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ABSTRACT

In the bin packing problem, a list L of n items is to be packed into a sequence of unit
capacity bins with the goal of minimizing the number of bins used. First Fit (FF) is one
of the most natural on-line algorithms for this problem, based on the simple rule that each
successive item is packed into the first bin of the sequence that currently has room for it. We
present an average-case analysis of FF in the discrete uniform model: the item sizes are drawn
independently and uniformly at random from the set {1/k,...,(k—1)/k}, for some k > 1. Let
WFF(L) denote the wasted space in the F'F packing of L, i.e., the total space still available in
the occupied bins. We prove that E[WFF(L)] = O(Vnk), i.e., there exists a constant ¢ > 0
such that E[WFF(L)] < ev/nk for all n, k sufficiently large. By a complementary lower bound
argument, we prove that this result is sharp, unless k is allowed to grow with n at a rate faster
than n'/3, in which case E[WIF(L)] = @(n?/3). Finally, we show that this last result carries
over to the continuous uniform model, where item sizes are chosen uniformly from [0, 1]. The
O(n2/3) upper bound for the continuous model is new and solves a problem posed a decade
ago. The proofs of many of these results require extensions to the theory of stochastic planar
matching.
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1. Introduction

We study the First Fit (FF) packing of a list L of n items into a sequence of initially
empty, equal capacity bins. The item sizes are all at most the bin capacity. According to FF,
each successive item is packed in the first bin of the sequence that has room for it. FF is an
on-line algorithm, in that items are assigned to bins in the order in which they are input, with
each assignment depending only on the packing constructed so far and without reference to
the sizes or number of remaining unpacked items. The FF packing also has a useful “off-line”
characterization, however: it can be constructed by packing the bins one at a time, for each
bin repeatedly adding the first as-yet-unpacked item that will fit, until no such items remain.
(An easy induction establishes the equivalence of these two formulations.)

For a given distribution of item sizes, we are interested in the following question: As a
function of n, what is the expected wasted space (total unused capacity of the occupied bins)
in the final packing? In the classical continuous model, the bin size is taken to be 1 for
convenience, and the item sizes are independent samples from the uniform distribution on
[0,1]. In a discrete version of this model, the item sizes are independent samples from the
uniform distribution on {1/k,2/k,...,(k — 1)/k}, for some k > 2 (trivialities are avoided by
disallowing items of size 0 or 1). In this case, results are normally expressed in terms of both n
and k. Here, it is more convenient to take the bin size to be k and the item sizes to be uniform
on {1,2,...,k — 1}. We measure wasted space in units of the bin size, so the results for the

two discrete versions will be the same.



Let WHF(L) denote the wasted space in a First Fit packing of L. For the continuous model,
Shor [10] proved that E[WTF(L)] = Q(n?/3) and E[WTF(L)] = O(n?/3log'/? n). This paper
shows that for any fixed value of k in the discrete model, E[W!T(L)] = O(\/n), a significantly
slower growth rate. This is a corollary of the more general result that E[WFF(L)] = O(v/nk),
i.e., there exists a constant a > 0 such that for all n and k sufficiently large, E[WF¥(L)] <
av/nk. Using this latter result, we prove that Shor’s lower bound for the continuous case is in
fact tight, i.e. that for this case E[WT(L)] = O(n?/?) and hence E[WTT(L)] = ©(n?/?). We
also prove a lower bound for the discrete case which shows that the O(\/%) upper bound is
tight if & = O(n'/?). Finally, we prove that if k = Q(n'/?) then E[WFF(L)] = ©(n*?), as in
the continuous model.

This paper is the second in a series of papers currently being written based on the results
announced in [1] and [6]. The theme of the series is the extension of bin-packing theory to
problems in which item sizes are drawn from discrete distributions. The paper in the series most
closely related to the current one is [3], which will analyze the behavior of the Best Fit algorithm
(BF) under the same distributions we study here. BF is online like F'F' but places successive
items into bins where they fit best, i.e., minimize the resulting leftover space. (A tie is resolved
in favor of the lowest indexed bin.) As in the case of continuous uniform distributions, BF
slightly outperforms FF, the main result being that W5 (L) is ©(/nlog®* k) when k = O(n)
and is O(y/nlog®*n) (the bound for the continuous uniform case) when k = Q(n). It does
not appear that any on-line algorithm can do significantly better than this. It is easy to see
that the expected waste must be at least @(y/n), and, based on analogies with results for the
continuous case in [10] and [11], we expect that the best possible on-line waste growth rate is
O(v/nlogk) when k = O(y/n) and ©(y/nlogn) (the bound for the continuous uniform case)
when k= Q(n).

The other papers in the series consider a wider variety of discrete distributions, especially
the distributions U{j,k}, 1 < j < k— 1, where in U{j, k} the item sizes are 1/k, 2/k, ..., j/k,
all equally likely, and the bin size is 1. (In this terminology, the distributions considered in
the current paper are the U{k — 1,k}.) For each such distribution with j < k — 1, paper [2]
shows that there exists an on-line algorithm whose expected waste is bounded by a constant,
independent of n. For many of these distributions, First and Best Fit also appear to have
bounded waste (based on simulations). For Best Fit this is proved for several such distributions

in [4]. (Further results of this kind can be found in [8].) On the other hand, [4] also proves that



Best Fit’s expected waste is ©O(n) for U{8,11} and U{9, 12}. Even such off-line algorithms as
First and Best Fit Decreasing (FFD and BFD) can have ©(n) expected waste for some such
distributions, and the behavior of these algorithms is investigated in [5].

The current paper is organized as follows. In Section 2 we introduce a number of preliminary
results needed in later sections. Sections 3 and 4 then prove the FI upper and lower bounds,

respectively. Section 5 concludes the paper with remarks on extensions and open problems.

2. Preliminaries

Instead of analyzing FF packings of random lists of n items, for fixed n, it is more convenient
to analyze FI packings of random lists of N items, where N is Poisson distributed with mean
n and independent of item sizes. The two models are called the fized-n model and Poisson
model, respectively. It is a trivial consequence of the following general lemma that the estimates
obtained for the Poisson model also apply to the fixed-n model. Let A(L,) and A(Ly) be the
respective numbers of bins required by an on-line algorithm A in packing lists L,, and Ly in
the fixed-n and Poisson models. Similarly, define W4(L,,) and W#(Ly) for the wasted space

under A in the respective models.

Lemma 2.1. Assume a general distribution F of item sizes on [0,1]. Then
|E[A(L,)] — E[A(Ln)]l = O(vn)
where the hidden multiplicative constant is independent of F.

Remark. Since the expected occupied space in a packing of L, is the same as that in a
packing of Ly, viz. n/2 in units of the bin size, Lemma 2.1 also shows that, for the expected

wasted space,

|EWA(Ly)] = EIWA(Ly)]| = O(Vn) .

Proof. Consider the A packing of a list of n items, with sizes drawn independently from the
distribution F. For 7 a sample of a random variable J distributed as N —n, modify the packing
as follows. If 7 > 0, then extend the given A packing by packing j more items with sizes drawn
independently from F. If j < 0, then remove the last |j| items of the given A packing; this
will empty just those bins started by the last |j| items packed. Because A is on-line, the above

operation produces an A packing of a random list of n + J items, where n + J is equal in



distribution to N. Moreover, it is easy to see that the numbers of occupied bins added when
Jj > 0, and subtracted (emptied) when j < 0 are at most |j|. The lemma follows from the
bound E|J| = E|N — n| = O(y/n) given by standard estimates of the Poisson distribution. W

Hereafter, unless stated otherwise, the Poisson model of FF packing is to be assumed. To
be consistent with standard formulations of the bin-packing problem, we have chosen to use
the fixed-n model in the statements of the main theorems. For simplicity, the above subscript
convention for L will be dropped in what follows.

As in [11] we express instances L in terms of the sample paths of a Poisson process in

two dimensions. Figure 1 gives an example. We describe the method first with & odd. The
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Figure 1: L as the superposition of Poisson processes.

discrete horizontal dimension consists of ]“2;1 columns indexed by s. The continuous vertical
dimension is a time axis with the time ¢ starting at 0 at the top of the figure and increasing as
one goes downward (to be consistent with the literature). In each column, sample paths of two
independent Poisson point processes are laid out, each at rate 1, one generating points labeled
with a 4+ and the other generating points labeled with a —. The list L is constructed top-down
from the points that appear in the interval [0,n/(k — 1)]; a — in column s becomes an item
of size s < k/2 in L, and a 4+ in column s becomes an item of size k — s > k/2 in L. The
superposition of all & — 1 processes, two per column, gives a Poisson process at rate (k — 1).

Thus, the number N of points in L is Poisson distributed with mean (k — 1) - (kﬁl) = n, as




desired. FEach successive point of the superposition process is equally likely to be a + or —,

k—1

>~ columns. Thus, successive items in L have

and it is equally likely to be in any one of the
sizes independent and uniformly distributed on {1,...,k — 1}, again as desired.

If k is even, the independent Poisson processes of +’s and —’s are laid out in k/2 columns;
the processes in the first % — 1 columns are at rate 1 as before, but in column £/2 the + and —
processes each have rate 1/2. The list is constructed as before, but note that both +’s and —’s
in column k/2 become items of size k/2 = k — k/2. It is easy to verify that the construction
again gives lists of N independent item sizes uniformly distributed over {1,...,k — 1} with N
Poisson distributed and with E[N] = n.

Our bounds on expected wasted space will invariably be expressed in terms of algorithms
matching +’s and —’s in the above two-dimensional instances. These matching algorithms
all satisfy the constraint that the sizes of the items represented by a matched + and — must
sum to at most k. Thus, since matching a + in column s to a — in column s’ corresponds
to matching items with respective sizes k — s and s’, we must have k — s + s’ < k and hence
s > s'. Graphically then, our matching constraint means that, for each matched pair, the +
must be to the right of or in the same column as the —.

For matching algorithm A, M“(L) denotes the set of pairs of matched points in L, or
equivalently, the set of edges (straight-line segments) connecting the paired +’s and —’s. Let
UA(L) count the number of points left unmatched, i.e., U4(L) = N — 2|M*(L)|. The connec-
tion between matching and packing lies in the fact that a matching algorithm A corresponds in
an obvious way to a packing algorithm A; in the A packing of L, each pair in M4(L) is packed
into a single bin, as is each unmatched item counted by UA(L). The two interpretations of A

yield the following simple result.

Lemma 2.2. For the matching/packing algorithm A and any symmetric distribution of item
sizes on {1,...,k — 1} (i.e., any distribution for which the probability of size i equals that of

size k — 1, 1 <i<k/2), the expected wasted space under A for a random list L satisfies

EWA(L)] = SE[UAL) (2.1)

EWAL)] > E[H], (2.2)

where HZA is the horizontal component of the ith edge in MA(L).



Proof. The number of occupied bins in the A packing of L is A(L) = (N —-UA(L))/2+UA(L),
so that E[A(L)] = $E[N]+ LE[UA(L)]. We have N items of average size k/2, so in units
of the bin size, %E[N] is the expected occupied space. Then (2.1) gives the expected wasted
space.

The horizontal component of an edge in M4 (L) is the wasted space in the bin containing
the pair of items connected by the edge; dividing by k gives the wasted space in units of the
bin size. Summing the expected value over all edges yields the lower bound in (2.2). |

The analysis of matching algorithms will often reduce to the analysis of a process

Wo = 0,
(2.3)
W, = (Waa+8§)t, j>1,

where 27 = max(0, ), and where the £; are the successive steps of a random walk in R;.
Figure 2 shows an example. The sequence {W;} is a Lindley process and can be viewed as
the queueing process induced by the random walk {S;}, with 5; = 37, ., & (Feller [7]),

Sect. VI.9). In the applications of this paper, the i.i.d. random variables ; satisfy
E[]=0, o0*< oo, (2.4)
where 02 denotes the variance of the &’s.

Lemma 2.3. Under the assumptions in (2.4), E[W;] = O(\/7), where the hidden multiplicative

constant depends only on o.

Proof. Solving (2.3), one can show by induction that W; 4 max{0, 51,...,5;} (Feller [7],
p. 197), where 2 denotes equality in distribution and is justified here by the fact that the &;

are independent and identically distributed. Then we can write

EW;] = /0 Pr{max{0,5,...,5;} > z}dz

IN

\/j—l—/ Pr{max{0, 51,...,5;} > z}dz . (2.5)
Vi

Since the & have zero means, we have by Kolmogorov’s inequality (Feller [7], p. 235, eq. (8.3))
Pr{max{0, 51,...,59;} > a} < jo?/az? whereupon substitution into (2.5) proves the lemma. W
Let @); denote the number of times that W; = 0 in the sequence Wy,...,W;. The IFF

lower-bound argument will need the following lower bound on E[Q;].
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Figure 2: {W;} and {5;} illustrated as step functions.

Lemma 2.4. Under the assumptions (2.4), E[Q;] = Q(/7).

Proof. The descending ladder epochs of the random walk {9;} are those index values
i > 0 where the position of the walk is lower than at any preceding epoch (see Fig. 2). It
is easily verified that (); is equal in distribution to the number of descending ladder epochs
encountered by Sy,...,.5; (Feller [7], p. 196). Moreover, under (2.4) this quantity has the same
distribution as in the classical symmetric random walk with step sizes £1 (Feller [7], p. 396,
Corollary 1). In the latter random walk the probability that, for any a > 0, the position after j
steps is less than —ay/j is bounded away from 0 for all j sufficiently large. The lemma follows
at once from the trivial observation that the classical random walk must encounter at least r

descending ladder epochs in reaching a final position of —r. |



Although estimates more precise than Lemmas 2.3 and 2.4 are possible, they will not be
needed. A further advantage of their present form is that the following generalization is trivial

to prove. The details are left to the interested reader.

Corollary 2.1. Let the process {W;} have an initial state Wy = O(\/]), and consider J steps

of the process, where J is Poisson distributed with mean j. Then Lemmas 2.3 and 2.4 still

hold, i.e., E[Wj] = O(\/J) and E[Q 1] = Q(\/7).

3. The FF Upper Bound

We begin with an analysis of an algorithm that majorizes FF. This approach mimics that
in [10], where the problem with continuous item sizes is analyzed. We define the matching
First Fit (MFF) algorithm as follows, in terms of the item labels introduced in Fig. 1. As in
that figure, let s and ¢ denote respectively a horizontal size coordinate (column index) and a
vertical time coordinate. Recall that the size dimension is “folded”; a point with size coordinate
s represents an item of size s if the point is a —, but an item of size & — s if the point is a +.
The first item (the one with smallest ¢ coordinate) is packed in the first bin. The bin is then
closed if the item was a —; otherwise, it remains open for another item. Thereafter, if the next
item to be packed is a +, it starts a new bin, which remains open. If the next item is a —, it
is packed in the first open bin, if any, in which it fits; if no such open bin exists, then the —
starts a new bin. In either case, the bin receiving the — is then closed. Note that if £ is odd,
then MFF is the same as FF, except that it closes a bin whenever it receives a —. When £ is
even, there is a further difference between MFF and FF: MFF rejects opportunities to pack
two items of size k/2 into the same bin unless the first is a + and the second is a —.

MFF has the following useful monotonicity property, which FF does not share.

Lemma 3.1. (Shor [10]) Suppose L' is obtained from L by the removal of one or more items,

leaving the ordering of items unchanged. Then MFF(L') < MFF(L).

Shor [10] proves this result for the continuous case, but his arguments carry over directly
to our discrete model; the details are left to the interested reader. Shor also proves that
WMEE(Ly > WEFF(L) for all L in the continuous case. Unfortunately, this result holds in
our discrete model only for k odd, where the special case of items of size k/2 does not arise.

However, we need only the average-case majorization, as given in the next result, which holds

for all .



Lemma 3.2. Let the items of L be independent with a general distribution on {1,...,k— 1}
for any k> 1. Then EWFE(L)] < E[WMIE()).

Proof. We have WMEF([) > W (L) for all L when k is odd by the arguments of [10] for
the continuous case, which we omit. Thus, the lemma holds trivially for & odd. Assume that
k is even for the remainder of the proof.

Consider the FF(L) packing, i.e., the FF' packing of list L. The nonempty bins are of
5 types, to be denoted L_}, {H, h}, {_}, {:} A type—{_l_} bin contains only a +. A
type- i bin contains two 4’s of size k/2 and a type-|_ | bin contains two —’s of size k/2.
Type- {_ﬂ bins include all those bins that start with a + except the type- L} and type- {i}
bins. Similarly, type- {_} bins include all those bins that start with a — except the type- {:}
bins. Let v and v~ be the numbers of type- {H and type- {:} bins, respectively.

We claim that, if a type—{ﬂ bin is removed from the F'F(L) packing, then an FF(L")
packing remains, where I’ is obtained from I by deleting the items, say X and X', that were
in the type- {H bin removed, and by retaining the order of the remaining items in L. Let
X come before X’ in L, so X' is the first item of size k/2 following X in L; and let B; be
the bin containing X, X’ in the FF(L) packing. To verify the claim, note first that all items
that came before X in L were packed in By,..., B;_1, so they will be identically packed in
Bi,...,Bi_1 of the FF(L") packing. Any — following X in L fits with X, so all —’s between
X and X’ in L must have been packed in By,..., B;_1; then these items will also appear in
the FF(L") packing just as they did in the FF(L) packing. All +’s between X and X’ have
sizes > k/2 and had to be packed in B;y1, Biyo,..., for otherwise, X could have been packed
into a bin B;, j < ¢. Thus, these +’s appear in B;, Bi41,...in the FF(L’) packing in the same
sequence as before. When X’ was packed in B;, B; became full. Thus, if an item following X’
in L appeared in B; in the F'F(L) packing, it will appear in B; in the F'F(L’) packing if j < ¢,
and in B;_y if 7 > 4. The claim follows.

Now remove all type—{i} bins from the F'F(L) packing to obtain the FF(Lq) packing,
where I is obtained from I by removing all items that appeared in type—{ﬂ bins in the
FF(L) packing. Next, remove from L; all items except those that were either items packed
first in any bin or are —’s that were packed second in bins of type- h} . We are left with type-
L} bins containing only a +, as before; type- h} bins containing only a + and — with the
+ packed first; and type- {_} bins containing only a —. Let L, be the list of remaining items,

and call the above packing of L, the reduced packing. We claim that the reduced packing is



an M FF(Ly) packing.

To verify the claim, note that each bin type in the reduced packing is a valid MFF bin
type, by the definitions of Ly and MFF. Suppose the first ¢ bins of the reduced packing are an
MFF packing of the items contained in these bins, and consider where MFF would pack the
one or two items in the (¢ 4+ 1) bin of the reduced packing. By the definition of MFF, the
only open bins among the first 7 are type- L_} bins. But these were also type- L_} bins in the
FF(L) and FF(Ly) packings. Since the items in the (i + 1)** bin of the reduced packing did
not fit in these type- L} bins of the F'F'(L1) packing, they would be packed by MFF into an
(7 + 1)* bin just as they appear in the reduced packing. A simple induction thus establishes
the claim.

Now add back to Ly the v~ —’s of size k/2 that were removed from type- {:} bins in the
FF(Ly) packing, preserving the order of items in L. Our final claim is that the MFF packing
of the new list L3 consists of the bins of the M FF(L;) packing plus v~ new type- {_} bins;
the new type- {_} bins will be interspersed among the bins of the M F'F'( L) packing according
to the positions of their items in Lz, but the ordering of the bins of the M FF(Ljy) packing
will be preserved. This claim is proved by the same reasoning as before. Suppose just one —
of size k/2 is returned to Ly. When that item comes to be packed by MFF, it can not fit in
any open bin, because such a bin would have to be a type- L} bin which also existed in the
FF(L) and FF(Ly) packings. Then MFF packs the new — of size k/2 in a new bin, which it
then closes. An easy induction on v~ completes the argument.

By the previous claim and the definition of L1, we have
MFF(L3)= MFF(Ly)+v™ = FF(Ly)+ v~ = FF(L)— vt + v .
By Lemma 3.1, MFF(L3) < MFF(L), so
E[FF(L)) < EMFF(L)]+ EvT] - E[v7] .

But FF packings are determined solely by item sizes, not labels. Thus, since items of size
k/2 are equally likely to be labeled + or —, we get E[vT] = E[v™], and hence, E[FF(L)] <
E[MFF(L)). The FF(L)and M FF(L) packings have the same occupied space, so E[WIF(L)] <
E[WMFF(L)] and the lemma is proved. [ |

The preliminaries to the upper bound proof conclude with combinatorial properties of MFF

viewed as a matching algorithm. In the instance L, scan the —’s top-down, matching each to

10



the highest unmatched +, if any, above and to the right of the — (this also includes +’s directly

above the —). Figure 3 shows an example. It is easy to see that, in the final matching, two

1 2 3 |k/2]

nf(k—1)f-="""""" oo

Figure 3: An MFF matching. Points a,b, ¢, and d illustrate the weak FF property.

items are matched if and only if they are packed in the same bin by MFF. Lemma 2.2 then

applies to MFF as a matching algorithm, so by Lemma 3.2,

BT < BWVER(L)] = SRR (3.1)

Note that MFF matchings are in the class of up-right matchings, i.e., matchings in which
each edge goes up and to the right from the — to the + (these edges include those going straight
up or directly to the right). Observe also that MFF matchings satisfy the property that, if
(a,b) and (c,d) are any two (—,+) edges with time coordinates satisfying t, > t. > tq > t,
then their size coordinates satisfy s, < s.. (See Fig. 3 for an example.) This property holds
because if s. < sp, then MFF would have matched ¢ to b instead of d. We shall be introducing
up-right matchings with the following weaker property implied by s, < s.; such matchings will

be easier to analyze.

The Weak FF property: If(a,b) and(c,d) are (—, +) edges with time coordinates satisfying
ty > t. >ty > 1y, then their size coordinates satisfy s, < s4.
In the upper-bound proof below, we analyze an algorithm that generates matchings with

the weak FF property. The following result shows that the expected number of points left

11



unmatched by this algorithm will give an upper bound on the expected number left unmatched
in MF'F matchings. The proof in [10] for the continuous case carries over directly to the discrete

case.

Lemma 3.3. (Shor [10]) For any instance L, the MFF matching has a cardinality at least that

of any up-right matching with the weak FF property.

With these preliminaries, we are now ready for the upper-bound theorem.

Theorem 3.1. Let L be a list of n items with sizes drawn independently and uniformly at

random from {1,...,k —1}. Then E[WFF(L)] = O(v/nk).

Proof. We prove the result for M F'F(L) under the Poisson model with parameter n; the
theorem will then follow from (3.1) and Lemma 2.1. First, we prove that the argument can
be restricted to odd k. Consider some even k and a random instance L(¥) for this bin size.
We produce as follows a random instance L(2¥=1) for bin size 2k — 1. Each of the first % -1
columns is expanded into two columns; as shown in Fig. 4, column 1 of L®) is expanded into

2k—1)7 and

columns 1 and 2 of L1 column 2 of L(*) is expanded into columns 3 and 4 of L
so on, with column % of L®) becoming column k — 1 of LZ2*=1 For each s =1, .. .,% — 1, the
+’s and —’s in column s of L(*) are each assigned by an independent toss of a fair coin to either

(2k-1) retaining the same time coordinate in LZ=1) By the

column 2s — 1 or column 2s of L
properties of Poisson processes, it is easy to see that this filtering of the original processes does
indeed produce a random instance for bin size 2k — 1. (Note the harmless rescaling of the latter
instance in terms of k' = 2k — 1; the standard rate of the Poisson 4+ and — processes has been
halved, but the length of the standard interval has been doubled, since n/(k—1) = 2n/(k'—1).)

Now construct a matching of L(*) such that two points of L(*) are matched if and only if
they are matched in the MFF matching of L(2*~1) (see Fig. 4). Let A denote this procedure so
that M4 (L(*) is the matching constructed. It is easy to verify that the edges of M4(L*)) must
be up-right (since the edges of MMFF(L(2k=1)) are ) and that, although M4 (L®*)) need not be
an MFF matching, it retains the weak FF property of such matchings. Then by Lemma 3.3,
UMEPE(L(R)y < gA(LW)) = gMEF(LCR=1) and since L™ and L*=1) are random instances
for bin sizes k and 2k — 1, we have E[UMFF(L())] < EIUMFF([(2k-1))]. We conclude from
(3.1) that, if the O(v/nk) expected waste bound holds for k odd, then it must hold for k even.

12
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Given instance for k = 8

(Note that the matching shown is not an MFF matching.)

1 2 3 4 5 6 k' /2] =7
L 1 1 1 1 1 J

2nf(k! —1) —— — "~ - - —- - - - - == - ===

Constructed instance for k' = 2k — 1 = 15

and an MFF matching

Figure 4: Converting an instance for k to one for &' = 2k — 1.

In the remainder of the proof, assume k is odd. Convenient notation will be k. = |k/2] for
the number of columns in Fig. 1, and n, = n/(k — 1), for the length of the time interval. We
take n, to be an integer, an assumption that can affect only hidden multiplicative constants.

Next, we define an algorithm that is easier to analyze than MFF. The algorithm is defined
as follows in terms of a grid or lattice superimposed on the instance L. As shown in Fig. 5,
place n, equally spaced grid points on each of the columns, 1,..., k.. Note that n.k, = n/2.
In the first step, scan the —’s top-down, matching each to a highest available grid point, if any,
above and to the right of the —, resolving ties by choosing the right-most such point. Available
means simply that the grid point has not already been matched.

In the second step, the +’s are matched to grid points in a complementary fashion. Scanning
top-down, match each + to the highest available grid point below and to the left of the 4,

with ties decided in favor of the left-most such point. In this case, available means not already
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Figure 5: Matching —’s to grid points (4’s not shown).

matched to a +. Finally, the third step constructs an up-right matching of —’s to +’s by
matching a — with a + if and only if they are matched to the same grid point. Denote this
final matching by M = M(L) and let U = U(L) be the number of points left unmatched by
M. In what follows, the matchings of —’s and +’s to grid points in the first two steps will be

called the — and 4 grid matchings, respectively.
Lemma 3.4. The matching M has the weak FF property.

Proof. To violate the lemma we need (—, +) edges (a,b) and (¢,d)in M with t, > t. > tq > t,
but sq < s4, as shown in Fig. 6. Let g, and g.q be the grid points coupling @, b and ¢, d,
respectively, according to the grid matchings producing M. Figure 6 shows the three cases
where ¢.4 is above, below, and at the same level as g,5. (Note that there are two possibilities
each for the relative positions of ¢, g.q and their associated edges. The argument is the
same no matter which possibility holds and only one is shown for each case in Fig. 6.) The

first case would violate the 4+ grid matching, since b would be matched to g.q as the highest
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available below-left grid point. This would also apply in the third, equal-height case, because
of the tie-breaking rule. Finally, the second case would violate the — grid matching rule, since
¢ would be matched to g,; as the highest available up-right grid point. |

In the remaining, probabilistic part of the proof we show that E[U] = O(v/nk); this bound
together with (3.1) and Lemmas 2.1, 3.3, 3.4 proves the theorem. To prove the bound, we
analyze the + and — grid matchings individually. The analyses of these two matchings will
be rather different, although they eventually reduce to the analysis of very similar interacting
particle systems. The reason for the difference is that the — and + grid matchings are not
entirely symmetric. To obtain symmetry, we could have required +’s to be matched to grid
points in a bottom-up scan, matching each + to the lowest available grid point below and to
the left of the 4+, with ties resolved in favor of the left-most such point. But the final matching
M would not then have had the weak FF property, as the reader can easily verify.

Let N and N_ be the numbers of +’s and —’s in L, respectively. In the construction of
M, let U be the number of grid points that are not matched to both a + and a —. Then
n/2 — U9 is the number of grid points matched to both a + and —, and therefore also the

number of +’s and —’s matched in M. So
U=Ny—(n/2—U9Y+ N_—(nj2-UY).
We conclude that
E[U]=2E[UY)] , (3.2)

since the means of Ny and N_ are both n/2.
Now define U_(l_g) and U(g) as the numbers of grid points left unmatched in the + and —

grid matchings, respectively. We have U < U_(l_g) + U(g), since the grid points counted by

U_(l_g) and Uﬁg) need not be the same. Then by (3.2),
E[U) < 2E[UY) + 2B[0Y)] . (3.3)

Letting Uy and U_ be the respective numbers of + and — points left unmatched in the + and

— grid matchings, we note also that
[U4+] = E[Ny — (n/2- +())]— [+()] (3.4)
LU E|N n/2— U E[UY 3.4

Below, we show first that E[Uﬁg)] = O(vnk) and then that E[Uy] = O(vnk). By (3.3) and
(3.4), the theorem will then be proved.
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Jed above gqp

Jea below gqp

Jab €ven with g.q

Figure 6: Illustrating Lemma 3.4. (Recall that time increases downward.)
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Proof of E[U(_g)] = O(vnk): Consider the — grid matching process illustrated in Fig. 5. Let
m;(t) denote the number of unmatched grid points at time ¢ in column 7, 1 < i < k,, with

vertical coordinates in [0,7], 0 < ¢ < n,. Then

E[UYW] = Z E[mi(ny)] - (3.5)

From the definition of the matching rule, we see that when a grid point is matched, all grid

points up and to its right must already be matched. It follows easily that

t>my(t) > ma(t) > >mp, (1) >0, 0<t<n,. (3.6)

Note that the joint process m(t) = (mq(?),..., mg,(t)) is Markovian with a continuous time
parameter. The m;(t) may be viewed as the positions of k. particles in the interacting-particle
process m(t). The interactions are determined by (3.6), i.e., the position of the i*h particle
acts as a barrier to the motion of the (¢ — 1)** particle, 1 < ¢ < k.. At each integer time up
to n,, a new row of unmatched grid points is introduced, so each m; increases by 1 at integer
times. When a — is encountered, say at time ¢ in column ¢, then the particles do not move if
m;i(t) = myp1(t) = -+ - = my, () = 0; otherwise, m;(t) decreases by one, where j is the smallest
index, ¢ < j < ki, such that m;(t7) > m;41(t7), with the conventions that ¢~ is the time
infinitesimally prior to ¢ and that my,41(¢) = 0, ¢ > 0. The former event means that the — is
left unmatched, and the latter event corresponds to matching the — to the highest available
grid point in column j.

Because the sequences of —’s in the k. columns are independent, the behavior of m(?)
suggests that of the order statistics of k. independent particle processes. Indeed, let m(?),
m(0) = 0, be a process stochastically the same as one of the m;(¢) in isolation, i.e., (1)
increases by 1 at integer times and decreases by 1 whenever m(¢~) > 0 and a — appears at
time t. A comparison of transition probabilities shows that, if m;(?), 1 < ¢ < ki, denote k.
independent copies of 7 (t) with m;(0) = 0, 1 < ¢ < ky, then (mq(?),...,mg, (1)) is equal in
distribution to (7i2¢1)(t), . .., () (1)), where 7(;)(t) denotes the ¢! largest of the 7g(t). But
then, by (3.5),

kx kx
B[O = 3" Eling(n)] = Y Elin(n.)

(3.7)
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so our problem has reduced to the analysis of the one-dimensional process m(t).

Let {W;} ;>0 be the Markov chain embedded in 72(%) just before integer times, with Wy = 0.
This chain is a random walk with a barrier at the origin and transitions W;_y — W;, j > 1,
that balance an increase of one at time j — 1 with a decrease of one for every — that appears

in (j—1,7) at times ¢ with m(¢~) > 0. Then
W;=W;a+6)", j=12..., (3.8)

where the {; are independent and equal in distribution to 1 —¢;, with the (; being independent
Poisson distributed random variables having unit means and variances. Since the ; satisfy

(2.4) we obtain from Lemma 2.3,

E[W,.] = O(y) . (3.9)

Now m(ny) = W,, + 1 almost surely, so (3.7) and (3.9) along with k.,/ne = /nk./2 =
2/n(k — 1) give the desired result, E[Uﬁg)] = O(Vnk).

Proof of E[U,] = O(vnk): The + grid matching process is illustrated in Fig. 7. As can be

2 3 ko =4
0 o o o o
_|_
/
+ +
° Py o O
t +
+/
® O O
N +
_|_
" S
_|_

_|_
O qul(tg) =2>¢qty) =g(ty)=1>q(t;) =0

Figure 7: The 4+ matching just before a + at #y is matched.

seen, the matched grid points no longer have the simple structure of Fig. 5; the grid points
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of any column are not necessarily matched in a contiguous sequence starting from the top.
However, we do have the following useful property. At time ¢ in the matching process, let
¢;(t) > 0 denote the number of grid points below ¢ in column ¢ that have already been matched

to +’s encountered in [0,?]. An easy induction establishes that

@i(t) > () > -+ > g, (t) 2 0,

and that in column ¢ at time ¢ the matched grid points with vertical coordinates exceeding ¢
form a contiguous sequence for each ¢, 1 <7 < k,. Figure 7 gives an illustration.

Define a process ¢(t), G(0) = 0, on a single column having a Poisson pattern of +’s at rate
1; G(t) decreases by 1 at integer times ¢ when ¢(¢t~) > 0 and increases by 1 whenever a + is
encountered. Note the symmetry between ¢(¢) and the process m(?) of the earlier analysis.
Let ¢i(t),...,qk,.(t) be k. independent copies of ¢(¢) with ¢(0) = 0, 1 < ¢ < k.. Using the
earlier arguments, the key observation now is that (¢1(¢), ..., ¢, (?)) is equal in distribution to
(G1y()s - -5 Gy ())-

To make use of this fact, extend the lattice below n,, and extend the matching process so
that all +’s are matched to grid points. Then at time n, the +’s matched to grid points below

n, are just those +’s left unmatched by the original 4+ grid matching process. Thus,

kx kx
EUy) = Y Elan)]l = Y Elig(n)] = kEli(n.)] (3.10)

As before, to obtain E[G(n.)] we analyze a Markov chain {WJ}OSJ'S%* embedded in ¢(t) at

instants just before integer times, with I7V\0 = 0. In analogy with (3.8), we get

o~

W= (Wia+&)* j=12... (3.11)

where g] has zero mean and unit variance. Lemma 2.3 again gives E[W\n*] = O(y/n.) and
hence E[§(n.)] = O(y/x). By (3.10), we obtain E[U;] = O(v/nk) as before, thus completing
the proof of the theorem. |

Recall that, in the continuous problem, the bin size is 1 and the item sizes are drawn from
the uniform distribution on [0, 1]. Together with appropriate transformations between discrete
and continuous problem instances, Theorem 3.1 provides the basis for proving a tight upper

bound for the continuous case.

Theorem 3.2. Let n item sizes be drawn independently from the uniform distribution on [0,1].
Then
E[FF(L)] = 0(n*/?) .
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Proof. The lower bound E[FF(L)] = Q(n*?) was proved in [10], so we need only prove
E[FF(L)] = O(n??). As in Theorem 3.1, the proof reduces to the analysis of an up-
right matching problem. Again, we prove the result for the Poisson model, and then apply
Lemma 2.1.

In analogy with the discrete case, consider an instance L in two dimensions as shown in
Fig. 8, where the NV points are those of a Poisson pattern with intensity n that fall in the

rectangle [0,%] x [0,1]. The first step of the proof transforms this instance into one for a

0 s

v [y

1 1
4 2

Figure 8: A continuous instance L.

discrete uniform distribution on item sizes, so that we can apply Theorem 3.1. Let k,, n > 1,
be a sequence of odd integers such that k, = ©(n'/?). For given n, construct verticals at

T = ,0< i <ki.+1=|k,/2]+ 1, as shown in Fig. 8. Move each 4 horizontally to the

3
20t 1)
nearest vertical on its left, and move each — horizontally to the nearest vertical on its right.
3

Consider the resulting discrete instance L’ restricted to the interior verticals at o = FI)”

1 < ¢ < ky. The second step inserts the edges of an MFF matching for L’. Figure 9 gives an
illustration. Recall that this set of edges has the weak FF property. Let U’ be the number of
points in L’ unmatched by the edges.

The number N’ of points in L’ has the expected value F[N'] = E[N|— E[Z], where Z
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Figure 9: A matching for L’ after shifting the points of L in Fig. 8.

counts all of the boundary points on the verticals at # = 0 and z = 1. By our choice of k,
the numbers of +’s and —’s on each of the k., 4+ 1 verticals are Poisson distributed with mean
LE[N]/(k«+ 1) = ©(n?/?). Then E[Z] = ©(n?/3) and E[N'] = O(n). Thus, by Theorem 3.1
the expected number of unmatched points in L' is E[U'] = O(v/nk) and hence E[U'] = O(n?/?).

The third and final step shifts all of the +’s and —’s, including those on the boundaries,
back to their original positions, extending the edges between paired points as necessary to
preserve the matching. Trivially, since the +’s move right and the —’s move left in this step,
the edges remain up-right. Moreover, it is easy to see that the weak F'F property of the edges
is preserved under the shift of the +’s and —’s. Thus, by Lemma 3.3 applied to the continuous
case [10], the expected number of points left unmatched by the MFF matching of the original
instance I is at most E[UMFF(L)] < E[U'] + E[Z]. Since E[U'] and E[Z] are both O(n?/?),
we conclude that E[UMFF(L)] = O(n?/?). (Note that we needed the choice k = ©(n'/?) so as
to balance E[U'] and E[Z], i.e., to have both bounded by O(n?/?).) Then (3.1) applied to the
continuous case [10] proves the theorem. [

Returning to the discrete uniform distribution, we remark that if & = k, is taken as
a function of n in Theorem 3.1, then the O(\/%) upper bound is sharp only if &k, grows
sufficiently slowly. As might be expected, if the discretization is fine enough relative to n, then

the asymptotic result for the discrete case is the same as for the continuous case. In particular,
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we have the following corollary to Theorem 3.2.

Corollary 3.1. Let the item sizes in L have a discrete uniform distribution with k = Q(n'/?).
Then
EWFE(L)] = 0(n*?) .

Proof. The proof technique is similar to that in Theorem 3.2. Consider only odd values of
k; even k can be handled as in Theorem 3.1. Suppose we are given a random instance L for

the continuous problem with intensity n(k 4+ 1)/(k — 1). Construct (k — 1)/2 equally spaced

interior verticals through [0,1/2] X [0, 1] as shown in Fig. 10. In each of the k%l vertical strips

move —’s to the nearest vertical on the left and +’s to the nearest vertical on the right leaving
time coordinates unchanged. Now look upon the (k—1)/2 interior verticals as an instance L(¥)
for bin size k. A column in L) receives 4+’s from the vertical strip to its left and —’s from the
vertical strip to its right; the total number of these points is equal in distribution to the total

number in a vertical strip, and hence is Poisson distributed with mean n(kk_-l_ll) . m = lanl

Thus, the instance L) is a random instance of N items for bin size k, where N is Poisson
distributed with mean n.

Next, construct a matching of points in LK) by matching two points if and only if they are
matched in the MFF matching MMF¥ (L) of the original continuous instance. Let A denote this
procedure so that MA(L(k)) denotes the matching of the points in L(*). By the construction
process (+’s move right and —’s move left), the edges of M*(L")) must be up-right since
the edges of MMFF are. Moreover, although MA(L(k)) need not be an MFF matching, it
retains the weak F'F property of such matchings. Points of the continuous instance that were
moved to the left or right boundary verticals, and hence outside L®) may have been matched
in MMEF(L) (and not necessarily with each other). Thus, if Z counts the points moved to
boundary verticals, then

AL > MYFF(L) - 7
Now substitute [MA(L*))] = L[N — UA(LW)] and |[MMFF(L)| = L[N/ — UMFF(L)] where N
and N’ are the numbers of points in L(*) and L, respectively. Then since N’ > N, we obtain
UAL®)Y < UMFF(L) 427, so by Lemma 3.3,

UMPF([(0)y < pMFF(1y L o7
It remains to observe that, since E[N'] = O(n), we have E[UMFF(L)] = O(n*?) by The-
orem 3.2, and since k = Q(n'/?), we have E[27] = % ik = 2 = 0(n*?). Thus,

k+1
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Figure 10: Transformation for Corollary 3.1.
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E[UMFE(LU)] = O(n?/?) so (3.1) completes the proof. [ |

4., The FF Lower Bound

For the discrete uniform distribution, the following lower bound shows that the estimates

in Theorem 3.1 and Corollary 3.1 are smallest possible asymptotic upper bounds.

Theorem 4.1. Let L be a list of n items with sizes drawn independently and uniformly at

random from {1,...,k — 1}.
(i) If k = O(n'/?), then E]WTF(L)] = Q(v/nk).
(ii) If k = Q(n'/3), then E]WFF(L)] = Q(n?/3), as in the continuous case.

Proof. As in the upper-bound proof, the result is proved for the Poisson model, whereupon
Lemma 2.1 completes the proof. We start by proving part (i).

The proof begins with a sequence of reductions in Lemmas 4.1-4.3. Ultimately, we show
that the Q(\/%) lower bound holds if the number of points left unmatched by a certain planar
matching algorithm to be defined has the same asymptotic lower bound. The remainder of
the proof then proves the latter lower bound. Lemmas 4.1 and 4.2 below adapt very similar
results in [10].

Consider an FF packing of L and focus on just those bins having items in (k/3,%k/2) and
(k/2,2k/3); these are simply the items in (k/3,2k/3) if k is odd, but if k is even, the items of
size k/2 are excluded. There are at most two such items per bin. Call the items in (k/3,k/2)
s-items and those in (k/2,2k/3) b-items (s and b stand for smaller and bigger, respectively).
In terms only of s- and b-items there are just 5 types of bins; these are denoted [b]? [5], [5],

S
] B30 wish [, 1L 2],

this notation stand for the item types, and the vertical positions denote the order of packing,

b

S

, ‘Z‘ giving the numbers of the respective types. The letters in

i.e., the item on the bottom was packed before the item, if any, on top.

The number of item sizes in each of (k/3,%/2) and (k/2,2k/3) is approximately n/6. The
precise formula is of no interest; we need only the fact that it is asymptotically n/6 + O(1).
Let Bxn/6 denote the expected numbers of s and b items so that G = 1+ O(1/k).

Our first reduction is given by

Lemma 4.1. If
n

:mg—m%%% (4.1)

r

b
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then E[WFF(L)] = Q(v/nk).

Proof. We first establish three relations among the quantities ‘b‘v ‘5‘, ‘z‘, i , ‘Z‘ The first
simply breaks down the expected number of b-items by bin type,
£ b n
Elfl+E ‘ ‘ E’| =gz 1.2
ol TE Ll TE | = P (42)
Equating the left-hand side of (4.2) to the expected number of s-items, F ‘ 5‘ +2F ‘ z‘ + F i +
FE ‘ Z‘, gives the second relation
3
E‘ ‘ =2r %+ E 4.3
b £ + £ (4-3)
The third relation is given by
b £
AMESIN 4.4
. . (4.4)

To prove (4.4), it suffices to show that at any time in the packing process, the probability that
the next item creates a bin of type {i} is at most the probability that it creates a bin of type
[z] Neither type bin can be created unless the current packing contains a bin B of type [5]
Furthermore, by definition of the FF rule, B must be the only such bin in the current packing.
Let a be the level of B. Then, again by the FI rule, B must also be the only bin filled to a
level in [a, k — a]. Therefore, if the next item has a size in [a, k — a], we can pack it directly
into B without attempting to pack it elsewhere. But given that the next item has a size in
[a,k — a], it is as likely to be an s-item as a b-item. If the next item has a size that is not
in that range, then either it is a b-item too large to fit in any partially filled bin, or it is an
s-item. In neither case can it create a type {2} bin. Thus, the next item is at least as likely
to create an [z]—type bin as a {i}—type bin. Then (4.4) holds.
Now substitute (4.3) into (4.2) and apply (4.4) to obtain

EN13E|° |+ E| | > 82,
b E s 6
Substitution of (4.1) then gives
3L 2 +E| | =Q(Vak). (4.5)

Finally, return to the set of all items and all bins. The bound (4.5) shows that, on the average,
there are at least Q(y/nk) bins containing only items smaller than k/2. Since there is an
average of n/2 bins with items larger than k/2, we conclude that E[W!F(L)] = Q(v/nk), as
desired. |
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To prove that the condition in (4.1) indeed holds, we first convert it to an assertion about
up-right matchings. Let L* denote the sublist of L containing just those items in (k/3,k/2)
and (k/2,2k/3); the ordering of these items in L is retained in L*. Note that the number of

items in L* is Poisson distributed with mean fxn/3. The second reduction is given in

Lemma 4.2. If
E[WMEE (L] = Q(vVnk) | (4.6)

then (4.1) and hence E[WFY(L)] = Q(v/nk) holds.

Proof. In the two-dimensional representation of L*, match a + with a — if and only if the
corresponding items define a type—[Z] bin in the F'F packing of L. Let M* be the resulting
matching. The expected numbers of +’s and —’s in L* are each ;n/6, so (4.1) will be proved
if we can show that the expected number of items in L* left unmatched by M* is Q(v/nk).

It is easy to verify that M™* is an up-right matching with the weak FF property, even though
it is not necessarily an MFF matching. (For example, M* may fail to be an MFF matching
because of +’s that would be matched to —’s by MFF, but are not so matched in M™* because
the items corresponding to these +’s were packed together with items no larger than k/3 in
the original FI' packing.) Lemma 3.3 then shows that the expected number of points left
unmatched by M* is at least E[UMFF([*)] = 2B[WMFF (1)) = Q(v/nk), by (4.6). |

To prove that (4.6) actually holds, we introduce another matching algorithm that is easier
to analyze and has the same asymptotic lower bound. Relaxing the “up-right” of MFF to
just “right,” we define the rightward matching (RM) algorithm as follows: RM scans the —’s
top-down, matching each to the highest unmatched +, if any, to the right of (or in the same
column as) the —. Our third reduction shows that, if E[UFM(L*)] = Q(vnk), then (4.6) holds

and hence the theorem is proved.
Lemma 4.3. For all lists L, URM(L) < UMFF(L).

Proof. Consider an MFF matching as shown in Fig. 11(a). Shift the instance of —’s down
to the time interval (n.,2n.] so that all —’s are below all +’s, and extend all edges so that
the same pairs of points are matched. Perform the same operation on the corresponding RM
matching shown in Fig. 11(b). The new matching produced from RM is clearly an MFF
matching. The new matching produced from MFF is not necessarily an MFF matching (see
Fig. 11), but it is easy to see that the weak F'F property is preserved. Then Lemma 3.3 proves
that UFM (L) < UMEF (). u
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It remains to show that E[URM(L*)] = Q(v/nk). It is helpful to simplify notation by
recasting the problem in simpler terms. Recall that item sizes in L* are drawn from a set of
k/3 + O(1) sizes symmetric about k/2 with no items of size k/2. For notational convenience,
let us say that the number of item sizes is &’ — 1, where note that &’ is odd. The expected
number of items in L* is n’ = frn/3, so consider a new problem with lists L’ of item sizes
drawn from 1,...,k" — 1, with bin size &', and with a mean number n’ of items. Because of the
matching algorithms being analyzed, it is easy to see that UFM(L*) and UFM(L') are equal
in distribution. It remains to observe that the problem with lists L' differs by constant factors
(in both the time and size coordinates) from our original problem with parameters k and n,
where k is restricted to odd values. Since a return to our original problem formulation with &

odd can only affect hidden multiplicative constants, it suffices to show that
E[URM(L)] = Q(Vnk) (4.7)

for k odd. As before k. = (k—1)/2 and n. = n/(k — 1) with n, an integer. We prove (4.7) by
a detailed analysis of the RM process.

The analysis starts with a sample of +’s and —’s extended over the entire time axis. Define
the process y(t) = (y1(¢), ..., yr. (1)), t > 0, specifying the time coordinates of just those +’s
available for matching to the next —. Thus, y;(¢), 1 <7 < k., is defined as the time coordinate
of the + that would be matched to the next —, if this — were to appear in column 7. Figure 12
gives an illustration of y(¢). Note that, in the initial state, y;,(0) is the position of the highest
+ in column k., and y;(0), ¢ = k. —1,...,1, is the minimum of y;41(0) and the position of the
highest + in column ¢.

Note also that, in general, y(¢) consists of a sequence of runs or clusters, each being a
maximum-length sequence of one or more contiguous y;’s all having the same value, i.e., all
specifying the position of the same +, which appears in the rightmost column of the cluster.
Thus, if the next — after time ¢ appears in any one of the columns of the cluster y;, (¢),. .., y;,(1),
then it will be matched to the + in column j,. Bearing this in mind, it will also be convenient
to say that the — is matched to the cluster y; (¢),...,y;,(¢). Because of the rule “highest and
to the right,” an easy induction shows that the y;’s are nondecreasing, i.e., y1(t) < -+ < yg, (1).

Transitions in y(¢) occur when —’s are encountered and then matched, thus removing one
of the available 4’s. Define yj,+1(t) = oo for all . Suppose that a — is encountered at time

tin column j and is matched to the cluster y;, (t7),...,y;,(t7), i.e., j1 < J < jo. Then after
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Figure 11: Comparison of RM and MFF
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Figure 12: An illustration for y(?)
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the — is matched to the 4+ in column js, y;,(¢) becomes the minimum of y;,41(¢~) and the
time coordinate of the highest 4+ in column jy after time ¢. Then, in the decreasing order
i=j2—1,...,j1, y:(t) becomes the minimum of y;41(¢) and the time coordinate of the highest
+ in column ¢ after time ¢. Observe that a transition affects only the components y;(¢) of the
cluster matched to the — encountered at time t.

It is also convenient to think of y(¢) as a Markov interacting-particle process. Each column
has a particle whose initial position is y;(0). Thereafter, the particle in column ¢ jumps to
a new position whenever the next — appears in a column in the same cluster as column <.
Interactions of the particles take the form of the “no-passing” rules defined by the jumps of
y(t); whenever particle ¢ attempts to jump to a + lower than the particle at y;11(%), it stops
at position y;4+1(¢). We say that particle ¢ collides with particle 7 4+ 1 in these circumstances.

The proof of (4.7) balances two different lower bounds expressed in terms of a parameter
that measures the dispersion in the particle process y(¢). Let d;(t) = y41(t) — yi(2), t > 0,
1 <% < ky, denote the difference in the positions of adjacent particles, and define the dispersion
of the middle third of the particles by d(t) = Efi*£+1 di(t) = Yok, /341(t) = Yp, s341(t). Instead
of attempting to estimate E[d(t)], we prove the dg()esired bound, first assuming that E[d(?)] is
large for some t, 0 < ¢ < n,, and then assuming that it is small for all ¢, 0 <t < n,.

Specifically, consider any constant « > 0, and let {n;} denote the subset of the positive

integers such that for every n € {n;},

Eld(t)] > a\/g for some t, 0 <t <n,. (4.8)

Let {n]} denote the positive integers not in {n;}, so that for every n € {n}}
Eld(t)] < a\/% forall t,0<t<n,. (4.9)

Case 1 n € {n;}. We assume that {n;} is infinite; otherwise, (4.7) needs to be proved only for
Case 2 with n € {nj}. To continue with compact asymptotic notation, we now assume that
{ni} is the entire set, i.e., (4.8) holds for all n» > 1. Adapting the arguments below to restricted

n is only a notational matter.

Let UM denote the number of unmatched points in [0,#]. These include unmatched +’s

above ¢, and —’s above ¢ that are matched to +’s below ¢. We first show that (4.8) implies
E[UFM) = Q(Vnk) . (4.10)
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The remainder of the proof then shows that E[U/*M]increases with ¢t and hence that E[UFM] =
E[UFM] has the same lower bound.

Assume for the moment that y;(¢) <t < yg, (¢) with d(t) satisfying (4.8), as illustrated in
Fig. 13. Let A; and Ay denote the two regions between ¢ and y(t), the first being above ¢ and
the second below ¢ (see Fig. 13). A; and A, will also denote the areas of these regions. U/*M
is the sum of the number of +’s in Ay, none of which are matched at time ¢, and the number
of +’s in Ay, all of which are matched to —’s above ¢, but are not themselves in the problem
instance above t. The +’s occur at rate 1 in each column, so E[UFM] > E[A; + A,]. But by
(4.8), E[A + Ag] > %*a\/% (see Fig. 13). This gives E[UFM] = Q(v/nk), as desired. Similar
arguments apply to the simpler cases t < y1(¢) and t > yi,(t) (A1 or Ay is empty), and yield
the same result.

It remains to show that (4.10) implies a similar lower bound at time n,. Consider the
extension of the matching from time ¢ to time n., and assume first that y1(¢) <t < yg, (1) < n.,
as illustrated in Fig. 13. Let Ry and Rg be the regions between ¢ and n. to the left of column j
and to the right of column j — 1, respectively, with j being the column where y(¢) crosses ¢. At
time ¢, the —’s in Ay are already matched, but the +’s in Ay are still available. The intensity
of 4+’s is the same as that of —’s, so the expected number of available +’s in By U A; exceeds by
FE[A;] the expected number of —’s in Ry that need to be matched. Then the expected number
of unmatched +’s in columns 1 through j — 1 at time n, is at least the expected number of
unmatched +’s in these columns at time ¢. Indeed, the number at time n, will tend to be even
larger because some of the —’s in Ry may be matched to +’s in R5.

A complementary argument applies to columns j through k.. The +’s but not the —’s are
matched in A;, so the expected number of —’s in R, that need matching exceeds by FE[Az] the
expected number of +’s available in Ry. Then the expected number of unmatched —’s at time
n, in columns j through k£, is at least the expected number of unmatched —’s in these columns
at time t. Again, the expected number of unmatched —’s at time n, will tend to be even greater
because some +’s in Ry are matched to —’s in Ry. We conclude that E[UM] > E[UM].

Similar area arguments apply to the various cases when n. < yx, (), t < y1(t), or t > y, ().

These are left to the reader. [ |

Case 2 n € {n]}. As before, we assume that {n}} is infinite, since otherwise we are done. And

again, to simplify notation we assume that (4.9) holds for all » > 1. We prove that, if (4.9)

31



Ry

Ty

Figure 13: Example for case 1.

32



holds, then Q(vnk3) is a lower bound on the expected sum of horizontal components H; in
an RM matching. Lemma 2.2 shows that, after dividing by k, we get E[UFM] = Q(v/nk) as

desired.

Consider a cluster C of size h just after the j*" jump of y(¢), and suppose the (j+ 1) jump
is caused by a — in a column of €. Cluster ' was created by the h — 1 most recent particle
collisions in the first & — 1 columns of C". The — causing the (j + 1)** jump will be matched
to a + in the last column of '; the horizontal component of this matching will be an integer
in {0,...,h — 1}, with each choice equally likely. Thus, the expected horizontal component
is (h — 1)/2. This shows that, except for the at most k. — 1 collisions creating the clusters
in state y(n.), each collision contributes an amount Q(1) to the expected sum of horizontal

components in the final matching. From these observations and Lemma 2.2, we see that
1
E0™(1)] = $0(Ele) (4.11)

where ¢, is the total number of collisions in the interval [0,n,]. The remainder of the proof
shows that, under the condition (4.9), E[c,] = Q(vnk3). Then E[UFM(L)] = Q(vnk) will
follow from (4.11).

First, we prove a lower bound on the number of collisions of a single particle, say particle 2,
1 < ky, with its neighbor, particle ¢ 4+ 1. Let fy)(m) denote the number of collisions of particle
?in a time interval of duration m, given that particles z and ¢+ 1 are at a distance r > 0 apart

at the start of the interval.

Lemma 4.4. For alli, 1 <i < ks, if r = O(y/m), then

We briefly postpone the proof of the lemma until after we have shown how it yields the
estimate Elc,] = Q(vnk?). In the interval [0,n.] focus on columns ¢, i + 1 for some ¢,

by < 2

= 3=, Partition the time interval [0,7,] into k? subintervals of length n./k?, and

consider the expected number of collisions of particle 7 in any one of these subintervals, say
one starting at time £. If d;(t) = yiy1(t) — y:(1) < B/7% for some 3 > 0, then by Lemma 4.4
with m = n./k? (n. = n/(k — 1)), the expected number of collisions of particle ¢ in the
subinterval is Q( :—3) But by the condition in (4.9), there is a positive probability that
d(t) < 0/\/%, for @’ > a. It follows that, with positive probability, a constant fraction of the
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E+0(1) differences d;(t), k./3 < i < 2k, /3, satisfy di(t) < 6a’\/Z. Then the expected total
number of collisions in the subinterval is Q(k,/75), or Q(/%). There are k? subintervals, so
the expected total number of collisions in [0, n,] is Elc,] = k*Q(\/%) = Q(Vnk?), as desired.

Proof of Lemma 4.4. We first prove the lemma for k, = 2 (k = 5), and then use this result
in a bounding argument for general k. > 2 (k > 5 and odd). Thus, to start, we want a lower
bound on the number of collisions of particle 1 during the interval [tg, tp + m] of a two-particle
process, assuming that yo(to) — y1(to) = r > 0. Let d(j) > 0 denote the distance between
the two particles just after the j* jump following ty, and define d(0) = r as the separation
at time tg. Since the + and — processes are Poisson, the intervals between successive +’s
are independent, exponentially distributed random variables with mean 1, as are the intervals
between successive —’s. By the memoryless property of the exponential law, these properties
also hold starting at time #q.

If d(j) > 0, then the (j 4+ 1)** jump will be positive or negative with equal probability; it
will be positive if particle 2 makes the jump and negative if particle 1 makes the jump. We
have d(j+1) =d(j)+&ord(j+1) = (d(j)—&)" according as the jump is positive or negative,
respectively, where £ is a time between consecutive +’s. Thus, £ is exponentially distributed
with mean 1 and independent of all previous jumps.

If d(7) = 0, then both particles jump; if particle 1 tries to jump farther than particle 2,
then particle 1 collides with particle 2 and d(j + 1) = 0; otherwise, d(j + 1) = d(j) 4 ¢, where
¢ is distributed as the (positive) difference between two independent exponentially distributed
jumps with mean 1. By the memoryless property of the exponential distribution, we see that,
if d(j) = 0, then the events d(j 4+ 1) = 0 and d(j + 1) > 0 are equally likely, and in the latter
case, 0 is exponentially distributed with mean 1 and independent of earlier jumps. Based on

these observations, we can write

QL
S
o,
Sa—’

(

di-D+&)T, 7=1,2,...
(4.12)

o) = r,
where the £;’s arei.i.d. random variables with F[{;] = 0 and with |{;| exponentially distributed
with mean 1. Now the number of collisions of particle 1 is distributed as the number of
transitions d(j) — d(j + 1) = 0 in [tg,to + m]. The total number of transitions in [to, o +
m] is bounded from below by the number of jumps of particle 2 in [tg,t9 + m], which is

Poisson distributed with mean m. Then the lemma (with k. = 2) is an easy consequence of
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Corollary 2.1. |

Now consider a general k. > 2 (k odd) and the motion of particles 7 and i 4+ 1, 1 < ¢ < ki,
during [to,to + m], given that y,41(t0) — v:(to) = 7 > 0. To bound the number fy)(m) of
collisions of particle ¢, we will study a simple two-particle process. Imagine that the particles
of an isolated two-particle process z(t) = (21(¢), z2(t)) are activated at time tg; particles 1 and
2 of z move in parallel with particles ¢ and ¢« 4+ 1 of y according to the given sequences of +’s
and —’s in columns ¢ and 7 + 1. Particle 1 of z starts out in the same position as particle ¢ of
y. This is also true of particles 2 and ¢ + 1 of z and y unless the latter is in a collision state
with particle ¢ 4+ 2, in which case particle 2 starts out in the position of the next 4+ in column
1+ 1 below particle 7 + 2. The key observation is that, if #; is the time of the first collision of

particle 7 after tg, then
21(1) < wilt),  z(t) > yiq(t), to<t <ty . (4.13)

To see the first inequality, note that y;(¢) < yi+1(¢), to < t < t1, so —’s encountered in column
i during [to,t1] are matched to +’s in column i. Each such — causes both particle 1 of z
and particle ¢ of y to jump down to the next 4. These are the only jumps of particle 1, so
71(t) < yi(t), to <t < ty, with strict inequality when 4’s in column ¢ are matched to —’s to
the left of column ¢ according to the process y.

To see the second inequality in (4.13), note that while y;(¢) < yi41(t) < yig2(t) < -+ <
Yk, (t) holds, particle 7 + 1 jumps downwards from a + only when that 4 is matched to a —
encountered in column ¢+ 1. Such —’s cause particle 2 to jump all the way down to the next
+; particle ¢ = 1 can also jump this far, but it may fall short if it collides with particle ¢ + 2.
We conclude that, since particle 2 starts out at a + located at or below particle 7 + 1, it can
not be passed by particle i 4+ 1 in [tg, ?1].

By a standard coupling argument (see e.g. Ross [9], p. 155), (4.13) shows that, if the initial
particle separation of z is set to r + (, where the random variable { is exponentially distributed
with mean 1, then the time to the next collision of particle 1 in z is stochastically at least as
large as that of particle ¢ in y. The inter-collision intervals after ¢; begin with the separation
state r = 0. Thus, extending the bounding process z to any interval [ty, %o + m], we can define
the following difference sequence for z:

d0) = 7+

dG) = G if dj-D+&<0 j=1 (4.14)
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= d(j—1)+¢&;, otherwise,

where the {; are as in (4.12) and the (;, j > 0, are independent and exponentially distributed
with mean 1. Here, a (; corresponds to an initial move of particle 2 to the next 4 so as to

guarantee (4.13). Note that {d(j)} and {d(j)} differ only in their behavior near the origin;
{d(j)} has a reflecting barrier there, whereas {d(j)} has the elastic barrier of the Lindley
process. By our earlier observations, the number fy)(m) of collisions of particle ¢ in [tg, tg + m]

with d;(to) = r is stochastically at least a large as the number f.(m) of times {d(j)} reflects
at the origin in [tg,to + m], with dN(O) =r+ {o. Thus,

ELFO(m)] > Bl (m)] (4.15)

and it remains to bound E[f.(m)].

It is easily verified that, if the sample paths of {d(j)} and {d(7)} are constructed from the
same samples £;, j > 1, then for each j, J(]) —d(j)is nonnegative and bounded by the distance
that {d(j)} reflected from the origin on its most recent reflection there. It follows that d(j) is
stochastically no larger than d(j)+ ¢, where ( is exponentially distributed with mean 1. As an
easy consequence of this fact, the expected number of reflections of {dN(])} in [to,to + m] is a
constant fraction of the expected time spent by {d(j)} at the origin during [to,fo + m]. Then
E[f,(m)] = Q(y/m) by the result for k. = 2, and the lemma is proved by (4.15). |

This completes the proof of part (i) of Theorem 4.1. We now prove part (ii), where k =
Q(n'/3) is assumed; this case is much simpler. The proof for the special case k = ©(n'/?) is

1/3, We adapt the technique of

already in hand, so assume that k grows strictly faster than n
Theorem 3.2 and Corollary 3.1 as follows.
Consider a two-dimensional representation for large k& and n. For convenience, assume that

1/3 This assumption is not essential; the argument below is easily modified

k. is a multiple of n
to handle general values of k. Partition the columns into n'/3 equal-size groups of consecutive
columns. Insert n'/3 — 1 new columns between the groups and place one new column just
to the left of the first group and one to the right of the last group. Next, as in the proof of
Theorem 3.2, shift +’s to the left and —’s to the right, stopping in each case at the nearest

new column. Focusing now on all but the first and last of the new columns, we have a random

instance for a new number of columns k, = n’f’;S - 1.

Construct the MFF matching M for this new, reduced instance, then shift the +’s and —’s

right and left back to their original position, extending the edges of M so as to keep the same
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pairs of points matched. In analogy with Theorem 3.2, we obtain the desired result from the
following three observations: (i) By the proof of the theorem for & = O(n'/?), the expected
number of points left unmatched by M is at least Q(n?/?), (i) the first and last new columns
which were excluded from the reduced instance have on the order of n?/? points, and (iii) the
weak F'F property of M is preserved in the shift of +’s and —’s back to their original positions.

Note that this technique also yields a proof for the Q(n2/3) lower bound for the continuous

case (k — o0), originally proved in [10]. |

5. Final Remarks

The techniques of this paper, in particular the reductions to matching problems, can also
be applied to proofs of asymptotic bounds for symmetric distributions on {1,...,k—1}. It is
not difficult to show that the symmetry of a given distribution guarantees the \/n dependence
of both upper and lower bounds, except for the trivial case where all item sizes are 1/2. These
bounds will also depend on shape parameters and how they vary with & or n.

Very few results exist on FF bin packing under more general distributions, discrete or
continuous. For example, consider a uniform distribution on {1,..., 7}, with a bin size k > j+2.
It is known that if j is sufficiently small relative to k (roughly at most v/k), then E[FF(L)] =
O(1) (see [1]). Simulations give convincing evidence that for many j, vk < j < k — 2, the
expected wasted space grows linearly in n. However, the proof of this result for any such j
remains an intriguing open problem. As shown recently in [6], results of this type do exist for

best-fit bin packing.
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