this theorem suggest

that the “linear waste” that IWD can create under these

distributions may not, after all, be such a dire consequence.
If one normalizes by the number of bins used, computing

the expected ratio FFD (L. ) /s (L. ), one gets larger, but
still quite manageable constants. The worst possible value
for this expected ratio is 1.00595..., again attained by the

pair (6,13).

FFD is, as we have said, an off-line algorithm, and so

may not be applicable in all situations. In this paper we

also consider the expected behavior under discrete uniform

distributions of such standard on-line algorithms as FIRST

FIT (FF) and BEST FIT (BF). (BF differs from the

)

already-described FF in that when we pack a i, we consider

not just the first bin that has room for it, but all bins with

room, cheosing the one into which ai will fit with the least

room left over.)

In the continuous case, the most extensive studies of

on-line algorithms have been under the U(O, 1] distribu-

tion. For instance, it has been shown that any on-line rdgo-

nthm must have Q((nlog n) 1‘2) expected waste under

LJ(O, 1], that the expected waste for BF is @(n l/210g3/4n),

and that the expected waste for FF is L?(n’3 ). Once again,

different results hold for the analogous discrete uniform

distributions, in this case i!l~;k] for j c {k – 1,k). For any

fixed k, both BF and FF have expected waste @(n 1’2)

under U{k – 1;k] and U(k; k). Our results actually provide

more detail than this, by showing the dependence of the

expected waste on k as well as n. (Straightforward adap-

tions of arguments for the continuous case show that the

off-line FFD algorithm yields @(n 1’2) expected wasted

space, independent of k, as does the optimal packing.) The

following theorem indicates that, as in the continuous

U(O, 1] case, there is a penalty for imposing an on-line

restriction.

Theorem 6. The expected wasted space under the dis-

tributions U{k – 1;kj and U{k;k} is (a) Q((nlog k)l’2 ) for
112logk) for BF, and (c)any on-line algorithm, (b) O (n

@((nk)1’2)for FF.

As with the results of [22] for the continuous case, our

proofs model the bin packing process by 2-dimensional

matching problems. For (a) and (b), we use discretized ver-

sions of techniques from [1,13,22]. The tight bounds for

FF in (c) require a new matching formulation, and for the

upper bound, a transformation to an equivalent particle sys-

tem. As an unexpected bonus, we can adapt this upper

bound argument to the continuous case and close the long-

existing gap between the upper and lower bounds on
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FIGURE 2. Average waste for BEST FIT as a function of the maximum item size under U(O,U] (the smooth line) and

U~;51 ) (the individual points).

expected waste for FF under U(O, 1]. For five years the

best upper bound we have had has been O (n 2’310gl’2n), as

opposed to the abovementioned lower bound of Q(n2’3 ).

We show that if we set k = n 1’3 in the upper bound argu-

ment for (c) above, we can adapt our proof to the continu-

ous case, and obtain the following:

Theorem 7. The expected waste for FF under U(O, 1]

grows as @(n23).

In addition to the results for j E {k – 1,,k), we also have

partial results for smaller j. Basically, we can show that if j
is small enough, both FF and BF cart do as well as the theo-

retical on-line algorithms of Theorem 3.

Theorem 8. ~ k 2 j( j+ 3)/2, BF has O(1) expected

waste under U{j; k}. If k 2 j2, then so does FF.

This contrasts to the situation in the continuous case,

where it is hypothesized that expected waste for both BF

and FF grows linearly under U(O, u] for all u < 1 [2,8].

The proof of Theorem 8 applies a resultofHajek[11] about

stable random walks by showing that certain parameters of

the packing process have properly bounded drifts.

Simulations indicate that Theorem 8 is not tight j can

be larger than the bounds mentioned in the theorem and FF

and BF will still have expected O(1) waste. For instance,

when k = 13, FF and BF both appear to yield O(1)

expected waste when j = 6, even though Theorem 8 only

guarantees it for js 3. Note the contrast here to our earlier

observation that FFD yields linear waste under U(6; 13). It

has long been known that there exist instances where FF

outperforms FFD, but these were thought to be pathologi-

cal. Here we appear to have found a quite reasonable prob-
ability distribution under which FF outperforms FFD on

average!

Constant waste does not continue indefinitely for FF

and BF, however. Once j crosses an as-yet-undetermined

threshold, linear expected waste appears to ensue. See Fig-

ure 2. For each of the distributions U(O ,u],

u = .01,.02 ,.. ,,.99,1.00, and U(j;5l),j= 1,2,...,51,

25 sample lists of 2,048,000 items were generated and

then packed by BF. The figure displays the average values

of (FF(L) – s(L))/n for each distribution. (Experiments

with n = 10,000,000 yielded essentially the same ratios,

except for j e (50,51), where Theorem 6 says the expected

1’2 log k) and for the rightmost values for u,waste is O (n

where sublinear factors with large constants of proportion-

ality continue to affect the picture). In terms of the number

of units of waste, the average for BF under U(j;51 ) was

less than one bin for all j s 17 (i.e., the average packing

was optimal!). At j = 18, the average suddenly jumped to

over 450 bins. In contrast, the average waste under U(O ,u]

was a smoothly increasing function of u. On the other

hand, once the linear-waste threshold for j had been passed

in the discrete case, the dependence on jtk of the constants

of proportionality appeared to track the analogous depen-

dence on u in the continuous case (and note that the con-

stants of proportionality were substantially larger than

those we saw for FFD).

Other experiments indicate that the thresholds where
linear waste begins for FF and BF have decreasing values

of j/k as k increases, as suggested by Theorem 8. Thus the

curves for U~;k] look more and more like those for

U(O,U] as k -+ -. Also as suggested by Theorem 8, the

thresholds for FF and BF may differ, For instance, simula-

tions suggest that under U{ 18; 55}, FF has linear expected

waste while the expected waste for BF remains 0( 1).)

It should be pointed out that no proof of linear waste for
BF or FF is known for any distribution U(j;k) or U(O,U].

Finding a proof of linear expected waste is one of the major
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[ EXPECTEDWASTEUNDER U(O,U] AND U(j;k)

U<l j<k–1 U=l j= {k–l,k)

Optimal Packing o(1) [3] O(1) [Thrn.3] O(nl’2) [14,16] 0(nl’2)

Best Poly. Time Alg. o(1) [3] O(1) [Thm.3] E3(nl’z) [14,16] E3(nl/2)

Best Poss. On-Line Q(nl’2) ~hm.2] O(1) [Thrn.3] Ct((nlogn)l’2 ) [22] Q(nl’2) [Thrn.6]

Best Known On-Line O((nlogn)”z) [23] 0(1 ) [Thrn.3] @((nlogn)l’2) [23] @(nl’2) [Thm.6]

First Fit Decreasing {o(l), qnl’3)) [3] {O(l), @(n1’2), @(n)) -.4,5] 0(nl’2) [14,16] @(nl’2) ~.4]

Best Fit @(n)? {o(l),@(n)?, . (?)) [~g] @3(nl’210g3’4n) [22] @3(n1’2) ~.6]

First Fit e(n)? {o(l),@(n)?, .,. (?)] [M.8] E3(nz” ) ~.7] 63(nl’2) ~.6]

TABLE 1. Bounds on expected waste, a simplified overview.

challenges remaining in the area of expected-behavior anal-

ysis for bin packing. We suspect that it may well be easier

in the discrete case, and at the end of this paper will

describe some potentially useful insights that have been

revealed by our simulations.

As a general guide to the contents of this paper, Table 1

lists the results known for the continuous uniform case, and

contrasts them with the new results we have obtained for

the discrete uniform case. Note that this table is just an

overview, and so does not reflect all the details of our
results as described above (such as dependencies on partic-

ular values of u or j ,k). The remainder of this paper will

sketch the proofs of several of the above theorems, with

emphasis on the novel proof techniques needed for the dis-

crete case. Section 2 considers the question of the best pos-

sible expcded behavior for on-line algorithms under dis-

crete and continuous distributions. First we sketch a proof

of Theorem 2 for the continuous case. We then describe

the geometric results of Courcoubetis and Weber [5,6], and

show how to apply them using results about perfect pack-
ings to prove Theorem 3 for the discrete case. In Section 3

we consider the classical off-line algorithms FFD and BFD.

We describe the “fluid algorithm” proof technique in more

detail and use it to prove Theorem 4. We also sketch the

proof of Theorem 5. Section 4 then briefly covers our

results for the classical on-line algorithms FF and BF (The-

orems 6, 7, and 8). We conclude in Section 5 with a dis-

cussion of how well our results and techniques might

extend to other forms of discrete distributions.

2. Best Possible On-Line Algorithms,

In this section we consider the best possible expected

behavior for on-line bin packing algorithms under ZJ(j;k)

and U(O, u] distributions. For all cases, better performance

bounds are attainable in the discrete case than are mathe-

matically possible under the analogous continuous distribu-

tion. We tirst describe the limits on behavior under U(O, u]

distributions. We should first point out that our description

of these results in Section 1 (and Table 1) used “Q” nota-

tion in the sense of Hardy and Littlewood [10], rather than

of Knuth [15]. That is, we used “Q(~(n))” to mean “not

o(~(n)),” rather than “greater than c~(n) for some c > 0

and all sufficiently large n.”

In the case where u = 1, this is the best we can hope

for. In [22], Shor showed that if L. is an n-item list with

item sizes drawn independently from U(O, 1] and A is any

on-line bin packing algorithm, then E [A(L. ) – s(L.)] =

Q(n l’210gl’2 n), but only in the Hardy and Littlewood

sense. The stronger sense is not possible, since there is, for

instance, an on-line algorithm whose waste is proportional
to n 1’2 whenever n is a power of 2. (This follows from the

fact that an expected difference of O (n 1’2) is possible for

an algorithm that is on-line except that it knows n in

advance [14,16].)

Theorem 2 of this paper, which covers the case when

u < 1, suffers from a similar technical restriction. A more

detailed statement of that result goes as follows.

Theorem 2*. Suppose that u < 1, L. is an n-item list

with item sizes drawn independently from U(O, u], and A is

any on-line bin packing algorithm that does not know n in

advance. Then E[A(Lm) – s(L. )] is not o(n 1’2).

Proof. Let w(t) denote the amount of empty space in par-

tially filled bins after t items have been packed. We shall

show that the average value of w(t), 1< ts n is

Q(n 1’2 U3) with high probability (in the “for all

sufficiently large n” sense of Q). The theorem follows.

Let v(t)denote the number of non-empty bins that are

filled to less than 1 – u2/8 after the first t items have been

packed. Suppose that v(t) 2 n 1’2 at least u/8 of the time.

Then we have w(f) > n 112U218 for at least a fraction u18

of the time. This means that w(?) must average at least
n112u3/64

.

On the other hand, suppose that for at least a fraction

1– u/8 of the time, we have v(t)<n 1’2, NOW, consider the

last item that we put into a bin. At time n, with high proba-

bility there must be at least nu/2 – o (n) bins, because the

sum of the item sizes is at least that. Therefore, there must

have been at least nu/2 – o (n) items that were the last item

put into some bin. We will show that many of these items

must have left large gaps. At time t,when we are about to
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pack item a,+ 1, there are only v(t)bins into which one can

put an item larger than u2/8. Therefore, if a,+ 1 is to leave

a gap of less than 5 in its bin, it either must have size less

than U2/8 or its size must be within ?5of the empty space in

one of these v(f) bins with gaps larger than U2/8. The

probability of this is at most [u2/8 + 8V (t)] /u. By choos-
ing~ = u2~-1’2/8,we rn&e this probability equal to u/4.

This means that the fraction of items that can fill a bin to

within 5 = u 2n- 1’2/8 is with high probability at most

3u/8 -o(l), because v(t) is large (greater than nl’2) at

most u/8 of the time, and if v(t) is small, the probability

being able to fill a bin to within 8 is at most u/4. As we
have already noted, however, there are with high probabil-

ity at least nu/2 – o (n) items that were the last item put into

a bin. Thus, with high probability, there are at least

nu/8 – o (n) bins with more than 8 empty space, giving

w(n) 2 nu6/8=n112u3/64.

To complete our proof, we need to show that, given our

assumption about v(t), w(r) is large on average as well as

just for r = n. Fortunately, the argument just given can be

adapted to show that the wasted space at time n’ for

n/2<n’<n is large, because if v(t) is small for 1– u/8

fraction of the interval [O,n], then for any time n’> n/2,

u(t) will be small for some slightly smaller fraction of the

interval [0 ,n’]. The bounds on w (n’) thus will go through

with only a change in the hidden constants, which will

suffice to prove the theorem. ❑

It should be noted that the above proof relies heavily on

the fact that the distribution is continuous, since this is the

reason why the union of n 1’2 intervals of size 8 cannot

cover the full probability space. Our discrete distributions

U~;k), however, do not have this failing, and so it is possi-

ble to obtain significantly better average-case behavior for

them. The key tool for realizing this improved perfor-

mance is a result of Courcoubetis and Weber [5,6] that

casts bin packing with discrete distributions into geometric

terms.

Suppose D is a discrete distribution over a set S of d

distinct item sizes, SI ,s2 ,... ,SJ, and let B >0. Any pack-

ing of items of these sizes into bins of size B can be viewed

as a non-negative integer vector (c 1,..., cd ), where

X?=lcisi <B. Of particular interest are those vectors

which give rise to a sum of exactly B, which we shall call

perfect packing conjiguradons. For instance, if

S = {1,2,3) and B = 7, one such configuration would be

(1,0,2). Let P~,B denote the set of all perfect packing

configurations for a given S and B. Let A s,~ be the convex

cone in Rd spanned by all nonnegative linear combinations

of configurations in l’s,B.

Theorem (Courcoubetis and Weber [51). Let B be a

bin size, D be a discrete distribution with item sizes in the

jinite set S = {sl ,... ,s~, and pi be the probability of item
size si under D, 1 s i s d. tit L ~ be a random n-item list

with item sizes drawn independently according to D. Then

(a) If (p ~,... ,p~) lies in the interior of As,b, there exists

an on-line bin packing algorithm A such that

E[A(L. ) - s(Lm)] =0(1).

(b) if (p ~,... ,p~) lies on the boundary of As,B, then

EIOPT(L. ) – s(L. )] = @(nl’2) and there exists an on-

line bin packing algorithm A such that E[A(L,) - s(Ln)]

= @(nl’2).

(c) If (p I ,...,p~) lies outside of As,B, then

EIOPT(L.) - s(L.)] = @(n).

The algorithms of cases (a) and (b) run in polynomial

time. We shall sketch how they work below, after we have

used the above result to prove the following extended ver-

sion of Theorem 3.

Theorem 3%. For any pair j,k of positive integers with

j 5 k, let L. be an n-item list L., having item sizes drawn

independently from Ufi;k}. Then

(a) If j < k-1 there exists a polynonu”al-time on-line

algorithm such thatE[A(L.) – s(Ln)] = O(l).

(b) If j e {k- l,kJ, then EIOPT(L.) - s(L,)I =

@(n 112) and there exists a polynomial-time on-line bin

packing algorithm A such that E[A(Lm) – s(L.)] =

@(nl’2).

Proof. For this result we can simplify our notation by nor-

malizing so that item sizes range from 1 to j and bins have

capacity ~ this will only affect the constants of proportion-

ality. Let us first observe that the lower bound on

EIOPT(L. ) – s(L.)] in (b) follows easily from the fact

that in any packing of items of sizes 1 through k – 1 into

bins of size k, the waste is at least the excess of the number

of items of size k – 1 over those of size 1. Thus we need

only concern ourselves with the on-line algorithm claims of

(a) and (b). For these, by the Courcoubetis-Weber theorem,

all we need show is that the j-dimensional vector

(1/j,l/j,...,j)j) (or equivalently the vector Z = (1,1 ,...,1))

is in the appropriate cone (strictly inside when j < k - 1).

To prove that Z is in the cone, it suffices to show the fol-

lowing:

Lemma 2.1. If 1< j <k, then for some integer r >0,

the set of rj items con.ri.wing of r copies each of items of

size 1,2 ,..., j can be pucked pe~ectly into bins of size k.

To prove in addition that Z is strictly inside the cone

when j < k- 1, it suffices to show the following:

Lemma 2.2. For each i, j,k with is j c k -1, there

exist positive integers r ~ and r2 such that the set of

rl j + r2 itermr, consisting of rl items of sizes 1,2,..., j and

r2 additional items of size i, can be packed perfectly into

bins of size k.

Lemma 2.1 follows immediately from the Perfect Pack-

ing Theorem (Theorem 1), which says that such packings

exist for all r > 0 with rj(j+ 1) /2 a multiple of k. Space
limitations prevent us from presenting a complete proof of

Theorem 1. As we shall see, however, Lemma 2.1 also fol-
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lows from Lemma 2.2, except in the case where

j G {k – 1,k). In this latter case we may assume that

j = k – 1, since items of size k clearly pack bins of size k

perfectly all by themselves. There are then two cases to

consider, depending on the parity of k. If k is odd, we can
simply take r = 1 and pair up the item of size k – i with the

item of size i, 1< i < k/2. If k is even, we take r = 2, pair

up items as before, and then pair up the two remaining

items of size k/2.

To see that Lemma 2.2 implies Lemma 2.1 when

j < k–1, let rl(i) and r2(i), 1 S i <j, be the constants

whose existence is guaranteed by Lemma 2.2 for the triple

i,j,k, and lets = r2(l)r2(2) “” . r2(j). Then for each i,

Srl (i)/r2 (i) items of size 1,2 ,..., j plus s additional items

of size i will pack perfectly into bins of size k. The set of

items formed by summing the above over i from 1 to j will

pack perfectly into bins of size k, and this set will contain

an equal number of items of each size. Thus it suffices to
prove Lemma 2.2.

The proof is by induction on k. It is clearly true for

k= 2. Suppose Lemma 2.2 (and hence Lemma 2.1) holds
for bins of size less than k. In the case k 2 i +j, the induc-

tion hypothesis implies that there exist r and m such that r

items each of the sizes 1 , . . . . j will perfectly pack into m

bins of size k – i. In this case we simply take r ~= r and

r z = m. Use m items of size i to create m bins with remain-

ing space of k – i and then perfectly pack these with r items

of each of the sizes 1, . . . . j. On the other hand, for

k e i +j, Lemma 2.1 implies that there are r and m such

that r items of each of the sizes 1,. , , , k –j – 1 perfectly

pack in m bins of size k-i. Take r 1= 2r (to ensure it is

even) and completely fill bins with pairs of items of sizes

(j,k-j),(j- l,k-j+ l),. . . . Fk/21, ~/2]). Take r2 =

2m and use 2m items of size i to create 2m bins with

remaining wasted-space of k – i. These can be completed

filled by the remaining items, 2r of each of the sizes

1,.. . ,k–j–l. Note that it is here weusej < k–l. This

completes the inductive step and the proof of Lemma 2.2.

As explained above, Theorem 3* follows. •1

The on-line algorithm that achieves the performance

of Theorem 3* in case (a) can be described as follows.

(The algorithm for case (b) does not require the full

Courcoubetis-Weber machinery and is left as an exercise to

the reader.) Let c /,i denote the number of times that an

item of size i is used in packing bin type 1. We choose a set

of c ~‘s that span a cone having (1, . . . . 1) in its interior.
These may correspond to the packings generated in the

proofs of lemmas 2.1 and 2.2, The time required to identify

these packings is polynomial in j and k. We imagine that

there is a separate packing facility for each type of bin c ~,

and that each arriving item is routed to a packing facility,

where it finds space in a partially full bin or starts a new bin

of that type. As a function of the contents of partially full

bins at facility 1, let e ~,i be the number of different item

sizes amongst those used in bins of type 1 for which there

are presently fewer spaces at facility 1 than there are for

item size i. Note e /,i = O for i such that c /,i = O. The routing

probabilities are determined by finding an & >0 such that

the following linear program has a feasible solution:

al > 0, i=l, . . ..j.

Such an& exists because (1, 1,..., 1) is in the interior of the

cone spanned by the c I ‘s; a precise value for & can be com-

puted directly from the distance of (1,1,...,1) from the

boundary of the cone.

When an item of size i is to be packed, it is randomly

routed for packing at facility 1with probability

CX~(C~,i+&e~,i)/(1/j).

The impact of this construction is to ensure that facility 1

receives items of size i at a faster rate than items of size i‘

whenever there are more spaces for items of size i than i’ in

partially full bins of type 1. For the details of why this

suffices, see [5].

Note that, as described, the above algorithm is random-

izing. It is possible to construct an algorithm that is not

randomizing, but the analysis that shows it gives O(1)

wasted space is considerably more complicated [6]. It is

also possible to design an on-line algorithm that does not

know j and kin advance but determines them by sampling

and still yields O(1) waste for all distributions U~ ;k) with

jck-l [5].

3. First Fit Decreasing.

In this section we discuss the expected behavior of the

off-line First Fit Decreasing algorithm (FFD) under U~;k)

distributions, providing proofs or proof sketches for the key

results listed in Theorem 4. The contrast of these results

with those for the analogous continuous distributions has

already been pointed out in Section 1.

The key tool we have developed for treating these algo-

rithms is what we shall call the Fluid FFD technique. The

easiest way to explain this technique is to see it in action

for a particulm dishibution, U(6; 13). To simplify our dis-

cussion, we shall again multiply all item- and bin-sizes by

k, and so consider ourselves to be packing items of size

1,2 ,...,6 into bins of size 13. Suppose we had a sample list
that was perfectly uniform, i.e., which contained n = 6m

items, m of each size. Suppose further that we can take m

to be any arbitrarily large number, and hence can consider

it to be divisible by any integer we choose. (This is like

viewing the set of items as an infinitely divisible fluid;

hence the name for the technique.) Once sorted, such a list

would consist of m items of size 6, followed by m items of

size 5, etc. Let us now consider how IT would pack such a

M
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Size-6 Items: These m items would go two per bin into

m12 bins, leaving m12 gaps of size 1,

Size-5 Items: These m items would go two per bin into

m12 bins, leaving m12 gaps of size 3.

Size-4 Items: These m items would go three per bin

into m/3 bins, leaving m/3 additional gaps of size 1, for a

total of 5m/6.

Size-3 Items: The first m/2 of these items would go

into the gaps of size 3 created by size-5 items. The remain-

ing m12 would go four per bin into m18 bins, leaving m18

additional gaps of size 1, for a total of 23 m/24.

Size-2 Items: These m items would go six per bin into

m/6 bins, leaving m/6 additional gaps of size 1, for a total

of9m18.

Size-1 Items: These would fill m of the 9m18 gaps of

size 1 in previous bins, leaving m/8 gaps unfilled.

Note that we conclude that F’F’D(L) – s(L) = m/8 =
n/48, i.e., the waste is linear in the number of items. (The

normalized waste, with bin size reduced from 13 to our

standard of 1, is n/624.)

It should be clear how to generalize the Fluid FFD pro-

cedure to any other pairj,k, js k, assuming bins are of size

k and there are an infinitely divisible number m of size-i

items, 1 < i S j. Three qualitatively different types of out-

comes are possible:

Type 1. When the size-1 items come to be packed, the

sum of the gap sizes exceeds m, and so not all the gaps can

be filled (as was the case for the pair 6, 13).

Type 2. When the size-1 items come to be packed, the

sum of the gap sizes is less than m, and so all gaps will be

filled and a non-zero number of bins will be constructed

consisting solely of size-1 items. This happens, for

instance, for the pair 6,11.

Type 3. When the size-1 items come to be packed, the

total sum of gap sizes was precisely m, so that these are

filled with l-items and no l-items are left over. This hap-

pens, for instance, for the pair 12,13.

We claim that these answers tell us all we need to

know to characterize E [FFD (1,. ) – s(L. )] as a function of

n, for L. drawn from U~;k). This despite the fact that real

samples L. would not be perfectly uniform, and in practice

n tends not to be infinitely divisible. To be specific, we

shall prove the following more detailed version of Theorem

4(a):

Theorem 4a*. (a) For any pair j,k, j < k, if L. is the

n-item list with sizes drawn independently from Ufi; k},

then E[FFD(Ln)– s(L. )] is @(n) if the output of Fluid

FFD is of Type 1 for j and k, is 0(1) # the output is of

Type 2, and is @(n 1’2) if the output is of Type 3.

Proof. Let us examine the worst-case effect on an FFD

packing of changing an arbitrary list by one item so that it

looks a little more perfectly uniform. Suppose that in a set

of n items, say 1, the number of items of sizes 1, ..., j are

(ml,..., mj ). Consider an i such that mi >0 and let .l be

the set of n – 1 items obtained by deleting an item of size i

from 1. We shall compare the FFD packing of .l against

that obtained for 1. Following the packing of all items of

sizes i or more, the packing for J will leave one bin less
full. Now consider the packing of items of next smallest

size. Some of these, but certainly not more than k – 1,

might go in the bin that is less full. This means that some

other bins, which would otherwise have received items of

this size, will be less full. There are at most k – 1 such. So

following the packing of these items there are at most k

bins whose contents differ from those that would have been

obtained by packing I.

The argument continues in this fashion. Suppose we

are about to pack items of size 1 < i and there are N bins

whose contents differ from what they would have been if

we had been packing 1. Any such bin that is less full might

take up to k – 1 more items of size 1, so there might be up to

k – 1 other bins that receive fewer items of size 1 than

would have been the case if we had been packing Z. Any

bin that is more full might take up to k-1 fewer items of

size 1, so there might be up to k – 1 other bins that receive

more items of size 1 than would have been the case if we

had been packing I, Since items of size 1 are identical,

those bins whose contents start this phase no differently

and receive exactly the same number of items of size 1 as

they would have received if we had been packing I end this

phase of packing holding exactly the same contents as if we
had been packing Z. Thus at the end of this phase there are

no more than kN bins whose contents differ from what they

would have been if we had been packing Z. It follows that

there are no more than kj bins whose contents differ for

packings of 1 and J. A similar argument holds if we imag-

ine that J is constructed from Z by adding an item.

Thus for any two size distributions (ml, . . . . mj ) and

(m{,.,.., m;) we can bound the difference in wasted space

by 2k~+1 ~ i Imi -m; I . Taking the expected value over

ml, . . . . m,, when these have been generated by U~;k),
the expected difference in wasted space from that which

would be obtained if there were equal numbers of items of

each size is bounded by 2k~+1 E(Xi I [n/j] –mi l). Since mi

has the binomial distribution B (n ,n/j) this expectation is

0(nl’2). Note also that the actual difference is

0 (n 1’2 log n) with probability 1- 1/n.

The above analysis goes through even if we consider

only the packing of the items of size greater than 1. Thus

we can conclude that after we have packed all items larger

than 1, the sum of the gapsizes will differ from that under

Fluid FFD by O(n*’2) in expectation, and by 0(nl’210g n)
with probability 1 – 1 /n. The fact that n is not infinitely

divisible, and may not even be divisible by j, only adds a

constant factor to this difference.)
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If the Fluid FFD outcome is of Type 1, this means that

for large enough n the total gap size at this point remains

less than en/j for some c <1 with probability 1 – 1/n,

whereas the number of size-1 items is with the same proba-

bility larger than rdj – dn 1’2log n for some constant d, and

hence is almost surely larger than en/j for sufficiently large

n. Thus with probability 1 – 1/n the only bin with a gap

will be the last one created, which will contain only size-1

items. Normalizing to unit-capacity bins, this means that

FFD(L,) – s(L.) is almost surely less than 1. With proba-

bility 1/n there may be some additional gaps, but these can

contribute at most an additional 1 to the (normalized)

expected value since there are at most n bins, so that

E [FFD(L. ) – s(L. )] c 2, a somewhat s~onger result than

claimed above.

If the Fluid FFD outcome is of Type 2, an analogous

argument leads to the conclusion that FFD (L. ) – s(L. ) is

almost surely O(n). A simpler argument suffices if the

Fluid FFD outcome is of Type 3. In this case we use the

fact that the expected difference in total gap size between

L. and the perfectly uniform list is O(n 1’2) even after the

size- 1 items have been packed. Since the expected total

gap size for the latter is O(1), even when we take into

account the fact that n might not be infinitely divisible, the
result follows. This concludes the proof of Theorem 4a*.

❑

In the light of Theorem 4a*, Theorem 4(b) reduces to

the following

Theorem 4b*. For all j,k with j G {k – 1,k), the out-

put of Fluid FFD is of Type 3, while outputs of Types 1 and

2 occur for arbitrarily high values of j with jik both above

and below 1/2.

Proof. When j e (k – 1,k), Fluid FFD places the size-k

items (if any) in bins by themselves, and thereafter pairs up

the remaining items, size k – j with size j, running out of

items (and gaps) just as the last size-1 item goes in the last

bin containing an item of size k – 1. We thus have the

claimed Type 3 outcome.

To show that Type 1 can occur for arbitrarily large j and

j/k either ~eater than or less than 1/2, consider the pairs

j,k with k = 1260t+ 1, j e {420t,840t) and arbitrarily

large t21. We first note that if j = 840t, Fluid FFD will

pair each of the items of size k12 + a,

1/2 S a S 210t– 1/2, with an item of size k/2–a, thus
forming perfectly packed bins. We will then be in the ini-

tial state for the 420t, 1260? pair, so we need only consider

this latter pair. The key to our argument is to observe that

when we go to pack the items of size 420[, 315t, 252t,

210t, and 180t, in each case there will be no gaps left into

which these items will fit, so that they will go three, four,

five, six, and seven items per bin, respectively, creating a

total of mi3 + m14 + m15 + m/6 -t m/7 > m gaps of size

1, yielding a Type 1 result. (The value 1260 is chosen so

that no gaps precisely equal to the item sizes in question

will be created using larger items.)

As to Type 2 results, we can actually prove the follow-

ing somewhat stronger result than claimed above, one that

yields the same conclusion for FFD as Theorem 8, men-

tioned in the Introduction, yields for FF.

Lemma 3.1. For all pairs j,k with j < k112 or

1[2 Fluid FFD gives a Type 2 outcome and hencej>k–k ,

for the uniform distributions U{j;kj based on those pairs,

E[FFD(L.)–s(L.) ]=0(1).

The proof is straightforward. As before, we need only

consider the case where j < k 1’2, as the other case reduces

to it. Note that for each j’, 1 < j’ S j, the size-j’ items go

at least kl’2 per bin, creating at most m/k 1’2 gaps of some

specified size g. A simple induction can thus be used to

show that, when we come to pack the items of size g, no

gaps of size greater than g will remain, and the total num-

ber of gaps of size g itself will be at most

(m/kl’2)(k1’2 -1)< m, meaning that all those gaps will be

filled perfectly, with some items of size g left over. Since

this holds true for g = 1, the outcome is by definition of
Type 2. This completes the proof of Theorem 4b*. ❑

In light of the results of our running Fluid FFD on all

pairs j,k with k <1,000 and j < k/2, we know that Type 2

outcomes can actually occur for much larger j than those

indicated in Lemma 3.1, or any straightforward strengthen-

ing of it. Moreover, Type 1 outcomes occur for many more

pairs than those specified above. A key question is how

bad Type 1 behavior can be, and it is this question that is

addressed by Theorem 5, with the aid of some additional

information that we can obtain from Fluid FFD.

Observe that in the Type 1 case, we cart actually deter-
mine the constant of proportionality on the @(n) waste

from the result of running Fluid FFD. If the total gap size

left after packing the size-1 items is cm, which normalizes

to cm/k, then the (normalized and asymptotic) expected

value of E[FFD(L. )–s(L. )] is cn/jk (n/624 in the 6,13

case, where c = 1/8). Noting that the normalized value of

s(L. ) is almost surely (n/j) (j(j+ 1)/2)/k + o(n) =

n(j+ 1)/2k + o(n), we can further conclude that

lim E[FFD(Ln)/s(L.)] = 1 + 2k(cn/jk)/(n(j+ 1)) =
n+.
1 + 2c/( j( j+ 1)). This is perhaps a more interesting mea-

sure in this case, since we know by Theorem 3 that for all

n, s(L. ) – OPT(L. ) is almost surely less than some fixed

constant, meaning that this limiting ratio is also
lim 13[F’F’ (L. )/ OFT(Ln )]. (The value is 1.00595 .,. in

n+.

thecaseof 6,13.)

Our results for Fluid FFD with k <1,000 suggest that

the U(6; 13 ) distribution might be the worst possible for

FFD under both mehics, and this indeed turns out to be the

case, as already indicated in the statement of Theorem 5

and the paragraph following in Section 1. The proof is

based on a worst-case analysis of Fluid FFD, and relies on
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the assumption, justified by our computer runs, that

k >1,000. It involves two separate arguments, both some-

what complicated. The first, covering the waste in bins that

1’2 has something of the flavorstint with items larger than k ,

of the analysis of FFD in [3] for the continuous case,

although edge effects that previously could be ignored must

now be taken into account. The argument for bins that start

with items smaller than k 1’2 must confront distinctly new

issues. Space limitations unfortunately prevent us from

saying more here.

We conclude this section by noting that all the argu-

ments presented here about FFD apply equally well to Best

Fit Decreasing (BFD), the algorithm that applies Best Fit

rather than First Fit to the presorted list. Moreover, for

k S 1,000, j S k/2, Fluid BFD always has output of the

same Type as does Fluid FFD, although on 48 occasions

where both had Type 1 outputs, BFD ended up with a

slightly smaller constant of proportionality on its @(n)

expected waste. The biggest relative difference occurred

for the pair 422,847, where the constant of proportionality

for BFD was 4.821 x10-5 while that for FFD was

4,860x 10-5, roughly 0.8% worse (admittedly a mostly

theoretical distinction).

4, First Fit and Best Fit.

Given the rapidly approaching page limit, we do not

have space here to elaborate on what was said in Section 1

about the proofs of the results listed in Theorem 6 for the

case of distributions U~;k), j ● {k – 1,k). (These adapted

and improved on known techniques for the continuous

case.) We shall instead turn to the case of j < k – 1, where

techniques quite different from those used in the continuous

case are needed. Let us concentrate on the proof of the see-

ond part of Theorem 8, which addressed the behavior of

First Fit. (The Theorem 8 result for Best Fit follows by a

slight tightening of the argument.)

Theorem 8b. Ifk 2 j2, E[FF(L,)–s(Ln)] = O(l).

Proof For simplicity, let us once again normalize so that

the bin size in k and the item sizes range from 1 to j. Con-

sider an infinite Markov process in which the states are the

possible sequences of partially filled bins in a packing.

(Note that these “states” ignore the position and number of

completely full bins in the packing.) Let n(t), r 2 1 be the

index of the item that first pushes the total size of items in

the nh bin over the threshold k –j, and let x(t) be the state
in existence at that time. Let~(x(t)) be the number of par-

tially full bins in state x(t). We shall prove that E[f(x(t))]

= O(1), which implies the theorem. The proof uses a crite-

rion due to Hajek [11] which states that for a stochastic

process x(t) if (1) the increment ~(x(t + 1)) –~(x(t)) is

bounded independently of x(t) by a random variable whose

distribution has an exponentially bounded tail, and (2) there

exists 6>0 such that for all y outside a finite set S the drift

17[~(x(t + 1))–~(x(t)): x(t) = y] is less than –6, then the

stochastic process ~(x) is stable in the sense that there

exists a B <Q, such that E [f(x(t))] <B, for all t. (Note

that a random variable X has exponentially bounded tails if

there is a co>O such that P(lXl>a)Se-oa for all a.)

It is trivial that f(x(t + 1)) -~(x(t)) S 1, so part (1) of

Hajek’s criteria is satisfied. The idea which leads to a

verification of (2) is as follows. Suppose that in state y,

there are two or more partially filled bins, other than the

last. As each subsequent item arrives (at least until all bins

but the t+ 1st are completely filled), there is a probability

of at least 1/j that some partially full bin becomes com-

pletely filled by the packing of the arriving item into that

bin. (This holds for both BF and FF.) All we need to do is

to take k sufficiently large to ensure that the expected num-

ber of partially full bins to become full between n(t) and

n(r + 1) is greater than 1+ 8 for some 8>0. This will give

E[f(x(t + 1))–~(x(t)): x(t) = y] e– & A sufficiently

large k is k = j2, since this ensures that at least j items will

be packed between n(t) and n(t + 1), and that there is a

positive probability that there will be j+ 1 or more such

items (the expected value is roughl y 2J). To obtain Hajek’s

property (2), all we thus have to do is take B to be the set of

states with no more than 2 partially full bins. ❑

5. Conclusion.

In this paper we have analyzed the average-case behav-

ior of one-dimensional bin packing algorithms under dis-

crete uniform distributions, and found marked differences

between this behavior and that under the corresponding

continuous uniform distributions. For the most part, we
have had to use significantly different proof techniques to

handle the discrete case. A natural question is whether we

can extend these techniques to bounded domain discrete

distributions other than the U(j;lc}.

For many of our techniques, the answer is yes. The

results of Courcoubetis and Weber [5,6] apply to arbitrary

discrete distributions, although the details of the packing

theorems needed to apply them and determine the correct

answer will vary (and in some cases the packing problem

that needs solution will be NP-complete). One can con-

clude in general, however, that the optimul waste has the

same three possible growth rates ~(n), @(n 1’2), and 0(1).

The only correspondingly general results for the continuous

case are those due to Rhee and Talagrand [21], and do not

paint such a complete picture. They show only that the

expected waste for optimal packings must either be @(n) or

O((nlog n) 1’2), whereas we know that for certain continu-

ous distributions the optimal expected waste can be 0( 1).

The proof that the “Fluid FFD” procedure can be
used to determine the expected waste for FFD applies to

arbitrary discrete distributions, at least assuming that the

item probabilities are commensurable, thus again yielding
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the same three possibilities for the growth rate of expected

waste. The proof that First and Best Fit give constant

expected waste when k is sufficiently large with respect to j

can be extended to any distribution in which the item sizes
i, 1 < i < j, have different but non-zero probabilities pi,

andk2j/~”ni(Pi).

In our opinion the most interesting open problem in

the average-case analysis of bin packing algorithms con-

cerns the situations in which First Fit and Best Fit appear to

yield linear expected waste, as indicated in Figure 2. To

date we have been unable to prove that the waste must be
Q(n) in any of those situations (discrete or continuous)

where it appears to occur. The simplest situation for which

experiments indicate linear waste is the U{ 8; 11 ) distribu-

tion. This is perhaps the most likely candidate for a proof,

and we are currently pursuing several promising

approaches. The process by which the linear waste is cre-

ated seems clear from experiments: it is all concentrated in
bins that receive items of total size 10. These appear to be

created at a rate of about O.126n, whereas the items of size

1 that are the only candidates for filling the gaps in these

bins only arrive at rate O.125n. (A similar process appears

to go on for all U{k – 3 ,k) distributions.) Surprisingly,

although First and Best Fit have @(n l‘2 ) waste under

U{k – 1,k] and appear to have linear waste under

U{k – 3 ,k), we conjecture based on experiments that the

waste is O ( 1) under U{k – 2 ,k). (The constant bound here,

however, appears to be much larger than the bound we

observed when j S kl’2, which amounted to the contents of

a single bin.)
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