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Abstract. Many complex
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pmcessea can be modeled by (count-
ably) infinite, multidmens~onst Markov chains. Unfortunately,
cnrnmt theoretical techniques for analyzing infinite Markov
chains are for the most part limited to three or fewer dimensions.
In this paper we propose a computer-aided approach to the analy-
sis of higher-dimensional domains, using several open problems
about the average-case behavior of the Best Fit bin packing algo-
rithm as case studies. We show how to use dynamic and liiear
programming to construct potential functions thal when applied
to suitably modified multi-step versions of our original Markov
chain, yield drifts that are bounded away fmm O. This enables us
to completely classify the expected behavior of Best Fit under dis-
crete uniform distributions U{J, K) when K is small. (Under
U{ J, K}, the allowed item sizes are i/K, 1 S i S J, with all J pos-
sibilities equally likely.) In addition, we can answer yes to the
long-standing open question of whether there exist distributions
of thii form for which Best Fit yields linearly-growing waste.
The proof of the latter theorem relies on a 24-hour computation,
and although its validity does not depend on the linear progra-
mmingpackage we used, it does tely on the correctness of our dy-
namic progr smming code and of our computer’s implementation
of the IEEE floating point standard.

1. Introduction

There is growing interest in the relationsMp between online
algorithms and Markov chains. For instance, Vitter and
Krishnan [21] and Karlin et al. [11] have recently investi-
gated the behavior of paging algorithms when the input
request sequence is generated by a finite-state Markov pro-
cess. Under such inputs, the paging algorithms themselves
act like Markov processes, and can be analyzed as such.
The analysis is simplified by the fact that these processes
are themselves finite-state, since the paging algorithms use
bounded memoty. In many other algorithmic situations,
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however, the memory of the online algorithm is nor
bounded. In such cas&, even if the input &mes from the
trivial one-state Markov chain (i.e., consists of a sequence
of i.i.d. samples from some dMribution) the algorithms
may give rise to infinite-state Markov chains, and the anal-
ysis can become much more difficul~ especially when the
state space is multi-dimensional, as it typically will be.

In this paper we develop techniques for dealing with
such chains, based on computer-generated and -analyzed
potential functions. As a case study for the use of these
techniques, we show how they can be used to resolve a
longstanding open problem in the average-case analysis of
bln packing algorithms.

In the onedmensional bln packing problem, we are
given alist L of Nitems of si~sal,az, .-0 ,aN ~ (0,1],
and asked to pack the items into unit-capacity bins so as to
minimize the number of bhts used. This problem is NP-
har~ so research has concentrated on algorithms whose
goal is to find packings that are merely close to optimal. Of
particular interest is the Best Fit algorithm, in which the
items are pcked online, with the first item going into the
first bin, and each successive item going into a partially
packed bm with the smallest gap large enough to hold the
item. If no partially packed bln has room for the item, a
new bm is started. Best Fit can be implemented to run in
time O(NlogiV), and among online algorithms offers per-
haps the best balance between worst and average-case
packing performance. In particular, no online algorithm is
known that beats Best Flt both in the worst-case and in the
following standard average-case model.

Suppose LN is a random list of length N, where the
item sizes are taken independently from the .U(O,1] dMri-
bution, i.e., are uniformly distributed in the interval (0,1].
(This is by far the most-studied distribution in the bin pack-
ing literature, e.g., see [2,3,4,5,6,8,13,15,19,20].) For a
given list L, let OPT(L) be the number of bins used in an
optimum packing, and let s(L) denote the sum of the item
sizes. Note that for all lists L, s(L) < OPT(L). Moreover,

we have E[s(L~)] = N/2 and EIOPT(L~)] - N\2 as
N + CXJ[13,15]. For a given algorithm A, let A(L) denote
the number of bins used when L is packed by A and define
the waste WA(L) to be A(L) - s(L).
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It was shown in [19] that Best Fh has sublinear

expected Wasw, in particular E[w~~(L~)] =
Q(N1fl log3’4N). As a consequence, one can conclude that
lii~+.EIBF(L~)/OPT(L. ~)] = 1. All known online
heuristics A with better worst-case performance than Best
FM (i.e., with smaller asymptotic worst-case ratws [10])
have lim~+. E[A(L~)/OPT(L.~)] > 1. Even the well-
known First Fit algorithm (IT), which has the same
asymptotic worst-case ratio (17/10) as Best Flt [10] and
also has sublinear expected waste, has a faster growth rate
for that waste: E[wW(L~)] = @(N2’3 ) [4, 19]. (In First
F14 each item is placed in the lowest-indexed bln that has
room for it.) The only known online algorithm with better
expected waste than Best Fit is the considerably more com-
plicated algorithm of [20] that has expected waste
(3(N1fi loglflN), which is the best possible for any online
algorithm; this algorithm however has an unbounded
asymptotic worst-case ratio,

Thus Best Flt may well be the algorithm of choice in
situations where robustness is required, and the question of
just how robust it is becomes relevant. In particular, how
well does it perform under dMributions other than the stan-
dard Cl(O, 1] distribution dkcussed above? It is natural to
begin by considering distributions U(O, u] where item sizes
are chosen uniformly from the interval (O, u], O c u c 1.
Let LN,U be a random list of length N with items chosen
according to U(O, U]. (Note that LN = LN,l ). Random
lists of this sort were stndkxl in the context of the Next Fit

online algorithm in [5,12], and in terms of off-line algo-
rithms in [3], with very different conclusions.

For the off-line algorithm Best Fit Decreasing
(BFD), in which the lit is re-ordered by non-increasing
item size before applying Best F14 we have
E[w~m(L~,U)] = Cl(N1n) for 1/2 c u <1 and
E[wBm(LN,U)] = ~(l) for u s 1/2 [3], both significant
improvements over the behavior of BFD when u = 1,
where EIwBm(LN,l )] = @(ZV1fl ) [13,15]. For Next Fit
(NF), the answers are qualitatively quite different. In Next
F14 which is a significantly less-effective algorithm than
Best FIc only the most recently started bin is available for
packing, and if the current item doesn’ t fi~ that bln is
closed forever and the item starts a new bin. Next Fh has
liear waste even for u = 1; it was shown in [5] that
lii~+m EINF(L.~,l )\OPT(LN,l )] = 4/3. Moreover, as u

decreases, the asymptotic expected ratio for NF increases,

hitting a maximum at around u = .80 before beginning to
decline [12].

Is Best Flt more like its offline cousin BFD or its
online relative NF? Experiments reported in [2,4] suggest
that the latter is the case. Although as remarked above,
Best Fh yields sublinear expected waste when u = 1, it

appears to get drastically worse as soon as u c 1, yielding
linear waste for all u E (O, 1), with the constant of pmpor-
tionfllty again peaking at around u = 0.80, while dropping

to Oand u + O. Unfortunately, although this phenomenon
was fitxt observed almost a decade ago [2], no one has yet
proved the conjecture for any value of u. (The techniques
used by Karmarkar in [12] for analyzing Next Fh do not
apply, since they crucially depend on the fact that the pack-
ing deciAon is determined by a single parameter, the gap in
the currently active bin.)

Recently, however, it was discovered that Best Fit
has much the same behavior in a possibly more-tractable
discrete version of the problem. In [4], the class of discrete

uniform distributions U{J, K} was introduced. Here the
item sizes, instead of being chosen from a continuous real
interval (O, u], are chosen from a finite set of evenly spaced
values within such an interval. In U{ J,K}, the sizes
allowed are of the form i/K, 1< i < J all equally likely.
Thus U{J,K} can be viewed as a discretized version of
U(O,J/K]. Although it was shown in [4] that many stan-
dard bin packing results do not carry over from the continu-
ous to the discrete case, the phenomenon under discussion
here does show up, at least in part.

For notational simplicity, we shall normalize our
item sizes so that bms have capacity K and items are of size
1 through J. Let LN,J,K be a random N-item list with i~ms
chosen from the distribution U{ J, K}. Table 1 presents
experimentally determined average values of waste for
5< J <12 and .l+2 < K <14. We ignore the cases where
K c {J,.1+ 1), since these correspond in the continuous
case to U(O, 1], and it was already determined in [4] ihat
they yield EXN1fl ) expected waste. Values for J e {3,4)
are also omitted but are similar in flavor to those for J =: 5.
Here we report the results of only two runs for each dMri-
bution, one with N = 100,000,000 and one with N =
200,000,000, but for each we report the average value of
the waste over all steps of the packing.

A plausible conclusion from this data is that the aver-
age waste is bounded by a constant for most pairs (J, K),

but grows linearly for the pairs (8, 11), (9, 12), (9, 13),

(10,13), (10,14), and (11,14), all of which have values of
J/K reasonably close to the value u = 0.80 for which
E[wBF(LN,U )/N] appears to peak. Experiments with larger
values of K suggest that as K increases, the set of J’s that
yield linear waste also grows larger, although small values
of J continue to yield bounded waste, as does the value
J = K – 2. The following theorem from [4] con~s that
waste nxnains bounded if J is sufficiently small with
respect to K

Theorem 1 [4]. If JS~-1.5, then

E[wBF(LN,J,K)] = 0(1).

It is also easy to see that expected waste is bmmded
when J <2 for all K > J+ 1. These, however, were until
now the only known results covering the expected waste of

Best Flt when J < K-1. Not only were there no results
confirming the apparent examples of linear waste, but also
none of the appanmt examples of bounded expected waste
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K] ‘7 8 9 10 11 12 13 14

J5

6

7

8

9

10

11

12

2.28 0.94 0.74 0.62
2.28 0.94 0.74 0.62

0.60
0.60

0.56
0.56

0.53
0.53

0.52
0.52

2.45 1.70 0.90
2.45 1.70 0.90

0.80
0.80

0.68
0.68

0.66
0.66

0.60
0.60

4.58 1.97
4.58 1.97

1.55
1.55

1.00
1.00

0.84
0.84

0.75
0.75

4.72
4.71

5576.42
10773.60

2.66
2.64

1.75
1.75

1.06
1.06

7.97
7.99

13043.90
26696.40

42642.23
84804.23

6.41
6.33

8.06
8.09

57790.87
115493.92

55961.10
112112.47

12.50
12.46

51211.14
102614.05

12.64
12.61

TABLE1. Waste under Best Fit for U{ J, K), averaged overruns of 100- and 200-million items, as a function of J and K.

from Table 1 are covered by Theorem 1. Here is where
Markov chains come in. A Markov chain M can be viewed
as a pair (S, T), where S is the stare space and 27SXS + R
is a transition jhction satisfying 22$?=~T(s,s’) = 1 for all

s ● $ if the current state iss, the probabMty that the next
state is s’ is T(s,s’).

A natural way to model an online bm packing algo-
rithm by a Markov chain is to let the current packing be the
current state. What makes Best Flt a promising candklate
for analysis in this context is that the only details of the
packing that need be considered are the numbers of bins
with each possible gap, from 1 up to K – 1. (We do not
need to count bins with gaps of size O, i.e., full bins, since
we are only concerned with measuring waste.) If the best
fit for an item is a bin of gap size i and there are many bins
with gaps of that size, it doesn’t matter which bin is chosen,
at least insofar as the distribution of gap sizes in the result-
ing packing is concerned. Note that this is not the case for
an algorithm such as First FIG where the size of the gap into
which an item is placed depends, not simply on the avail-
ability of bins with given gaps, but on the order in which
the gaps appear in the packing.

Thus a Markov chain MJ,K corresponding to a Best
Fk packing process under rnput distribution U{.7,K} em

have its states simply be (K – 1)-tuples of nonnegative inte-
gers, where tuple (s ~,Sz ,..., sK_ ~) represents a packing
whose inventory of partiatly filled bins consists of precisely
si bins with gap i, 1< i S K– 1. AS to transitions, note
that if we are in states and an item of size i arrives, the suc-
cessor state, denoted by s [i], is uniquely determined. For
instance, suppose K = 4 and s = (3,1,0). If an item of
size 1 arrives, the successor state is (2,1, O); if an item of
size 2 arrives it is (3,0,0); if an item of size 3 arrives it is

(4, 1,0); and if an item of size 4 arrives the state remains
unchange4 since an empty bln becomes a full one, and nei-
ther is counted in our state. The tmnsition function T can

thus be defined by T(s,s[i]) = l/l, 1< i S J and
T(s,s’) = O if s’ is nots [i] for any i. For technical reasons
having to do with Markov @sin irreducibdity, the actual
state space of MJ,K is restricted to those (K – 1)-tuples that
are reachable from the all-zero state by a sequence of tran-
sitions all having positive probability, (The all-zero state
corresponds to a packing with no partially-filled bins, such
as the initial empty packing.)

Using this model, one might hope to place bounds on
the expected waste of Best Fit under U{.I,K} by deriving
results about the chain MJ,K, in particular about its station-

ary distribution. Recall that such a distribution is an
assignment of probabilities p(s) to the states s G S such
that Z.,xp(s) = 1 and x,~.~p(s’) T(s’,s) = p(s) for all
s G S. If one lets ~ be the vector of probabilities and views
Tas the corresponding matrix, this simply means pT = p.

There are two drawbacks to this approach. Firs4 our
state space is infinite and multidimensional. Although the
theory of one-dimensional infinite Markov chains is well-
developed, much is still unknown for higher dmensions.
Limited results have been proved, but only for two and
three dimensions [7, 15,16, 17]. For the open problem about
U{8, 11} we must deal with a chain that is ostensibly of
dimension 10. The second drawback is that chains like
M8, ~~, because they correspond to situations in which the
expected waste is not bounded, are transient and do not
have stationary distributions. We thus have our work cut
out for us.

The remainder of this paper is organized as follows.
In Section 2 we introduce the relevant terminology for dk-
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KI 5 6 7 8 9 10 11 12 13 14

J3
4
5
6
7
8
9

10
11
12

B-L2 B-L2 B-L2 B-Q1 B-Th B-Th B-Th B-Th B-Th B-Th
B-LA B-L3 B-Q1 B-Q1 B-Q 1 B-Q1 B-Q1 B-Q1 B-Th

B-L23 B-Q1 B-Q1 B-Q1 B-Q1 B-Q1 B-Q1 B-Q1
B-Q2 B-Q5 B-Q1 B-Q1 B-Q1 B-Q1 B-Q1

B-Q7 B-Q15 B-Q2 B-Q2 B-Q1 B-Q1
B-Q13 Ln-P B-x B-x B-Q7

B-x Ln-P Ln-x B-x
B-x Ln-x Ln-x

B-x Ln-x
B-x

TABLE 2. Results proved for E[w~F(LN,,,~)].

cussing multidimensional chains, and summarize what is
currently known about multidimensional Markov chains.
These results are based on the use of a particular kind of
potential function (called a Lyapunov function in the litera-
ture). Once one goes beyond three dimensions, there are no
longer simple constructions for the needed functions.
There are, however, algorithmic approaches to determining
whether Lyapunov functions of certain standard types exis~
and the remainder of Section 2 describes them, We show
how linear programming can be used to test for the exis-
tence of both linear and quadratic Lyapunov functions,
using an old lemma of Hajek [9] and anew one of our own.
We also show how we can, in certain cases, circumvent the
non-existence of the desired functions by switching atten-
tion to derived (embedded) Markov chains Mj,K, t > 1,
which have the same state space w MJ,K = (S~,K, TJ,K ),

but have product matrices ~J,K for transition functions, i.e.,
chains in which one step corresponds to t steps of the origi-
nal chain.

Section 3 then uses this technology to prove bounded
expected waste for many of the entries in Table 1. A proof

in thk case starts with the construction by computer of a
linear program thw although it has few variables, may
sometimes have more than 100,000 constraints. The linear
program is then solved using a standard LP package. The
package we use is CPLEXm (CPLEX is a trademark of
CPLEX Optimization, Inc.), but the validity of our proofs
is independent of the correcmess of CPLEX, since after
CPLEX generates a solution, we verify the validlty of that
solution using our own code. The correcmess of our proofs
does, however, depend on the correcmess of our genemtion
and checking programs (for which we shall pment listings
of key routines in the final paper), and on the fact that our
computer runs properly and correctly implements the IEEE
floating point standard [1].

In order to prove linear waste, which was our main
goal, additional lemmas and techniques are required, and
these are described in Section 4. We introduce a sequence
of surrogate chains, involving the use both of “imaginary
bins” and of transition functions where one step come-

sponds to a variable number of steps in the original chain.
Our resulting proofs of linear waste for both U{8, 11} and
U{9, 12) boil down to 24-hour computations of expected
drifts for thousands of states over thousands of steps of the
underlying chains. A summary of the results obtained in
Sections 3 and 4 is given in Table 2. The full meaning of
the entries will be explained later. For now it is enough to
note that a prefix of B or Ln on an entry implies that our
experiments suggested Bounded waste or Linear waste ;for
the corresponding J,K pair. Note that this table has been
expanded over Table 1 to include rows for J G {3,4). A Th
after the hyphen means the result follows from Theorem 1.
A C, Q, or P after the hyphen indicates that the result was
proved by our new techniques. An x indkates that the
problem remains open.

We conclude in Section 5 with a brief discussion of
the limkit.ions and further applicability of our techniques.

2. Multidimensional Markov Chains and
Lyapunov Functions

Let Z+ represent the non-negative integers and let d be a
positive integer. A d-dimenswnal Markov chain M is one
whose state space S is a (possibly infinite) subset of :Zi.

Although the state space may be infinite, in cases of practi-
cal significance the transition function will typically have a
finite description. Of particular interest is the class of
chains with limited state dependency and jump-

boundedness, as defined below.

Consider the derived incremental transition function
e~: SxZ~ + R, where for anys e S and& G Zd (negative
components allowed), 6~(s,i3) = T(s, s + 8) if s +8 E S
and O~(s,i3) = O, otherwise. For any state s =
($1 ,Sz,...,s~) G Z!, let ink(s) be the vector obtained from
s by replacing each components i by min (s i ,k).

Definition. A Markov chain M = (S, T) has k-limited
state dependency (is k-limited for short) if 0~(s,8) =
eT(mk(s) ,8) for alls e Sand all 6 E Zd.

In other words, M is k-limited if the precise value of
a state component s i affects the incremental transition
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probabdities for that state only when the value is less than
~ if the value is k or greater, the precise value doesn’t mat-
ter. Note that the case d = 1, k = 1 includes the M/M/l
queue as well as other varieties of random walks in the
presence of a barrier. Wnitarly, the case d >1, k = 1
includes any Markovian network of queues (a basic model
used in computer performance analysis), as well as more
general random walks in the positive orthant of the d-
dimensional lattice. (See [7] and its references.) In our bln
packing application, it is easy to see that M~,~ is l-limite4
since the gap into which an item is packed depends only on
which gap counts am nonzero, not on how blg the nonzero
gap counts are. Similarly, our bin packing chains kf~,~ are
2-jwnp-bounded, according to the following definition. For
~ G Zd let 11X11= Z~=llXil .

Definition. A Markov chain M= (S, T) is jump-
bounded if T(s,s’) >0 implies Ils –s’!1 < j~or some$.red

constant j, in which case we say M is j-jump-boun&d.

Research to date on Markov chains of dmension
d >1 can be quickly summarized. Malyshev [16] consid-
ered the case of jump-bounded l-limited, 2-dimensional
Markov chains and obtained simple criteria for ergodkity,
null-recurrence, and transience based on T. Malyshev and
Menshikov [17,18] extended this to a generalization of k-

limit.ed state de~ndency in which each component has its
own individual bound ki) and claimed similar results for
d = 3 without proof. Fayolle [7] generalized the d = 2
case by further relaxing both the conditions of limited state
depen&ncy and jump boundedness.

In our bm packing application, however, we are
interested in values of d significantly larger than 3 and in
finer distinctions than that between ergodicity and tran-
sience. (A Markov chain is ergodic if its distribution con-
verges to a unique stationary distribution; it is rransient if
no state has a positive probability of being visited infinitely
often.) In particular, if we consider a random path
x~,x*,... of OIU Markov chain starting with
Xl = (0,0,...,0), we me interested in the growth rate of

E[ IIX. II1. (Note that for K fixed the total waste in a pack-
ing lies within linear bounds of the number of partially
filled bins.) Unfortunately, limsupn+mE[ llXn III ~ k

either finite or infinite for an ergodic Markov chain, and
although the limit is always infinite in the transient case, a
variety of growth rates are possible.

Fortunately, general tools exist for analyzing particu-
lar Markov chains, even if no general theorem gives us our
answers directly. In what follows we rely on the following
specialization of a result of Hajek [9].

Lemma 2.1, Suppose Xl ,X2,.., is a random path of an

irreducible Markov chain M = (S, T), U is ajinite subset of

S, B and y are positive reals, and ~ is a fmction from S to

[O,w) such that

(a) Prob(l@(Xfi+l )-@(X. )l>B) = Oforalln 21, and

(b) E[$(Xn+l)-$(X. )lX. =s] < -yforalln 21

andse S–U.

Then limsup.+e E[@(X. )] c w.

An irreducible Markov chain is one in which every
state is reachable from every other by a path of positive
probability. This property holds for our Best Fit chains
because of our restriction that all states be reachable from
the all-zero state. In the applied probability literature, a
potential function @ satisfying (b) is called a Lyaputwv

function [7, 14]. If M is aperiodic, as are our Best Flt Mar-
kov chains, then condition (b) by itself implies ergo&city,
but ergodicity alone is not enough for our purposes. For
tiis, we need the following immediate corollary.

Lemma 2.2. Under the hypotheses of Lemma 2.1, ~ $

satisfies (a), (b), and

(c) there exist constants c,d 20 such that

IIsll s c$(s)+dforalls e S,

then limSUpn+~E[llXn II] c w.

In searching for Lyapunov functions satisfying (c), a
natural tirst class to consider is the set of linear functions

O(S) = I#=laisi with ai >0, 1 S i s d, since requiring
that a i >0 for ail i is perhaps the simplest way to insure
that (c) holds. Note that condition (a) automatically holds
for linear functions so long as the Markov chain is jump-
bounded, as is the case with our Best Fit chains.

It is not difficult to see that the existence of a
positive-coefficient linear Lyapunov function can be deter-
mined by linear programming when M is jump-bounded
and has limited state dependency. Suppose M is k-limited.
Then it is enough to show that (b) holds for the set Sk of
O(dk+ 1) states with no component exceeding k and at least
one component having that value. All states with no com-
ponent exceeding k-1 can be consigned to the set U of the
lemma. For each state s and each i, 1< i <d, let Ai (s) be
the expected change in si between X. and Xn +~ when
Xn = s. Then the existence of the desired Lyapunov func-
tion can be shown to depend on the solution of the follow-
ing linear progmm. (Note that the LP can only require that
the a i be nonnegative, not that they be positive, so the cor-
respondence is not quite immediate.)

Maximize y, subject to

$aiAi(~) c -y, foralls = Sk, (2.2)
i=l

ai>o,l<i<d,a~d (2.3)

~(li<l. (2.4)
i=l

This linear program is always feasible; the last constraint is
added to insure that the program is boun&& but otherwise
represents no restriction for our purposes.

Lemma 2.3. ff M is a k-limited, j-jump-bounded d-

dimenswnal Markov chain, then it has apositive-coeficient
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linear Lyapunov@ctwn ~and only ~the LP described by

(2.1)-(2.3) has a solutwn with y >0.

Proof It is immediite that if y <0, no linear Lyapunov
function with all positive coefficients can exist. On the
other hand$ a Solution (y,a ~,...,ad) with y >0 yiekk a
Lyapunov function with the desired properties: the func-
tion $(s) = X$= ~ai ~i .Mtisfies (b) for all StMM with a ~111-
ponent of value k or bigger by (2.2) and the fact that M is

k-liiited. If all the ai am positive we are done; otherwise
obtain anew function by adding y/2dj to each a i. The new
function has all positive coefficients and will continue to
satisfy (b) with y replaced by y/2 >0. ❑

Unfortunately, for the situations in which we are
interns@ the solution to the linear program given by
(2.1)-(2.3) all too often has y S O, even for Markov chains
where limsupn+. E[llXnll] < CO. In this ease we may
want to expand the domain in which we look for Lyapunov
functions. The obvious next step is to consider quadratic
functions $(s) = sQs~, where Q is a dxd matrix. We may
assume without loss of generality that Q is symmetric,
since if Q defines a function that satisfies (b), then so will
Q+ QT. Quadratic functions were used for d = 2 in [7],
which suggested without much detail that the approach
could be extended to arbhrary dimension$ and which again
was not concerned with questions of boundedness and so
ignored property (c). There are still straightforward ways
to ensure this property, however. The simple approach we
take here is to require that all dmgonal components of Q be
positive and all other components be non-negative. By a
slightly abused analogy with the linear case, we shall call
such a function apositive-coeficient quadratic jimctwn.

Satisfying property (b) is more of a problem. Note
that even if M is Himit.@ the expected value
E[$(X. +l )-$(Xn )lXn =s] is no longer independent of
the precise values of the components si that are k or
greater. If we let A(s) = (Al (s),..., Ad(s)), we have

$(s+4(s)) - $(S) = 2sQA(s)~ + A(s) QA(s)~ (2.4)

This holds because of our assumption that Q is symmetric.
Fortunately, we can make the dependence ons work for us,
given that the chains we are interested in are jump-
bounded. If we can find a Q such that SQA(S)T goes to --
as components ofs currently greater than k get large, this
term can be made to swamp any positive contribution fmm
A(s) QA(s)~. All we need do is take the set U of Lemma
2.1 to contain all states with no component exeeedng h, for
a sufficiently large value of h.

We cart thus solve for the components qj,j,
1 s i,j < d, of an appropriate Q using linear programming.
Assume M is k-lim.h% and once again let sk be the set of
states whose maximum component equals k, If we let
rt(s,k) be the number of components in state s that are
equal to k, then our linear program will have n(s,k) con-
straints for each state s c sk. The overall linear program

will once again seek to maximize ‘ysubject to

for all; = Sk andj such that sj = k, (2!.5)

Z4iJAj(s) < ‘Y
j= 1

qi,j= qj,j,1< i,j S d, (2.6)

qi,j ~ o, 1 s Ms d, (2!.7)

~Zfs~qj,j S 1. (2.8)
i=l

Lemma 2.4. ff M is a k-limited, j-jump-bounded d-

dimenswnal h4arkov chain, then it has a positive-coe~cient

quadratic Lyapunov jhnction satisfying properiy (b) of

Lemma 2.1 .fand only if the linear program (2.5)-(2.8) has

a solution withy >0.

Proof Relatively straightforward given the above discus-
sion, and omitted because of space considenttions, as will
be all future proofs of lemmas. ❑

Thus the LP of (2.5)-(2.8) gives us a way of finding
positive-coefficient quadratic Lyapunov functions satisfy-
ing (b) and (c). There is still one obstacle to applying
Lemma 2.2, however It is unlikely that such a quadratic
Lyapunov function $ would obey eondh.ion (a), since for
instance (n +A)2 - n2 = 2nA + A* is not bounded indepen-
dent of n. Moreover, as we can show by example, the fact
that $ is a quadratic Lyapunov function for M does not in
itself imply the conclusion of Lemma 2.1. (This and other
examples will be detailed in the full paper.) Fortunately,
we have the following result.

Lemma 2.5. Suppose $(s) = sQs~ is a positive-

coejjicient quadratic Lyapunov functwn satis~ing (b) and

(c) for a k-limited, j-jump-bounded, d-dimenswnal Markov
chain M. Then ~’ = ~’n is a Lyaputwvjimction for M :rat-

isfying (a), (b), and(c).

Unfortunately, there remain many cases whlere

limsuPn+.E[llXn Ill < = and yet neither linear nor qua-
dratic Lyapunov functions exist. How can tlds be? The
problem is that certain classes of states must of necessity
get worse before they can get better. This is where the idea
comes in of considering ‘ ‘multistep” embedded Marlkov
chains of the form M’ = (S,T’), where T’(s,s’) is the
probability that state s’ is reached in t steps whens is the
current state. Note that if M is k-limited and j-jump
bounded, then M’ is tk-limited and lj-jump-boundedi and
so the above approaches to tindmg linear or quadratic L,ya-
punov functions still apply. Further note that the transition
matrix Tf is simply the t’th power of the matrix T, and so is
easily computed.

Computed is the operantword here, however.
Although our techniques for finding Lyapunov functions
involve solving linear programs and hence most likely lwill
require some computation, one could still hope to end UP
with a relatively concise proof in the common ease where
k = 1 and d is relatively small. In the linear Lyapunov
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case, the linear programs would have at most 2d -1
problem-specific constraints (one for each possible pattern
of nonzeros in s), wh:ch is roughly 1000 ford= 10. For a
proof, one would only need to write down the program and
its solution (which could then be verifi@ albeit labori-
ously, by hand). In the quadratic Lyapunov case the pro-
gram size can go up by a factor of d, but this would still be
manageable with d <7, say.

Once we start considering k-limited chains with
k >1, however, as we need to for the ?-stepMarkov chains,
the numbers of constraints in the programs get out of hand
for much smaller values of d. (The numbers are
O((t+ I)d) in the linear case and fl(d(t+l)d) in the qua-
dratic.) As we shall see, values of t as large as 19 were
needed for some of our results. Moreover, even if we were
to write down the linear program, its correcmess would no
longer be easy to verify by hand since it is based on Tr, not
T. Thus thk proposed approach necessarily leads to proofs
that only a computer can xwsonably hope to verify. In Sec-
tion 3 we shall talk about the computational details of
applying Lemma 2.2 to prove bounded expected waste for
Best Fit under distributions U{Y,K}, and about how
confident we can be in the cmwtness of those proofs.

Note also that Lemma 2.2 only applies when
limsupH+.E[ll Xn II] is bounded. In those cases where we
wish to prove that E[llXn Ill goes to infinity (as we do
when trying to prove that Best 13t has linear waste under
U{8,11 } and U{9,12}), mom powerful techniques are
required. In particular, as we shall see in Section 4, we’ll
need to find embedded chains and Lyapunov functions that

yield appropriate drifts for all states, not just those outside
some finite set.

3. Proving Expected Waste is Bounded

In applying the techniques outlined in the previous section
to our Best Flt Markov chains, we first must look more
carefully at the Elevant state spaces. Since MJ,K is 1-
liiit@ the embedded multi-step chain Mj,~ is i-limited.
Thus in our analysis we can restrict attention to those states
in which no component exceeds t. We know u priori that

there can be no more than (t+ 1)~-1 such states, but tie
number of such states in the chains Mj,~ is actually sub-
stantially below this bound.

A major reason for this is our “technical require-
ment” that the state space of M~,~ be by definition
restricted to those states reachable by sequences with posi-
tive probability from the all-O state, i.e., those vectors cor-
responding to packings that could actually be constructed
starting with an empty packing. Under Best Fit a packing
can never contain two bins whose total contents sum to K

or less. (The later of the two bins could never have been
start@ as its fit item would have fit into the gap in the
earlier bin.) This means in particular that for states

(S1 ,...,s~_~ ) inMj&

~i2K/2and si>Othensj=0

forallj#iwith K-i<j SK-l. (3.1)

For instance, there can be at most one i 2 K/2 such that
Si >0. Let nr,~ be the number of (K- 1)-tuples with no
component exceeding tthatsatisfy (3.1). The following is
easy to verify.

Lemma 3.1.

(i) IfK = 2r+ l~or some integer r 20, then

n@ = x;=~(t+l)i.

(ii) IfK = 2rfor some integer r 21, /hen

nj,~ = 2(t+l)r-1 + Z~s~(f+l)i.

‘l%e actual number of states with no component
excecdng t inM$,~ may fatl short of n~,K, depending on
the value of J. As a trivial example, if .l = 1 then at most
one component can be non-zero for any value of K. For
programming simplicity, however, we shall ask that the
Lyapunov functions we generate satisfy property (b) for all
states counted by n/,K, even those ruled out by considera-
tions based on the value of .1. ‘l%is allows us to make use
of a relatively straightforward invertible procedure for com-

Whg a -ing gt,K from the s= to the ink?gers
1,2,...,n~,K. ‘ibis mapping in turn provides us with a sim-
ple way for looping through all states, and as we shall see,
yields significant reductions in space usage. We also use
an invertible mapping ternK that maps {-1,0,+1 )K-l to
integers and allows us to encode incremental transitions.

Our programs for generating and for checking the
relevant LP’s have the same basic strucmm and most of the
same code. (They are written in C and run on a single 25
Mhz MIPSW processor inside a Silicon Oraphics IREW
4D/250 computer, where MIPS is a trademark of MIPS,
Inc., and IRIS is a trademark of Silicon Graphics, Inc.)
Most of the storage space is devoted to two 2-dimensional
arrays. The tint is theta [ 1, an n(,K x .larray of integers,
that is used as a sparse representation for the incremental
transition t%nction corresponding to TJ,K. For each state s
and item SiZ.ej, theta [g(,~(s), j 1 = temK(s[j]-s),

where s [j] is the state conesponding to the packing that
would arise if an item of size j were added to the packing
corresponding tos by the Best Fit role. l%e entries in the
theta [ ] array are precomputed once and for all at the

beginning of the program. Note that we save considerable
space here by encoding the increment vectors as integers.

The second array delta[ ] is an n,,K x (K-1)

array of double precision floating point numbers used to
store and compute the values of A:(s), i.e., the expected
change in component i if one starts in state s and takes t
steps of the Markov chain, Recall that these are the key
coefficients in the LP’s specified by (2.2)-(2.4) and (2.5)-
(2.8). We compute the A{ (s)’s by dynamic programming
rather than by explicitly constructing the transition function
fi,K, sin@ this is ~ e~y way to tie tiv~mge of the
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sparsity of TJ,K. Moreover, for many of the I,K comblna-
tio~ we nt%d to consider, the explicit computation of ~J,z
would be prohibitive, if only for space reasons. The mun-
bers of states ~ be quite large, ~ging up to n t,z =
254,906 in our longest proof of bounded waste (for
J=8,K= 14). Moreover, when t >1, ~J,K can have a
signifmmtly higher proportion of nonzero entries than the
8n~,K we get whent = 1.

The value of delta [g(s), i] is initially set to
A!(s) = 0.0, the expected change in component i after

u = O steps. In the uth stage of our dynamic programming
process the values of A? (s) for those states s with maxi-
mum compenent u are computed from the values A?- 1(s)
for states with maximum component u -1. This yields the
desired values (for states with maximum component equal
to t) after t stages. Recalling that m,(s) is the vector
obtained ffom s by replacing each component s i of s by
ti(~i ,v), we base the computation at each stage on the
following recurrence relation:

lJ
A?(s) = –J j~ [

S[j]i - si + A~-l(m._l(s[j])))

for l<i SK-1 andtdl states SG SJ,K with maximum
component equal to u. Once the relevant values of A!(s)
have been comput@ it is a simple matter either to generate
the LP, or to verify that a given solution actually does yield
a positive value for y.

Our main task in constructing the proofs of bounded
waste summarized in Table 2 was finding values of t for
which the desitvd linear or quadratic Lyapunov functions
exist. A suffix Lt (Qt) in the table indhxwes that the proof
was based on a positive-coefficient linear (quadratic) Lya-
punov fUtICtiOn fOr h!f\,K, iUIG if t >1, that no such hn~
(quadratic) Lyapunov function exists for Mj:#. In gener~
linear functions sufficed for K <7, and for K 28 we
switched to quadratic functions since they either worked
with f = 1 or required a lower value oft than dld linear
functions.

I 1 1
0 10 20 30 40

Number of Steps 1

~GURE 1. Solution values of linear Lya-

punov function LP’s for kf~,s, 1< t <39.

For example, in the case of U{6,8), we obtained a
positive-coefficient quadratic Lyapunov function as soon as
t = 2, whereas t = 39 was required for a linear one. The
LP for the former required only about 4 kilobytes of stcr-
age, whereas that for the latter needed roughly 700. Figure
1 illustrates why t had to be so large in the linear case, and
also how we measured progress in our attempts to find a
suitable value oft. Here we chart the optimal values of y in
the linear-function LP’s for M2,B, 1 S t <39, With the
bounding constraint (2.4) replaced by “a 1 = 1.” (The
replacement works equally well to keep the LP bounded
and for t <39 prevents the uninformative solution of
(2.2)-(2.4) that simply sets y and all the ai’s equal to O.)
Note that as ? increases y first gets worse and then slowly
increases until it finally becomes positive at t= 39. Such
behavior was typical in those cases where a high value olf t
was requirm both in the linear and quadratic case.

For those bounded space results we could not prove
using our techniques (labeled B-x in Table 2), the bottle-
neck was the storage needed for LP’s, rather than the time
to generate them. The “hardest” bounded waste result we
were able to prove was that for U{8, 14}. For thii distribu-
tion the lowest t for which a positive-coefficient quadralic
Lyapunov function exists is t = 7. For this value it took
only 37 minutes to generate the LP (and a comparable time
for CPLEX to solve it and for us to check the solution).
However, the LP itself required 56 megabytes on our disk,
and generating and solving it used up roughly 100 mega-
bytes of main memory. The disk space figure could have
been reduced somewhat by choosing a more compact LP
representation, but probably not by a factor of more than 2.
For the case of U{8,13 }, on which our techniques faile&
the optimal y’s for the quadratic LP’s were still getting
worse by the time we got to t = 8 (analogous to the down-
ward initial portion of the curve in Figure 1). Moreover,
the LP for t = 8 already took up 44 megabytes of dkk
space and LP size was almost doubling with each increase
oft by one. The outlook was similarly bleak for the other
casesof bounded waste left open in Table 2.

How confident can we be in the proofs that we have
managed to construct? Assuming our computer correctly
implements our programs and that our programs correclly
implement the kxhniques described above, the one remain-
ing question has to do with the numerical precidon of the
computations. Here the key question is the accuracy of the
computation that checks the solution to our LP to verify the
negative drifts. This involves the operations needed to cOn-
struct the LP as well as the operations needed to check it.
The longest sequence of arithmetic operations involved in
&riving any coefficient in our LP contains at most t(.1 + 1)

operations, atl on numbers no greater than t,where f S 20
and J S 9 in all our results. Since the IEEE Floating Point
Standard [1] allows a relative error of at most 10- 1s per
double-prec~lon operation, this means our final figures me
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all accurate to within 10-11, assuming our computer cor-
rectly implements the standar~ as claimed by the manufac-
turer. The checking phase adds a chain of up to 2d addi-
tiond operations in the quadratic case, on numbers as blg
as 100, but the resulting cumulative relative error is still at

-10 Thii is far too small to compromise ourmost 10 .
results, since the smallest positive y we encountered was oq
the order of 10-3.

4. Proving that Waste Grows Lhearly

The proofs discussed in the previous section were relatively
straightforward applications of the ideas described in Sec-
tion 2. When it comes to proving that expected waste is not
bolmded but ~OWS heady, wlich Wm OW * gd
additional ideas are needed. For these results we shall need
the following new lemma (essentially a result about super-
martingales) instead of Lemmas 2.1 and 2.2

Lemma 4.1. Suppose Xl ,X2,... is a ratim path from

an irreducible Markov chain M = (S, T), B and y are posi-

tive reals, and $ is ajhnctwnfiom S to R such that

(a) Prob(l$(X.+l -$(X. )I>B) = OforaUn 21, and

(b) E[@(Xn+l -$(Xn)lXn=s] 2 yB for all n 21

and alls ~ S.

Then liminf .+=(O(X. ) - yn + (l+y’)+2n log n ) > 0
for all y’> y with probability 1.

As indicated in Table 2 by the entries Ln-P, we have
succeeded in proving that both E[w~F(L~,8,11 )] and
E[w~F(L~,g,lz )] are O(N). Fmm now on, we specialize
to the case of U{8,11}. In order to apply Lemma 4.1, we
will need to do more than simply go to multi-step versions
of the chain M8,11, as the effective state space will be too
large. The chain to which we actually apply the lemma is
derived in a two-step process. Fmt we consider a Markov
chain M* that only approximates Ms,ll, but is true to it in
an asymptotic sense. Simulations suggest that under
U{8,11 }, essentially all the waste is contained in bins with
gaps of size 1. Thus the counts ~ of bins with gaps of size
1 grows without limit and does not affect the packing pro-
cess (except that it absorbs all items of size 1). In M* we

decouple the packing of l-items from the packing of the
other items+ Any time a l-item arrives, we simply decre-
ments ~, even if that means that s 1 shotid become nega-
tive. (Our state space is thus expanded @ allow arbitrary

negative integers as values fors 1, and only O is allowed as

a value for s 10.) In this Markov chain, the expected state
increment At(s) depends only on the values of Sz through
59, and only 4 of these values can exceed 1. We thus save
a factor of about (t+ 1) in the running time and space for
the dynamic program that computes the values of A’(s)
over the time and space that would have been needed for
M8,11. It is necessary here to concentrate on linear poten-
tial functions; given Lemma 4.1 we can restrict attention to
ones that have positive drift. In order to prove that M*

approximates M*,ll we must also be sure that the drift is
dominated by S1. We thus restrict our search to linear
functions $(s) = ~~=lfisi in which fl = 1 ad fi SO,

2Si<9.

Nex4 we do not simply go to a t-step version of M*

(for that we probably would have needed t substantially
larger than 1000), but rather to a variable-step version
M**, based on two constants tl and t2.A move of M**is
specitied as follows: starting in states, we perform steps of
M* until either we reach a state with an si 2 t1 for some
i 22, or until we have gone tz steps, whichever comes tlrst.
In the former case we proceed for precisely t~ additional

steps in the latter case we are already done. Thus a step of
M** corresponds to anywhere from t~ tot~+t2 steps of
M*. The value oft, is chosen as the minimum f for which
there exists a linear function $ with significant positive drift
On d StZlteS S with lIliM{Si:i 2 2) 2 f. (This f tUlllS Out to
be 15, as was determined using the linear programming
techniques developed in previous sections.) Using the $
corresponding to t 1, the value of t z is determined as the
minimum t such that each state with m~{si:i 2 2} < tl

yields significant positive expected drift in the above pro
cess when f z 2 t.(Wth bothf1 and t z the threshold for
“significant” positive drift was chosen so that rounding
errors could not force the drift negative.) A value of
tz = 4818 was determined by using dynamic programming
to compute expected drifts. The procedure only had to con-
sider states with s i S 15 for i 22 but the large number of
steps forced the computation to take 24 hours on our
machine; this computation was the heart of our proof and
will be described in more detail in the full paper.

The results of the computation imply that Lemma 4.1
applies to M* *, and the lemma then implies that for M * *

(and M* as well), the value of S1 goes to ~ at a liear rate
with probtillity 1. We can thus argue that there exists a
state sof M*withsl >Oandan e> Osuchthatif M*is
in state s, the probability that the value ofs 1 never again
goes negative is at least e. Consequently, the probability is
at k%wt & that Ms,ll and M*, both S- in S@@S, wtil

behave exactly the same (with s ~ going to 00 at a linear
rote). Since in M8,11 any reachable states can be reached
with some probabdity e$ >0, this implies that inM8,11 the
value IIXn II grows linearly with probability at least
EE, >0. Consequently the expected value E[ IIXn II] must
itself grow linearly, and hence E[ WBF(L~,8,1 ~)] = @(N).

Similar arguments work for U{9,12} with t ~ = 19 and
22 = 814, but again with 24 hours of computation because,
although t2is smaller, the effective state space is larger.

5. Conclusion

The obvious open question is whether all the above
machinery of Markov chains and computer proofs is neces-
sary for the results we have obtained. Simple hand-
checkable proofs would certainly be preferable. It is not
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clear, however, that the complexity of the current proofs
can be avoided. For instance, in the case of U(8, 11}, bins
with gaps of size 1 are created at a rate only about 1$%0fas-
ter than the rate at which items of size 1 arrive (based on
simulations of Best Fh on random lists), which does not
leave much slack for the types of simplifying assumptions
upon which intuitive proofs usually rely.

A second question is whether our techniques can be
pushed further. Table 2 indicates the limits to which we
can currently push them. All the still-open problems listed
in the table appear to require solutions to LP’s that are far

too big for us to store, much less solve. Thus one must
either wait for larger machines or look for more concise LP
formulations, the latter being the more promising avenue.
And it does not appear that we will lx able to get these
results for the discrete distributions U{.l,K) to provide
more than suggestive insight into the apparently much
more difficult case of the continuous dktributions Cl[O,u ].

In our opinion, the most promising dwection for future
work thus lies in applying our techniques to analyze Mar-
kov chains arising in new problem domains.
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