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http://www.research.att.com/~dsj/papers/exper.psBin Packing with Discrete Item Sizes,Part II: Tight Bounds on First FitE. G. Co�man, Jr.,Bell Labs, Lucent TechnologiesMurray Hill, New Jersey 07974D. S. Johnson, P. W. ShorAT&T LabsMurray Hill, New Jersey 07974R. R. WeberCambridge UniversityCambridge, England1. IntroductionWe study the First Fit (FF) packing of a list L of n items into a sequence of initiallyempty, equal capacity bins. The item sizes are all at most the bin capacity. According to FF,each successive item is packed in the �rst bin of the sequence that has room for it. FF is anon-line algorithm, in that items are assigned to bins in the order in which they are input, witheach assignment depending only on the packing constructed so far and without reference tothe sizes or number of remaining unpacked items. The FF packing also has a useful \o�-line"characterization, however: it can be constructed by packing the bins one at a time, for eachbin repeatedly adding the �rst as-yet-unpacked item that will �t, until no such items remain.(An easy induction establishes the equivalence of these two formulations.)For a given distribution of item sizes, we are interested in the following question: As afunction of n, what is the expected wasted space (total unused capacity of the occupied bins)in the �nal packing? In the classical continuous model, the bin size is taken to be 1 forconvenience, and the item sizes are independent samples from the uniform distribution on[0; 1]. In a discrete version of this model, the item sizes are independent samples from theuniform distribution on f1=k; 2=k; : : : ; (k � 1)=kg, for some k � 2 (trivialities are avoided bydisallowing items of size 0 or 1). In this case, results are normally expressed in terms of both nand k. Here, it is more convenient to take the bin size to be k and the item sizes to be uniformon f1; 2; : : : ; k � 1g. We measure wasted space in units of the bin size, so the results for thetwo discrete versions will be the same.



LetWFF (L) denote the wasted space in a First Fit packing of L. For the continuous model,Shor [10] proved that E[WFF (L)] = 
(n2=3) and E[WFF (L)] = O(n2=3 log1=2 n). This papershows that for any �xed value of k in the discrete model, E[WFF (L)] = O(pn), a signi�cantlyslower growth rate. This is a corollary of the more general result that E[WFF (L)] = O(pnk),i.e., there exists a constant � > 0 such that for all n and k su�ciently large, E[WFF (L)] ��pnk. Using this latter result, we prove that Shor's lower bound for the continuous case is infact tight, i.e. that for this case E[WFF (L)] = O(n2=3) and hence E[WFF (L)] = �(n2=3). Wealso prove a lower bound for the discrete case which shows that the O(pnk) upper bound istight if k = O(n1=3). Finally, we prove that if k = 
(n1=3) then E[WFF (L)] = �(n2=3), as inthe continuous model.This paper is the second in a series of papers currently being written based on the resultsannounced in [1] and [6]. The theme of the series is the extension of bin-packing theory toproblems in which item sizes are drawn from discrete distributions. The paper in the series mostclosely related to the current one is [3], which will analyze the behavior of the Best Fit algorithm(BF) under the same distributions we study here. BF is online like FF but places successiveitems into bins where they �t best, i.e., minimize the resulting leftover space. (A tie is resolvedin favor of the lowest indexed bin.) As in the case of continuous uniform distributions, BFslightly outperforms FF, the main result being that WBF (L) is �(pn log3=4 k) when k = O(n)and is �(pn log3=4 n) (the bound for the continuous uniform case) when k = 
(n). It doesnot appear that any on-line algorithm can do signi�cantly better than this. It is easy to seethat the expected waste must be at least �(pn), and, based on analogies with results for thecontinuous case in [10] and [11], we expect that the best possible on-line waste growth rate is�(pn log k) when k = O(pn) and �(pn logn) (the bound for the continuous uniform case)when k = 
(n).The other papers in the series consider a wider variety of discrete distributions, especiallythe distributions Ufj; kg, 1 � j < k� 1, where in Ufj; kg the item sizes are 1=k, 2=k, :::, j=k,all equally likely, and the bin size is 1. (In this terminology, the distributions considered inthe current paper are the Ufk � 1; kg.) For each such distribution with j < k � 1, paper [2]shows that there exists an on-line algorithm whose expected waste is bounded by a constant,independent of n. For many of these distributions, First and Best Fit also appear to havebounded waste (based on simulations). For Best Fit this is proved for several such distributionsin [4]. (Further results of this kind can be found in [8].) On the other hand, [4] also proves that2



Best Fit's expected waste is �(n) for Uf8; 11g and Uf9; 12g. Even such o�-line algorithms asFirst and Best Fit Decreasing (FFD and BFD) can have �(n) expected waste for some suchdistributions, and the behavior of these algorithms is investigated in [5].The current paper is organized as follows. In Section 2 we introduce a number of preliminaryresults needed in later sections. Sections 3 and 4 then prove the FF upper and lower bounds,respectively. Section 5 concludes the paper with remarks on extensions and open problems.2. PreliminariesInstead of analyzing FF packings of random lists of n items, for �xed n, it is more convenientto analyze FF packings of random lists of N items, where N is Poisson distributed with meann and independent of item sizes. The two models are called the �xed-n model and Poissonmodel, respectively. It is a trivial consequence of the following general lemma that the estimatesobtained for the Poisson model also apply to the �xed-n model. Let A(Ln) and A(LN ) be therespective numbers of bins required by an on-line algorithm A in packing lists Ln and LN inthe �xed-n and Poisson models. Similarly, de�ne WA(Ln) and WA(LN) for the wasted spaceunder A in the respective models.Lemma 2.1. Assume a general distribution F of item sizes on [0; 1]. ThenjE[A(Ln)]� E[A(LN)]j = O(pn) ;where the hidden multiplicative constant is independent of F .Remark. Since the expected occupied space in a packing of Ln is the same as that in apacking of LN , viz. n=2 in units of the bin size, Lemma 2.1 also shows that, for the expectedwasted space, jE[WA(Ln)]�E[WA(LN)]j = O(pn) :Proof. Consider the A packing of a list of n items, with sizes drawn independently from thedistribution F . For j a sample of a random variable J distributed asN�n, modify the packingas follows. If j > 0, then extend the given A packing by packing j more items with sizes drawnindependently from F . If j < 0, then remove the last jjj items of the given A packing; thiswill empty just those bins started by the last jjj items packed. Because A is on-line, the aboveoperation produces an A packing of a random list of n + J items, where n + J is equal in3



distribution to N . Moreover, it is easy to see that the numbers of occupied bins added whenj > 0, and subtracted (emptied) when j < 0 are at most jjj. The lemma follows from thebound EjJ j = EjN � nj = O(pn) given by standard estimates of the Poisson distribution. �Hereafter, unless stated otherwise, the Poisson model of FF packing is to be assumed. Tobe consistent with standard formulations of the bin-packing problem, we have chosen to usethe �xed-n model in the statements of the main theorems. For simplicity, the above subscriptconvention for L will be dropped in what follows.As in [11] we express instances L in terms of the sample paths of a Poisson process intwo dimensions. Figure 1 gives an example. We describe the method �rst with k odd. The+1 2 3 bk=2c�� s �+ ++� ��+ +� +n=(k � 1)t 0Figure 1: L as the superposition of Poisson processes.discrete horizontal dimension consists of k�12 columns indexed by s. The continuous verticaldimension is a time axis with the time t starting at 0 at the top of the �gure and increasing asone goes downward (to be consistent with the literature). In each column, sample paths of twoindependent Poisson point processes are laid out, each at rate 1, one generating points labeledwith a + and the other generating points labeled with a �. The list L is constructed top-downfrom the points that appear in the interval [0; n=(k � 1)]; a � in column s becomes an itemof size s < k=2 in L, and a + in column s becomes an item of size k � s > k=2 in L. Thesuperposition of all k � 1 processes, two per column, gives a Poisson process at rate (k � 1).Thus, the number N of points in L is Poisson distributed with mean (k � 1) � n(k�1) = n, as4



desired. Each successive point of the superposition process is equally likely to be a + or �,and it is equally likely to be in any one of the k�12 columns. Thus, successive items in L havesizes independent and uniformly distributed on f1; : : : ; k � 1g, again as desired.If k is even, the independent Poisson processes of +'s and �'s are laid out in k=2 columns;the processes in the �rst k2 � 1 columns are at rate 1 as before, but in column k=2 the + and �processes each have rate 1=2. The list is constructed as before, but note that both +'s and �'sin column k=2 become items of size k=2 = k � k=2. It is easy to verify that the constructionagain gives lists of N independent item sizes uniformly distributed over f1; : : : ; k� 1g with NPoisson distributed and with E[N ] = n.Our bounds on expected wasted space will invariably be expressed in terms of algorithmsmatching +'s and �'s in the above two-dimensional instances. These matching algorithmsall satisfy the constraint that the sizes of the items represented by a matched + and � mustsum to at most k. Thus, since matching a + in column s to a � in column s0 correspondsto matching items with respective sizes k � s and s0, we must have k � s + s0 � k and hences � s0. Graphically then, our matching constraint means that, for each matched pair, the +must be to the right of or in the same column as the �.For matching algorithm A, MA(L) denotes the set of pairs of matched points in L, orequivalently, the set of edges (straight-line segments) connecting the paired +'s and �'s. LetUA(L) count the number of points left unmatched, i.e., UA(L) = N � 2jMA(L)j. The connec-tion between matching and packing lies in the fact that a matching algorithm A corresponds inan obvious way to a packing algorithm A; in the A packing of L, each pair in MA(L) is packedinto a single bin, as is each unmatched item counted by UA(L). The two interpretations of Ayield the following simple result.Lemma 2.2. For the matching/packing algorithm A and any symmetric distribution of itemsizes on f1; : : : ; k � 1g (i.e., any distribution for which the probability of size i equals that ofsize k � i, 1 � i < k=2), the expected wasted space under A for a random list L satis�esE[WA(L)] = 12E[UA(L)] (2.1)E[WA(L)] � 1k X1�i�jMA(L)jE[HAi ] ; (2.2)where HAi is the horizontal component of the ith edge in MA(L).5



Proof. The number of occupied bins in the A packing of L is A(L) = (N�UA(L))=2+UA(L),so that E[A(L)] = 12E[N ] + 12E[UA(L)]. We have N items of average size k=2, so in unitsof the bin size, 12E[N ] is the expected occupied space. Then (2.1) gives the expected wastedspace.The horizontal component of an edge in MA(L) is the wasted space in the bin containingthe pair of items connected by the edge; dividing by k gives the wasted space in units of thebin size. Summing the expected value over all edges yields the lower bound in (2.2). �The analysis of matching algorithms will often reduce to the analysis of a processW0 = 0 ;Wj = (Wj�1 + �j)+ ; j � 1 ; (2.3)where x+ = max(0; x), and where the �j are the successive steps of a random walk in R+.Figure 2 shows an example. The sequence fWjg is a Lindley process and can be viewed asthe queueing process induced by the random walk fSjg, with Sj = P1�i�j �i (Feller [7]),Sect. VI.9). In the applications of this paper, the i.i.d. random variables �i satisfyE[�i] = 0; �2 <1 ; (2.4)where �2 denotes the variance of the �i's.Lemma 2.3. Under the assumptions in (2.4), E[Wj] = O(pj), where the hidden multiplicativeconstant depends only on �.Proof. Solving (2.3), one can show by induction that Wj d= maxf0; S1; : : : ; Sjg (Feller [7],p. 197), where d= denotes equality in distribution and is justi�ed here by the fact that the �iare independent and identically distributed. Then we can writeE[Wj] = Z 10 Prfmaxf0; S1; : : : ; Sjg > xgdx� pj + Z 1pj Prfmaxf0; S1; : : : ; Sjg > xgdx : (2.5)Since the �i have zero means, we have by Kolmogorov's inequality (Feller [7], p. 235, eq. (8.3))Prfmaxf0; S1; : : : ; Sjg > xg � j�2=x2 whereupon substitution into (2.5) proves the lemma. �Let Qj denote the number of times that Wi = 0 in the sequence W1; : : : ;Wj . The FFlower-bound argument will need the following lower bound on E[Qj].6
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Figure 2: fWjg and fSjg illustrated as step functions.Lemma 2.4. Under the assumptions (2.4), E[Qj] = 
(pj).Proof. The descending ladder epochs of the random walk fSig are those index valuesi � 0 where the position of the walk is lower than at any preceding epoch (see Fig. 2). Itis easily veri�ed that Qj is equal in distribution to the number of descending ladder epochsencountered by S1; : : : ; Sj (Feller [7], p. 196). Moreover, under (2.4) this quantity has the samedistribution as in the classical symmetric random walk with step sizes �1 (Feller [7], p. 396,Corollary 1). In the latter random walk the probability that, for any � > 0, the position after jsteps is less than ��pj is bounded away from 0 for all j su�ciently large. The lemma followsat once from the trivial observation that the classical random walk must encounter at least rdescending ladder epochs in reaching a �nal position of �r. �7



Although estimates more precise than Lemmas 2.3 and 2.4 are possible, they will not beneeded. A further advantage of their present form is that the following generalization is trivialto prove. The details are left to the interested reader.Corollary 2.1. Let the process fWig have an initial state W0 = O(pj), and consider J stepsof the process, where J is Poisson distributed with mean j. Then Lemmas 2.3 and 2.4 stillhold, i.e., E[WJ ] = O(pj) and E[QJ ] = 
(pj).3. The FF Upper BoundWe begin with an analysis of an algorithm that majorizes FF. This approach mimics thatin [10], where the problem with continuous item sizes is analyzed. We de�ne the matchingFirst Fit (MFF) algorithm as follows, in terms of the item labels introduced in Fig. 1. As inthat �gure, let s and t denote respectively a horizontal size coordinate (column index) and avertical time coordinate. Recall that the size dimension is \folded"; a point with size coordinates represents an item of size s if the point is a �, but an item of size k � s if the point is a +.The �rst item (the one with smallest t coordinate) is packed in the �rst bin. The bin is thenclosed if the item was a �; otherwise, it remains open for another item. Thereafter, if the nextitem to be packed is a +, it starts a new bin, which remains open. If the next item is a �, itis packed in the �rst open bin, if any, in which it �ts; if no such open bin exists, then the �starts a new bin. In either case, the bin receiving the � is then closed. Note that if k is odd,then MFF is the same as FF, except that it closes a bin whenever it receives a �. When k iseven, there is a further di�erence between MFF and FF: MFF rejects opportunities to packtwo items of size k=2 into the same bin unless the �rst is a + and the second is a �.MFF has the following useful monotonicity property, which FF does not share.Lemma 3.1. (Shor [10]) Suppose L0 is obtained from L by the removal of one or more items,leaving the ordering of items unchanged. Then MFF (L0) �MFF (L).Shor [10] proves this result for the continuous case, but his arguments carry over directlyto our discrete model; the details are left to the interested reader. Shor also proves thatWMFF (L) � WFF (L) for all L in the continuous case. Unfortunately, this result holds inour discrete model only for k odd, where the special case of items of size k=2 does not arise.However, we need only the average-case majorization, as given in the next result, which holdsfor all k. 8



Lemma 3.2. Let the items of L be independent with a general distribution on f1; : : : ; k � 1gfor any k > 1. Then E[WFF (L)] � E[WMFF (L)].Proof. We have WMFF (L) � WFF (L) for all L when k is odd by the arguments of [10] forthe continuous case, which we omit. Thus, the lemma holds trivially for k odd. Assume thatk is even for the remainder of the proof.Consider the FF (L) packing, i.e., the FF packing of list L. The nonempty bins are of5 types, to be denoted h+i, h++i, h�+i, h�i, h��i. A type-h+i bin contains only a +. Atype-h++i bin contains two +'s of size k=2 and a type-h��i bin contains two �'s of size k=2.Type-h�+i bins include all those bins that start with a + except the type-h+i and type-h++ibins. Similarly, type-h�i bins include all those bins that start with a � except the type-h��ibins. Let �+ and �� be the numbers of type-h++i and type-h��i bins, respectively.We claim that, if a type-h++i bin is removed from the FF (L) packing, then an FF (L0)packing remains, where L0 is obtained from L by deleting the items, say X and X 0, that werein the type-h++i bin removed, and by retaining the order of the remaining items in L. LetX come before X 0 in L, so X 0 is the �rst item of size k=2 following X in L; and let Bi bethe bin containing X , X 0 in the FF (L) packing. To verify the claim, note �rst that all itemsthat came before X in L were packed in B1; : : : ; Bi�1, so they will be identically packed inB1; : : : ; Bi�1 of the FF (L0) packing. Any � following X in L �ts with X , so all �'s betweenX and X 0 in L must have been packed in B1; : : : ; Bi�1; then these items will also appear inthe FF (L0) packing just as they did in the FF (L) packing. All +'s between X and X 0 havesizes > k=2 and had to be packed in Bi+1; Bi+2; : : :, for otherwise, X could have been packedinto a bin Bj , j < i. Thus, these +'s appear in Bi; Bi+1; : : : in the FF (L0) packing in the samesequence as before. When X 0 was packed in Bi, Bi became full. Thus, if an item following X 0in L appeared in Bj in the FF (L) packing, it will appear in Bj in the FF (L0) packing if j < i,and in Bj�1 if j > i. The claim follows.Now remove all type-h++i bins from the FF (L) packing to obtain the FF (L1) packing,where L1 is obtained from L by removing all items that appeared in type-h++i bins in theFF (L) packing. Next, remove from L1 all items except those that were either items packed�rst in any bin or are �'s that were packed second in bins of type-h�+i. We are left with type-h+i bins containing only a +, as before; type-h�+i bins containing only a + and � with the+ packed �rst; and type-h�i bins containing only a �. Let L2 be the list of remaining items,and call the above packing of L2 the reduced packing. We claim that the reduced packing is9



an MFF (L2) packing.To verify the claim, note that each bin type in the reduced packing is a valid MFF bintype, by the de�nitions of L2 and MFF. Suppose the �rst i bins of the reduced packing are anMFF packing of the items contained in these bins, and consider where MFF would pack theone or two items in the (i + 1)st bin of the reduced packing. By the de�nition of MFF, theonly open bins among the �rst i are type-h+i bins. But these were also type-h+i bins in theFF (L) and FF (L1) packings. Since the items in the (i+ 1)st bin of the reduced packing didnot �t in these type-h+i bins of the FF (L1) packing, they would be packed by MFF into an(i+ 1)st bin just as they appear in the reduced packing. A simple induction thus establishesthe claim.Now add back to L2 the �� �'s of size k=2 that were removed from type-h��i bins in theFF (L1) packing, preserving the order of items in L. Our �nal claim is that the MFF packingof the new list L3 consists of the bins of the MFF (L2) packing plus �� new type-h�i bins;the new type-h�i bins will be interspersed among the bins of theMFF (L2) packing accordingto the positions of their items in L3, but the ordering of the bins of the MFF (L2) packingwill be preserved. This claim is proved by the same reasoning as before. Suppose just one �of size k=2 is returned to L2. When that item comes to be packed by MFF, it can not �t inany open bin, because such a bin would have to be a type-h+i bin which also existed in theFF (L) and FF (L1) packings. Then MFF packs the new � of size k=2 in a new bin, which itthen closes. An easy induction on �� completes the argument.By the previous claim and the de�nition of L1, we haveMFF (L3) =MFF (L1) + �� = FF (L1) + �� = FF (L)� �+ + �� :By Lemma 3.1,MFF (L3) �MFF (L), soE[FF (L)] � E[MFF (L)] +E[�+]�E[��] :But FF packings are determined solely by item sizes, not labels. Thus, since items of sizek=2 are equally likely to be labeled + or �, we get E[�+] = E[��], and hence, E[FF (L)] �E[MFF (L)]. The FF (L) andMFF (L) packings have the same occupied space, soE[WFF (L)] �E[WMFF (L)], and the lemma is proved. �The preliminaries to the upper bound proof conclude with combinatorial properties of MFFviewed as a matching algorithm. In the instance L, scan the �'s top-down, matching each to10



the highest unmatched +, if any, above and to the right of the � (this also includes +'s directlyabove the �). Figure 3 shows an example. It is easy to see that, in the �nal matching, twot 1 2 3+� bk=2c+��+ ++ �+� + (d)(b)(c)(a)
0

n=(k � 1)Figure 3: An MFF matching. Points a; b; c, and d illustrate the weak FF property.items are matched if and only if they are packed in the same bin by MFF. Lemma 2.2 thenapplies to MFF as a matching algorithm, so by Lemma 3.2,E[WFF (L)] � E[WMFF (L)] = 12E[UMFF (L)] : (3.1)Note that MFF matchings are in the class of up-right matchings, i.e., matchings in whicheach edge goes up and to the right from the � to the + (these edges include those going straightup or directly to the right). Observe also that MFF matchings satisfy the property that, if(a; b) and (c; d) are any two (�;+) edges with time coordinates satisfying ta > tc > td > tb,then their size coordinates satisfy sb < sc. (See Fig. 3 for an example.) This property holdsbecause if sc � sb, then MFF would have matched c to b instead of d. We shall be introducingup-right matchings with the following weaker property implied by sb < sc; such matchings willbe easier to analyze.TheWeak FF property: If (a; b) and (c; d) are (�;+) edges with time coordinates satisfyingta > tc > td > tb, then their size coordinates satisfy sa � sd.In the upper-bound proof below, we analyze an algorithm that generates matchings withthe weak FF property. The following result shows that the expected number of points left11



unmatched by this algorithm will give an upper bound on the expected number left unmatchedin MFF matchings. The proof in [10] for the continuous case carries over directly to the discretecase.Lemma 3.3. (Shor [10]) For any instance L, the MFF matching has a cardinality at least thatof any up-right matching with the weak FF property.With these preliminaries, we are now ready for the upper-bound theorem.Theorem 3.1. Let L be a list of n items with sizes drawn independently and uniformly atrandom from f1; : : : ; k � 1g. Then E[WFF (L)] = O(pnk).Proof. We prove the result for MFF (L) under the Poisson model with parameter n; thetheorem will then follow from (3.1) and Lemma 2.1. First, we prove that the argument canbe restricted to odd k. Consider some even k and a random instance L(k) for this bin size.We produce as follows a random instance L(2k�1) for bin size 2k � 1. Each of the �rst k2 � 1columns is expanded into two columns; as shown in Fig. 4, column 1 of L(k) is expanded intocolumns 1 and 2 of L(2k�1), column 2 of L(k) is expanded into columns 3 and 4 of L(2k�1), andso on, with column k2 of L(k) becoming column k� 1 of L(2k�1). For each s = 1; : : : ; k2 � 1, the+'s and �'s in column s of L(k) are each assigned by an independent toss of a fair coin to eithercolumn 2s� 1 or column 2s of L(2k�1), retaining the same time coordinate in L(2k�1). By theproperties of Poisson processes, it is easy to see that this �ltering of the original processes doesindeed produce a random instance for bin size 2k�1. (Note the harmless rescaling of the latterinstance in terms of k0 = 2k� 1; the standard rate of the Poisson + and � processes has beenhalved, but the length of the standard interval has been doubled, since n=(k�1) = 2n=(k0�1).)Now construct a matching of L(k) such that two points of L(k) are matched if and only ifthey are matched in the MFF matching of L(2k�1) (see Fig. 4). Let A denote this procedure sothatMA(L(k)) is the matching constructed. It is easy to verify that the edges ofMA(L(k)) mustbe up-right (since the edges ofMMFF (L(2k�1)) are ) and that, althoughMA(L(k)) need not bean MFF matching, it retains the weak FF property of such matchings. Then by Lemma 3.3,UMFF (L(k)) � UA(L(k)) = UMFF (L(2k�1)), and since L(k) and L(2k�1) are random instancesfor bin sizes k and 2k � 1, we have E[UMFF (L(k))] � E[UMFF (L(2k�1))]. We conclude from(3.1) that, if the O(pnk) expected waste bound holds for k odd, then it must hold for k even.12



1 32 4 5 6��+ + + ++ ++ ��� �2n=(k0 � 1)
bk0=2c = 7(Note that the matching shown is not an MFF matching.)

Constructed instance for k0 = 2k � 1 = 15and an MFF matching

2 31 bk=2c = 4�++ ++ �� � �n=(k � 1) +�++ Given instance for k = 8
Figure 4: Converting an instance for k to one for k0 = 2k � 1.In the remainder of the proof, assume k is odd. Convenient notation will be k� = bk=2c forthe number of columns in Fig. 1, and n� = n=(k � 1), for the length of the time interval. Wetake n� to be an integer, an assumption that can a�ect only hidden multiplicative constants.Next, we de�ne an algorithm that is easier to analyze than MFF. The algorithm is de�nedas follows in terms of a grid or lattice superimposed on the instance L. As shown in Fig. 5,place n� equally spaced grid points on each of the columns, 1; : : : ; k�. Note that n�k� = n=2.In the �rst step, scan the �'s top-down, matching each to a highest available grid point, if any,above and to the right of the �, resolving ties by choosing the right-most such point. Availablemeans simply that the grid point has not already been matched.In the second step, the +'s are matched to grid points in a complementary fashion. Scanningtop-down, match each + to the highest available grid point below and to the left of the +,with ties decided in favor of the left-most such point. In this case, available means not already13



n� = 6

1 320t k� = 4

Figure 5: Matching �'s to grid points (+'s not shown).matched to a +. Finally, the third step constructs an up-right matching of �'s to +'s bymatching a � with a + if and only if they are matched to the same grid point. Denote this�nal matching by M = M(L) and let U = U(L) be the number of points left unmatched byM . In what follows, the matchings of �'s and +'s to grid points in the �rst two steps will becalled the � and + grid matchings, respectively.Lemma 3.4. The matching M has the weak FF property.Proof. To violate the lemma we need (�;+) edges (a; b) and (c; d) inM with ta > tc > td > tb,but sd < sa, as shown in Fig. 6. Let gab and gcd be the grid points coupling a, b and c, d,respectively, according to the grid matchings producing M . Figure 6 shows the three caseswhere gcd is above, below, and at the same level as gab. (Note that there are two possibilitieseach for the relative positions of gab, gcd and their associated edges. The argument is thesame no matter which possibility holds and only one is shown for each case in Fig. 6.) The�rst case would violate the + grid matching, since b would be matched to gcd as the highest14



available below-left grid point. This would also apply in the third, equal-height case, becauseof the tie-breaking rule. Finally, the second case would violate the � grid matching rule, sincec would be matched to gab as the highest available up-right grid point. �In the remaining, probabilistic part of the proof we show that E[U ] = O(pnk); this boundtogether with (3.1) and Lemmas 2.1, 3.3, 3.4 proves the theorem. To prove the bound, weanalyze the + and � grid matchings individually. The analyses of these two matchings willbe rather di�erent, although they eventually reduce to the analysis of very similar interactingparticle systems. The reason for the di�erence is that the � and + grid matchings are notentirely symmetric. To obtain symmetry, we could have required +'s to be matched to gridpoints in a bottom-up scan, matching each + to the lowest available grid point below and tothe left of the +, with ties resolved in favor of the left-most such point. But the �nal matchingM would not then have had the weak FF property, as the reader can easily verify.Let N+ and N� be the numbers of +'s and �'s in L, respectively. In the construction ofM , let U (g) be the number of grid points that are not matched to both a + and a �. Thenn=2 � U (g) is the number of grid points matched to both a + and �, and therefore also thenumber of +'s and �'s matched in M . SoU = N+ � (n=2� U (g)) +N� � (n=2� U (g)) :We conclude that E[U ] = 2E[U (g)] ; (3.2)since the means of N+ and N� are both n=2.Now de�ne U (g)+ and U (g)� as the numbers of grid points left unmatched in the + and �grid matchings, respectively. We have U (g) � U (g)+ + U (g)� , since the grid points counted byU (g)+ and U (g)� need not be the same. Then by (3.2),E[U ] � 2E[U (g)+ ] + 2E[U (g)� ] : (3.3)Letting U+ and U� be the respective numbers of + and � points left unmatched in the + and� grid matchings, we note also thatE[U+] = E[N+ � (n=2� U (g)+ )] = E[U (g)+ ] (3.4)Below, we show �rst that E[U (g)� ] = O(pnk) and then that E[U+] = O(pnk). By (3.3) and(3.4), the theorem will then be proved. 15
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Figure 6: Illustrating Lemma 3.4. (Recall that time increases downward.)16



Proof of E[U(g)� ] = O(pnk): Consider the � grid matching process illustrated in Fig. 5. Letmi(t) denote the number of unmatched grid points at time t in column i, 1 � i � k�, withvertical coordinates in [0; t], 0 � t � n�. ThenE[U (g)� ] = k�Xi=1 E[mi(n�)] : (3.5)From the de�nition of the matching rule, we see that when a grid point is matched, all gridpoints up and to its right must already be matched. It follows easily thatt � m1(t) � m2(t) � � � � � mk�(t) � 0 ; 0 < t � n� : (3.6)Note that the joint process m(t) = (m1(t); : : : ; mk�(t)) is Markovian with a continuous timeparameter. The mi(t) may be viewed as the positions of k� particles in the interacting-particleprocess m(t). The interactions are determined by (3.6), i.e., the position of the ith particleacts as a barrier to the motion of the (i � 1)st particle, 1 < i � k�. At each integer time upto n�, a new row of unmatched grid points is introduced, so each mi increases by 1 at integertimes. When a � is encountered, say at time t in column i, then the particles do not move ifmi(t) = mi+1(t) = � � �= mk�(t) = 0; otherwise, mj(t) decreases by one, where j is the smallestindex, i � j � k�, such that mj(t�) > mj+1(t�), with the conventions that t� is the timein�nitesimally prior to t and that mk�+1(t) = 0, t � 0. The former event means that the � isleft unmatched, and the latter event corresponds to matching the � to the highest availablegrid point in column j.Because the sequences of �'s in the k� columns are independent, the behavior of m(t)suggests that of the order statistics of k� independent particle processes. Indeed, let ~m(t),~m(0) = 0, be a process stochastically the same as one of the mi(t) in isolation, i.e., ~m(t)increases by 1 at integer times and decreases by 1 whenever ~m(t�) > 0 and a � appears attime t. A comparison of transition probabilities shows that, if ~mi(t), 1 � i � k�, denote k�independent copies of ~m(t) with ~mi(0) = 0, 1 � i � k�, then (m1(t); : : : ; mk�(t)) is equal indistribution to ( ~m(1)(t); : : : ; ~m(k�)(t)), where ~m(i)(t) denotes the ith largest of the ~mi(t). Butthen, by (3.5), E[U (g)� ] = k�Xi=1 E[ ~m(i)(n�)] = k�Xi=1 E[ ~mi(n�)] (3.7)= k�E[ ~m(n�)] ;17



so our problem has reduced to the analysis of the one-dimensional process ~m(t).Let fWjgj�0 be the Markov chain embedded in ~m(t) just before integer times, withW0 = 0.This chain is a random walk with a barrier at the origin and transitions Wj�1 ! Wj , j � 1,that balance an increase of one at time j � 1 with a decrease of one for every � that appearsin (j � 1; j) at times t with ~m(t�) > 0. ThenWj = (Wj�1 + �j)+ ; j = 1; 2; : : : ; (3.8)where the �j are independent and equal in distribution to 1��j , with the �j being independentPoisson distributed random variables having unit means and variances. Since the �j satisfy(2.4) we obtain from Lemma 2.3, E[Wn�] = O(pn�) : (3.9)Now ~m(n�) = Wn� + 1 almost surely, so (3.7) and (3.9) along with k�pn� = pnk�=2 =12pn(k � 1) give the desired result, E[U (g)� ] = O(pnk).Proof of E[U+] = O(pnk): The + grid matching process is illustrated in Fig. 7. As can bet
...
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t0 q1(t�0 ) = 2 > q2(t�0 ) = q3(t�0 ) = 1 > q4(t�0 ) = 0
k� = 4

...Figure 7: The + matching just before a + at t0 is matched.seen, the matched grid points no longer have the simple structure of Fig. 5; the grid points18



of any column are not necessarily matched in a contiguous sequence starting from the top.However, we do have the following useful property. At time t in the matching process, letqi(t) � 0 denote the number of grid points below t in column i that have already been matchedto +'s encountered in [0; t]. An easy induction establishes thatq1(t) � q2(t) � � � � � qk�(t) � 0 ;and that in column i at time t the matched grid points with vertical coordinates exceeding tform a contiguous sequence for each i, 1 � i � k�. Figure 7 gives an illustration.De�ne a process ~q(t), ~q(0) = 0, on a single column having a Poisson pattern of +'s at rate1; ~q(t) decreases by 1 at integer times t when ~q(t�) > 0 and increases by 1 whenever a + isencountered. Note the symmetry between ~q(t) and the process ~m(t) of the earlier analysis.Let ~q1(t); : : : ; ~qk�(t) be k� independent copies of ~q(t) with ~qi(0) = 0, 1 � i � k�. Using theearlier arguments, the key observation now is that (q1(t); : : : ; qk�(t)) is equal in distribution to(~q(1)(t); : : : ; ~q(k�)(t)).To make use of this fact, extend the lattice below n�, and extend the matching process sothat all +'s are matched to grid points. Then at time n� the +'s matched to grid points belown� are just those +'s left unmatched by the original + grid matching process. Thus,E[U+] = k�Xi=1 E[qi(n�)] = k�Xi=1 E[~q(i)(n�)] = k�E[~q(n�)] : (3.10)As before, to obtain E[~q(n�)] we analyze a Markov chain fcWjg0�j�n� embedded in ~q(t) atinstants just before integer times, with cW0 = 0. In analogy with (3.8), we getcWj = (cWj�1 + b�j)+; j = 1; 2; : : : ; (3.11)where b�j has zero mean and unit variance. Lemma 2.3 again gives E[cWn�] = O(pn�) andhence E[~q(n�)] = O(pn�). By (3.10), we obtain E[U+] = O(pnk) as before, thus completingthe proof of the theorem. �Recall that, in the continuous problem, the bin size is 1 and the item sizes are drawn fromthe uniform distribution on [0; 1]. Together with appropriate transformations between discreteand continuous problem instances, Theorem 3.1 provides the basis for proving a tight upperbound for the continuous case.Theorem 3.2. Let n item sizes be drawn independently from the uniform distribution on [0; 1].Then E[FF (L)] = �(n2=3) :19



Proof. The lower bound E[FF (L)] = 
(n2=3) was proved in [10], so we need only proveE[FF (L)] = O(n2=3). As in Theorem 3.1, the proof reduces to the analysis of an up-right matching problem. Again, we prove the result for the Poisson model, and then applyLemma 2.1.In analogy with the discrete case, consider an instance L in two dimensions as shown inFig. 8, where the N points are those of a Poisson pattern with intensity n that fall in therectangle [0; 12 ] � [0; 1]. The �rst step of the proof transforms this instance into one for a0 14 x
y

�++ 12+� � ++ +�� �
18 38

Figure 8: A continuous instance L.discrete uniform distribution on item sizes, so that we can apply Theorem 3.1. Let kn, n � 1,be a sequence of odd integers such that kn = �(n1=3). For given n, construct verticals atx = i2(k�+1) , 0 � i � k� + 1 = bkn=2c+ 1, as shown in Fig. 8. Move each + horizontally to thenearest vertical on its left, and move each � horizontally to the nearest vertical on its right.Consider the resulting discrete instance L0 restricted to the interior verticals at x = i2(k�+1) ,1 � i � k�. The second step inserts the edges of an MFF matching for L0. Figure 9 gives anillustration. Recall that this set of edges has the weak FF property. Let U 0 be the number ofpoints in L0 unmatched by the edges.The number N 0 of points in L0 has the expected value E[N 0] = E[N ]� E[Z], where Z20
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Figure 9: A matching for L0 after shifting the points of L in Fig. 8.counts all of the boundary points on the verticals at x = 0 and x = 1. By our choice of k,the numbers of +'s and �'s on each of the k� + 1 verticals are Poisson distributed with mean12E[N ]=(k�+ 1) = �(n2=3). Then E[Z] = �(n2=3) and E[N 0] = �(n). Thus, by Theorem 3.1the expected number of unmatched points in L0 is E[U 0] = O(pnk) and hence E[U 0] = O(n2=3).The third and �nal step shifts all of the +'s and �'s, including those on the boundaries,back to their original positions, extending the edges between paired points as necessary topreserve the matching. Trivially, since the +'s move right and the �'s move left in this step,the edges remain up-right. Moreover, it is easy to see that the weak FF property of the edgesis preserved under the shift of the +'s and �'s. Thus, by Lemma 3.3 applied to the continuouscase [10], the expected number of points left unmatched by the MFF matching of the originalinstance L is at most E[UMFF (L)] � E[U 0] + E[Z]. Since E[U 0] and E[Z] are both O(n2=3),we conclude that E[UMFF (L)] = O(n2=3). (Note that we needed the choice k = �(n1=3) so asto balance E[U 0] and E[Z], i.e., to have both bounded by O(n2=3).) Then (3.1) applied to thecontinuous case [10] proves the theorem. �Returning to the discrete uniform distribution, we remark that if k = kn is taken asa function of n in Theorem 3.1, then the O(pnk) upper bound is sharp only if kn growssu�ciently slowly. As might be expected, if the discretization is �ne enough relative to n, thenthe asymptotic result for the discrete case is the same as for the continuous case. In particular,21



we have the following corollary to Theorem 3.2.Corollary 3.1. Let the item sizes in L have a discrete uniform distribution with k = 
(n1=3).Then E[WFF (L)] = O(n2=3) :Proof. The proof technique is similar to that in Theorem 3.2. Consider only odd values ofk; even k can be handled as in Theorem 3.1. Suppose we are given a random instance L forthe continuous problem with intensity n(k + 1)=(k � 1). Construct (k � 1)=2 equally spacedinterior verticals through [0; 1=2]� [0; 1] as shown in Fig. 10. In each of the k+12 vertical stripsmove �'s to the nearest vertical on the left and +'s to the nearest vertical on the right leavingtime coordinates unchanged. Now look upon the (k�1)=2 interior verticals as an instance L(k)for bin size k. A column in L(k) receives +'s from the vertical strip to its left and �'s from thevertical strip to its right; the total number of these points is equal in distribution to the totalnumber in a vertical strip, and hence is Poisson distributed with mean n(k+1)k�1 � 1(k+1)=2 = 2nk�1 .Thus, the instance L(k) is a random instance of N items for bin size k, where N is Poissondistributed with mean n.Next, construct a matching of points in L(k) by matching two points if and only if they arematched in the MFFmatchingMMFF (L) of the original continuous instance. Let A denote thisprocedure so that MA(L(k)) denotes the matching of the points in L(k). By the constructionprocess (+'s move right and �'s move left), the edges of MA(L(k)) must be up-right sincethe edges of MMFF are. Moreover, although MA(L(k)) need not be an MFF matching, itretains the weak FF property of such matchings. Points of the continuous instance that weremoved to the left or right boundary verticals, and hence outside L(k), may have been matchedin MMFF (L) (and not necessarily with each other). Thus, if Z counts the points moved toboundary verticals, then jMA(L(k))j � jMMFF (L)j � Z :Now substitute jMA(L(k))j = 12 [N �UA(L(k))] and jMMFF (L)j = 12 [N 0�UMFF (L)] where Nand N 0 are the numbers of points in L(k) and L, respectively. Then since N 0 � N , we obtainUA(L(k)) � UMFF (L) + 2Z, so by Lemma 3.3,UMFF (L(k)) � UMFF (L) + 2Z :It remains to observe that, since E[N 0] = �(n), we have E[UMFF (L)] = O(n2=3) by The-orem 3.2, and since k = 
(n1=3), we have E[2Z] = n(k+1)k�1 � 2k+1 = 2nk�1 = O(n2=3). Thus,22
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E[UMFF (L(k))] = O(n2=3) so (3.1) completes the proof. �4. The FF Lower BoundFor the discrete uniform distribution, the following lower bound shows that the estimatesin Theorem 3.1 and Corollary 3.1 are smallest possible asymptotic upper bounds.Theorem 4.1. Let L be a list of n items with sizes drawn independently and uniformly atrandom from f1; : : : ; k � 1g.(i) If k = O(n1=3), then E[WFF (L)] = 
(pnk).(ii) If k = 
(n1=3), then E[WFF (L)] = 
(n2=3), as in the continuous case.Proof. As in the upper-bound proof, the result is proved for the Poisson model, whereuponLemma 2.1 completes the proof. We start by proving part (i).The proof begins with a sequence of reductions in Lemmas 4.1{4.3. Ultimately, we showthat the 
(pnk) lower bound holds if the number of points left unmatched by a certain planarmatching algorithm to be de�ned has the same asymptotic lower bound. The remainder ofthe proof then proves the latter lower bound. Lemmas 4.1 and 4.2 below adapt very similarresults in [10].Consider an FF packing of L and focus on just those bins having items in (k=3; k=2) and(k=2; 2k=3); these are simply the items in (k=3; 2k=3) if k is odd, but if k is even, the items ofsize k=2 are excluded. There are at most two such items per bin. Call the items in (k=3; k=2)s-items and those in (k=2; 2k=3) b-items (s and b stand for smaller and bigger, respectively).In terms only of s- and b-items there are just 5 types of bins; these are denoted � b�, � s�, � ss�,h bsi, � sb �, with �� b ��, �� s ��, �� ss ��, ��� bs ���, �� sb �� giving the numbers of the respective types. The letters inthis notation stand for the item types, and the vertical positions denote the order of packing,i.e., the item on the bottom was packed before the item, if any, on top.The number of item sizes in each of (k=3; k=2) and (k=2; 2k=3) is approximately n=6. Theprecise formula is of no interest; we need only the fact that it is asymptotically n=6 + O(1).Let �kn=6 denote the expected numbers of s and b items so that �k = 1+ O(1=k).Our �rst reduction is given byLemma 4.1. If E ���sb ��� = �kn6 � 
(pnk) ; (4.1)24



then E[WFF (L)] = 
(pnk).Proof. We �rst establish three relations among the quantities �� b ��, �� s ��, �� ss ��, ��� bs ���, �� sb ��. The �rstsimply breaks down the expected number of b-items by bin type,E ���sb ���+ E ���b��� +E ���� bs ���� = �kn6 : (4.2)Equating the left-hand side of (4.2) to the expected number of s-items, E �� s ��+2E �� ss ��+E ��� bs ���+E �� sb ��, gives the second relation E ���b��� = 2E ���ss ���+ E ���s ��� : (4.3)The third relation is given by E ���� bs ���� � E ���ss ��� : (4.4)To prove (4.4), it su�ces to show that at any time in the packing process, the probability thatthe next item creates a bin of type h bsi is at most the probability that it creates a bin of type� ss�. Neither type bin can be created unless the current packing contains a bin B of type � s�.Furthermore, by de�nition of the FF rule, B must be the only such bin in the current packing.Let a be the level of B. Then, again by the FF rule, B must also be the only bin �lled to alevel in [a; k � a]. Therefore, if the next item has a size in [a; k � a], we can pack it directlyinto B without attempting to pack it elsewhere. But given that the next item has a size in[a; k � a], it is as likely to be an s-item as a b-item. If the next item has a size that is notin that range, then either it is a b-item too large to �t in any partially �lled bin, or it is ans-item. In neither case can it create a type h bsi bin. Thus, the next item is at least as likelyto create an � ss�-type bin as a h bsi-type bin. Then (4.4) holds.Now substitute (4.3) into (4.2) and apply (4.4) to obtainE ���sb ���+ 3E ���ss ���+E ���s ��� � �kn6 :Substitution of (4.1) then gives 3E ���ss ���+ E ���s ��� = 
(pnk) : (4.5)Finally, return to the set of all items and all bins. The bound (4.5) shows that, on the average,there are at least 
(pnk) bins containing only items smaller than k=2. Since there is anaverage of n=2 bins with items larger than k=2, we conclude that E[WFF (L)] = 
(pnk), asdesired. �25



To prove that the condition in (4.1) indeed holds, we �rst convert it to an assertion aboutup-right matchings. Let L� denote the sublist of L containing just those items in (k=3; k=2)and (k=2; 2k=3); the ordering of these items in L is retained in L�. Note that the number ofitems in L� is Poisson distributed with mean �kn=3. The second reduction is given inLemma 4.2. If E[WMFF (L�)] = 
(pnk) ; (4.6)then (4.1) and hence E[WFF (L)] = 
(pnk) holds.Proof. In the two-dimensional representation of L�, match a + with a � if and only if thecorresponding items de�ne a type-� sb � bin in the FF packing of L. Let M� be the resultingmatching. The expected numbers of +'s and �'s in L� are each �kn=6, so (4.1) will be provedif we can show that the expected number of items in L� left unmatched by M� is 
(pnk).It is easy to verify thatM� is an up-right matching with the weak FF property, even thoughit is not necessarily an MFF matching. (For example, M� may fail to be an MFF matchingbecause of +'s that would be matched to �'s by MFF, but are not so matched in M� becausethe items corresponding to these +'s were packed together with items no larger than k=3 inthe original FF packing.) Lemma 3.3 then shows that the expected number of points leftunmatched by M� is at least E[UMFF (L�)] = 2E[WMFF (L�)] = 
(pnk), by (4.6). �To prove that (4.6) actually holds, we introduce another matching algorithm that is easierto analyze and has the same asymptotic lower bound. Relaxing the \up-right" of MFF tojust \right," we de�ne the rightward matching (RM) algorithm as follows: RM scans the �'stop-down, matching each to the highest unmatched +, if any, to the right of (or in the samecolumn as) the �. Our third reduction shows that, if E[URM(L�)] = 
(pnk), then (4.6) holdsand hence the theorem is proved.Lemma 4.3. For all lists L, URM(L) � UMFF (L).Proof. Consider an MFF matching as shown in Fig. 11(a). Shift the instance of �'s downto the time interval (n�; 2n�] so that all �'s are below all +'s, and extend all edges so thatthe same pairs of points are matched. Perform the same operation on the corresponding RMmatching shown in Fig. 11(b). The new matching produced from RM is clearly an MFFmatching. The new matching produced from MFF is not necessarily an MFF matching (seeFig. 11), but it is easy to see that the weak FF property is preserved. Then Lemma 3.3 provesthat URM (L) � UMFF (L). �26



It remains to show that E[URM(L�)] = 
(pnk). It is helpful to simplify notation byrecasting the problem in simpler terms. Recall that item sizes in L� are drawn from a set ofk=3 + O(1) sizes symmetric about k=2 with no items of size k=2. For notational convenience,let us say that the number of item sizes is k0 � 1, where note that k0 is odd. The expectednumber of items in L� is n0 = �kn=3, so consider a new problem with lists L0 of item sizesdrawn from 1; : : : ; k0� 1, with bin size k0, and with a mean number n0 of items. Because of thematching algorithms being analyzed, it is easy to see that URM(L�) and URM(L0) are equalin distribution. It remains to observe that the problem with lists L0 di�ers by constant factors(in both the time and size coordinates) from our original problem with parameters k and n,where k is restricted to odd values. Since a return to our original problem formulation with kodd can only a�ect hidden multiplicative constants, it su�ces to show thatE[URM(L)] = 
(pnk) (4.7)for k odd. As before k� = (k� 1)=2 and n� = n=(k� 1) with n� an integer. We prove (4.7) bya detailed analysis of the RM process.The analysis starts with a sample of +'s and �'s extended over the entire time axis. De�nethe process y(t) = (y1(t); : : : ; yk�(t)), t � 0, specifying the time coordinates of just those +'savailable for matching to the next �. Thus, yi(t), 1 � i � k�, is de�ned as the time coordinateof the + that would be matched to the next �, if this � were to appear in column i. Figure 12gives an illustration of y(t). Note that, in the initial state, yk�(0) is the position of the highest+ in column k�, and yi(0), i = k�� 1; : : : ; 1, is the minimum of yi+1(0) and the position of thehighest + in column i.Note also that, in general, y(t) consists of a sequence of runs or clusters, each being amaximum-length sequence of one or more contiguous yi's all having the same value, i.e., allspecifying the position of the same +, which appears in the rightmost column of the cluster.Thus, if the next � after time t appears in any one of the columns of the cluster yj1(t); : : : ; yj2(t),then it will be matched to the + in column j2. Bearing this in mind, it will also be convenientto say that the � is matched to the cluster yj1(t); : : : ; yj2(t). Because of the rule \highest andto the right," an easy induction shows that the yi's are nondecreasing, i.e., y1(t) � � � � � yk�(t).Transitions in y(t) occur when �'s are encountered and then matched, thus removing oneof the available +'s. De�ne yk�+1(t) = 1 for all t. Suppose that a � is encountered at timet in column j and is matched to the cluster yj1(t�); : : : ; yj2(t�), i.e., j1 � j � j2. Then after27
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the � is matched to the + in column j2, yj2(t) becomes the minimum of yj2+1(t�) and thetime coordinate of the highest + in column j2 after time t. Then, in the decreasing orderi = j2�1; : : : ; j1, yi(t) becomes the minimum of yi+1(t) and the time coordinate of the highest+ in column i after time t. Observe that a transition a�ects only the components yi(t�) of thecluster matched to the � encountered at time t.It is also convenient to think of y(t) as a Markov interacting-particle process. Each columnhas a particle whose initial position is yi(0). Thereafter, the particle in column i jumps toa new position whenever the next � appears in a column in the same cluster as column i.Interactions of the particles take the form of the \no-passing" rules de�ned by the jumps ofy(t); whenever particle i attempts to jump to a + lower than the particle at yi+1(t), it stopsat position yi+1(t). We say that particle i collides with particle i+ 1 in these circumstances.The proof of (4.7) balances two di�erent lower bounds expressed in terms of a parameterthat measures the dispersion in the particle process y(t). Let di(t) = yi+1(t) � yi(t), t � 0,1 � i < k�, denote the di�erence in the positions of adjacent particles, and de�ne the dispersionof the middle third of the particles by d(t) =P2k�=3i= k�3 +1 di(t) = y2k�=3+1(t)� yk�=3+1(t). Insteadof attempting to estimate E[d(t)], we prove the desired bound, �rst assuming that E[d(t)] islarge for some t, 0 � t � n�, and then assuming that it is small for all t, 0 � t � n�.Speci�cally, consider any constant � > 0, and let fnlg denote the subset of the positiveintegers such that for every n 2 fnlg,E[d(t)] � �rnk for some t; 0 < t � n� : (4.8)Let fn0lg denote the positive integers not in fnlg, so that for every n 2 fn0lgE[d(t)]� �rnk for all t; 0 < t � n� : (4.9)Case 1 n 2 fnlg. We assume that fnlg is in�nite; otherwise, (4.7) needs to be proved only forCase 2 with n 2 fn0lg. To continue with compact asymptotic notation, we now assume thatfnlg is the entire set, i.e., (4.8) holds for all n � 1. Adapting the arguments below to restrictedn is only a notational matter.Let URMt denote the number of unmatched points in [0; t]. These include unmatched +'sabove t, and �'s above t that are matched to +'s below t. We �rst show that (4.8) impliesE[URMt ] = 
(pnk) : (4.10)30



The remainder of the proof then shows that E[URMt ] increases with t and hence thatE[URM ] �E[URMn� ] has the same lower bound.Assume for the moment that y1(t) � t � yk�(t) with d(t) satisfying (4.8), as illustrated inFig. 13. Let A1 and A2 denote the two regions between t and y(t), the �rst being above t andthe second below t (see Fig. 13). A1 and A2 will also denote the areas of these regions. URMtis the sum of the number of +'s in A1, none of which are matched at time t, and the numberof +'s in A2, all of which are matched to �'s above t, but are not themselves in the probleminstance above t. The +'s occur at rate 1 in each column, so E[URMt ] � E[A1 +A2]. But by(4.8), E[A1 + A2] � k�3 �pnk (see Fig. 13). This gives E[URMt ] = 
(pnk), as desired. Similararguments apply to the simpler cases t < y1(t) and t > yk�(t) (A1 or A2 is empty), and yieldthe same result.It remains to show that (4.10) implies a similar lower bound at time n�. Consider theextension of the matching from time t to time n�, and assume �rst that y1(t) � t � yk�(t) � n�,as illustrated in Fig. 13. Let R1 and R2 be the regions between t and n� to the left of column jand to the right of column j�1, respectively, with j being the column where y(t) crosses t. Attime t, the �'s in A1 are already matched, but the +'s in A1 are still available. The intensityof +'s is the same as that of �'s, so the expected number of available +'s in R1[A1 exceeds byE[A1] the expected number of �'s in R1 that need to be matched. Then the expected numberof unmatched +'s in columns 1 through j � 1 at time n� is at least the expected number ofunmatched +'s in these columns at time t. Indeed, the number at time n� will tend to be evenlarger because some of the �'s in R1 may be matched to +'s in R2.A complementary argument applies to columns j through k�. The +'s but not the �'s arematched in A2, so the expected number of �'s in R2 that need matching exceeds by E[A2] theexpected number of +'s available in R2. Then the expected number of unmatched �'s at timen� in columns j through k� is at least the expected number of unmatched �'s in these columnsat time t. Again, the expected number of unmatched �'s at time n� will tend to be even greaterbecause some +'s in R2 are matched to �'s in R1. We conclude that E[URMn� ] � E[URMt ].Similar area arguments apply to the various cases when n� < yk�(t), t < y1(t), or t > yk�(t).These are left to the reader. �Case 2 n 2 fn0lg. As before, we assume that fn0lg is in�nite, since otherwise we are done. Andagain, to simplify notation we assume that (4.9) holds for all n � 1. We prove that, if (4.9)31
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holds, then 
(pnk3) is a lower bound on the expected sum of horizontal components Hi inan RM matching. Lemma 2.2 shows that, after dividing by k, we get E[URM ] = 
(pnk) asdesired.Consider a cluster C of size h just after the jth jump of y(t), and suppose the (j+1)st jumpis caused by a � in a column of C. Cluster C was created by the h � 1 most recent particlecollisions in the �rst h � 1 columns of C. The � causing the (j + 1)st jump will be matchedto a + in the last column of C; the horizontal component of this matching will be an integerin f0; : : : ; h � 1g, with each choice equally likely. Thus, the expected horizontal componentis (h � 1)=2. This shows that, except for the at most k� � 1 collisions creating the clustersin state y(n�), each collision contributes an amount 
(1) to the expected sum of horizontalcomponents in the �nal matching. From these observations and Lemma 2.2, we see thatE[URM(L)] = 1k
(E[cn]) ; (4.11)where cn is the total number of collisions in the interval [0; n�]. The remainder of the proofshows that, under the condition (4.9), E[cn] = 
(pnk3). Then E[URM(L)] = 
(pnk) willfollow from (4.11).First, we prove a lower bound on the number of collisions of a single particle, say particle i,i < k�, with its neighbor, particle i+1. Let f (i)r (m) denote the number of collisions of particlei in a time interval of duration m, given that particles i and i+1 are at a distance r � 0 apartat the start of the interval.Lemma 4.4. For all i, 1 � i < k�, if r = O(pm), thenE[f (i)r (m)] = 
(pm) :We brie
y postpone the proof of the lemma until after we have shown how it yields theestimate E[cn] = 
(pnk3). In the interval [0; n�] focus on columns i, i + 1 for some i,k�3 < i < 2k�3 . Partition the time interval [0; n�] into k2 subintervals of length n�=k2, andconsider the expected number of collisions of particle i in any one of these subintervals, sayone starting at time t. If di(t) = yi+1(t) � yi(t) � �p nk3 for some � > 0, then by Lemma 4.4with m = n�=k2 (n� = n=(k � 1)), the expected number of collisions of particle i in thesubinterval is 
 �p nk3 �. But by the condition in (4.9), there is a positive probability thatd(t) � �0pnk , for �0 > �. It follows that, with positive probability, a constant fraction of the33



k6 + O(1) di�erences di(t), k�=3 < i < 2k�=3, satisfy di(t) � 6�0p nk3 . Then the expected totalnumber of collisions in the subinterval is 
(k�p nk3 ), or 
(pnk ). There are k2 subintervals, sothe expected total number of collisions in [0; n�] is E[cn] = k2
(pnk ) = 
(pnk3), as desired.Proof of Lemma 4.4. We �rst prove the lemma for k� = 2 (k = 5), and then use this resultin a bounding argument for general k� > 2 (k > 5 and odd). Thus, to start, we want a lowerbound on the number of collisions of particle 1 during the interval [t0; t0+m] of a two-particleprocess, assuming that y2(t0) � y1(t0) = r � 0. Let d(j) � 0 denote the distance betweenthe two particles just after the jth jump following t0, and de�ne d(0) = r as the separationat time t0. Since the + and � processes are Poisson, the intervals between successive +'sare independent, exponentially distributed random variables with mean 1, as are the intervalsbetween successive �'s. By the memoryless property of the exponential law, these propertiesalso hold starting at time t0.If d(j) > 0, then the (j + 1)st jump will be positive or negative with equal probability; itwill be positive if particle 2 makes the jump and negative if particle 1 makes the jump. Wehave d(j+1) = d(j)+� or d(j+1) = (d(j)��)+ according as the jump is positive or negative,respectively, where � is a time between consecutive +'s. Thus, � is exponentially distributedwith mean 1 and independent of all previous jumps.If d(j) = 0, then both particles jump; if particle 1 tries to jump farther than particle 2,then particle 1 collides with particle 2 and d(j + 1) = 0; otherwise, d(j + 1) = d(j) + �, where� is distributed as the (positive) di�erence between two independent exponentially distributedjumps with mean 1. By the memoryless property of the exponential distribution, we see that,if d(j) = 0, then the events d(j + 1) = 0 and d(j + 1) > 0 are equally likely, and in the lattercase, � is exponentially distributed with mean 1 and independent of earlier jumps. Based onthese observations, we can writed(j) = (d(j � 1) + �j)+ ; j = 1; 2; : : :d(0) = r ; (4.12)where the �j 's are i.i.d. random variables with E[�j] = 0 and with j�jj exponentially distributedwith mean 1. Now the number of collisions of particle 1 is distributed as the number oftransitions d(j) ! d(j + 1) = 0 in [t0; t0 + m]. The total number of transitions in [t0; t0 +m] is bounded from below by the number of jumps of particle 2 in [t0; t0 + m], which isPoisson distributed with mean m. Then the lemma (with k� = 2) is an easy consequence of34



Corollary 2.1. �Now consider a general k� > 2 (k odd) and the motion of particles i and i+ 1, 1 � i < k�,during [t0; t0 + m], given that yi+1(t0) � yi(t0) = r � 0. To bound the number f (i)r (m) ofcollisions of particle i, we will study a simple two-particle process. Imagine that the particlesof an isolated two-particle process z(t) = (z1(t); z2(t)) are activated at time t0; particles 1 and2 of z move in parallel with particles i and i+ 1 of y according to the given sequences of +'sand �'s in columns i and i+ 1. Particle 1 of z starts out in the same position as particle i ofy. This is also true of particles 2 and i+ 1 of z and y unless the latter is in a collision statewith particle i+ 2, in which case particle 2 starts out in the position of the next + in columni+ 1 below particle i+ 2. The key observation is that, if t1 is the time of the �rst collision ofparticle i after t0, then z1(t) � yi(t); z2(t) � yi+1(t); t0 � t � t1 : (4.13)To see the �rst inequality, note that yi(t) < yi+1(t), t0 < t < t1, so �'s encountered in columni during [t0; t1] are matched to +'s in column i. Each such � causes both particle 1 of zand particle i of y to jump down to the next +. These are the only jumps of particle 1, soz1(t) � yi(t), t0 � t � t1, with strict inequality when +'s in column i are matched to �'s tothe left of column i according to the process y.To see the second inequality in (4.13), note that while yi(t) < yi+1(t) < yi+2(t) � � � � �yk�(t) holds, particle i + 1 jumps downwards from a + only when that + is matched to a �encountered in column i+ 1. Such �'s cause particle 2 to jump all the way down to the next+; particle i = 1 can also jump this far, but it may fall short if it collides with particle i+ 2.We conclude that, since particle 2 starts out at a + located at or below particle i+ 1, it cannot be passed by particle i+ 1 in [t0; t1].By a standard coupling argument (see e.g. Ross [9], p. 155), (4.13) shows that, if the initialparticle separation of z is set to r+�, where the random variable � is exponentially distributedwith mean 1, then the time to the next collision of particle 1 in z is stochastically at least aslarge as that of particle i in y. The inter-collision intervals after t1 begin with the separationstate r = 0. Thus, extending the bounding process z to any interval [t0; t0+m], we can de�nethe following di�erence sequence for z:~d(0) = r + �0~d(j) = �j if ~d(j � 1) + �j < 0 j � 1 (4.14)35



= ~d(j � 1) + �j ; otherwise ;where the �j are as in (4.12) and the �j , j � 0, are independent and exponentially distributedwith mean 1. Here, a �j corresponds to an initial move of particle 2 to the next + so as toguarantee (4.13). Note that fd(j)g and f ~d(j)g di�er only in their behavior near the origin;f ~d(j)g has a re
ecting barrier there, whereas fd(j)g has the elastic barrier of the Lindleyprocess. By our earlier observations, the number f (i)r (m) of collisions of particle i in [t0; t0+m]with di(t0) = r is stochastically at least a large as the number ~fr(m) of times f ~d(j)g re
ectsat the origin in [t0; t0 +m], with ~d(0) = r+ �0. Thus,E[f (i)r (m)] � E[ ~fr(m)] ; (4.15)and it remains to bound E[ ~fr(m)].It is easily veri�ed that, if the sample paths of f ~d(j)g and fd(j)g are constructed from thesame samples �j , j � 1, then for each j, ~d(j)�d(j) is nonnegative and bounded by the distancethat f ~d(j)g re
ected from the origin on its most recent re
ection there. It follows that ~d(j) isstochastically no larger than d(j)+�, where � is exponentially distributed with mean 1. As aneasy consequence of this fact, the expected number of re
ections of f ~d(j)g in [t0; t0 +m] is aconstant fraction of the expected time spent by fd(j)g at the origin during [t0; t0 +m]. ThenE[ ~fr(m)] = 
(pm) by the result for k� = 2, and the lemma is proved by (4.15). �This completes the proof of part (i) of Theorem 4.1. We now prove part (ii), where k =
(n1=3) is assumed; this case is much simpler. The proof for the special case k = �(n1=3) isalready in hand, so assume that k grows strictly faster than n1=3. We adapt the technique ofTheorem 3.2 and Corollary 3.1 as follows.Consider a two-dimensional representation for large k and n. For convenience, assume thatk� is a multiple of n1=3. This assumption is not essential; the argument below is easily modi�edto handle general values of k�. Partition the columns into n1=3 equal-size groups of consecutivecolumns. Insert n1=3 � 1 new columns between the groups and place one new column justto the left of the �rst group and one to the right of the last group. Next, as in the proof ofTheorem 3.2, shift +'s to the left and �'s to the right, stopping in each case at the nearestnew column. Focusing now on all but the �rst and last of the new columns, we have a randominstance for a new number of columns bk� = k�n1=3 � 1.Construct the MFF matchingM for this new, reduced instance, then shift the +'s and �'sright and left back to their original position, extending the edges of M so as to keep the same36



pairs of points matched. In analogy with Theorem 3.2, we obtain the desired result from thefollowing three observations: (i) By the proof of the theorem for k = O(n1=3), the expectednumber of points left unmatched by M is at least 
(n2=3), (ii) the �rst and last new columnswhich were excluded from the reduced instance have on the order of n2=3 points, and (iii) theweak FF property ofM is preserved in the shift of +'s and �'s back to their original positions.Note that this technique also yields a proof for the 
(n2=3) lower bound for the continuouscase (k !1), originally proved in [10]. �5. Final RemarksThe techniques of this paper, in particular the reductions to matching problems, can alsobe applied to proofs of asymptotic bounds for symmetric distributions on f1; : : : ; k� 1g. It isnot di�cult to show that the symmetry of a given distribution guarantees the pn dependenceof both upper and lower bounds, except for the trivial case where all item sizes are 1=2. Thesebounds will also depend on shape parameters and how they vary with k or n.Very few results exist on FF bin packing under more general distributions, discrete orcontinuous. For example, consider a uniform distribution on f1; : : : ; jg, with a bin size k � j+2.It is known that if j is su�ciently small relative to k (roughly at most pk), then E[FF (L)] =O(1) (see [1]). Simulations give convincing evidence that for many j, pk < j < k � 2, theexpected wasted space grows linearly in n. However, the proof of this result for any such jremains an intriguing open problem. As shown recently in [6], results of this type do exist forbest-�t bin packing.References[1] E. G. Co�man, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, L. A. McGeoch, P. W.Shor, R. R. Weber, and M. Yannakakis. Fundamental discrepancies between average-caseanalyses under discrete and continuous distributions. In Proceedings 23rd Annual ACMSymposium on Theory of Computing, pages 230{240, New York, 1991. ACM Press.[2] E. G. Co�man, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor, R. R.Weber, and M. Yannakakis. Bin packing with discrete item sizes, Part I: Perfect packingtheorems and the average case behavior of optimal packings. (In preparation).37
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