
Why study large deviations?

� The performance of many systems is limited by events

which have a small probability of occurring, but which

have severe consequences when they occur.

� The theory deals with rare events, and is asymptotic in

nature.

� It can be viewed as a re�nement of the law of large

numbers.

� It is useful when simulation or numerical techniques

become increasingly di�cult as a parameter tends to its

limit.

� It has many applications:

queueing and communications models,

information theory,

simulation techniques,

parameter estimation,

hypothesis testing, : : :

These slides were written to support an informal discussion of Chapters 1 and 2 of

\Large Deviations for Performance Analysis", by Shwartz and Weiss.

Richard Weber, 12 October 1995
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The problem of estimating bu�er over
ow frequency

The �gure below shows a 2� 2 switch, where output links

are served at rate c.

c

B

In order to know how many virtual circuits may be allowed to

use this output link, for a given Quality of Service constraint,

we need to estimate the probability that the content of the

queue, Q

t

, exceeds the bu�er of size B.

P (Q

t

� B) should be small.

2

The over
ow probability in a M=M=1=B queue

Simply to illustrate ideas consider a single server

M=M=1=B queue, with �nite bu�er, here being shared by

two tra�c sources, with combined Poisson arrivals at rate �

B

c

�

We know

P (Q

t

= B) =

�

1� (�=c)

1� (�=c)

B+1

�

(�=c)

B

:

Hence

P (Q

t

= B) � e

�B log(c=�)

for large B;

where � means

lim

B!1

1

B

log P (Q

t

= B) = � log(c=�):

This is typical.
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Elements of large deviation theory

Here is another result of large deviation theory.

Suppose x

1

; x

2

; : : : are i.i.d. r.v.s then

P

 

1

n

n

X

i=1

x

i

2 [a; b]

!

� e

�n[inf

x2[a;b]

`(x)+o(n)]

We had for the queue:

P (Q

t

= B) � e

�B log(c=�)

for large B:

These are typical. The general conclusions are:

� The asymptotic frequency of occurence of rare events

depends in an exponential manner on some parameters of

the problem. E.g., n, B.

� If a rare events occurs then it occurs in the most likely

way. E.g., inf

x2[a;b]

`(x).

� Rare events occur as a Poisson process.
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Cherno�'s theorem (upper bound)

Suppose x

1

; x

2

; : : : is a sequence of i.i.d. random variables

and a � Ex

1

. Let S

n

= x

1

+ � � � + x

n

. Then for all

� > 0,

P (S

n

� na) = E 1[x

1

+ � � �+ x

n

� na � 0]

� E

�

e

�[x

1

+���+x

n

�na]

�

= e

�n

[

a��logEe

�x

1

]

Hence

P (S

n

� na) � e

�n sup

��0

[

�a�logEe

�x

1

]

Note that by Jensen's inequality that for all �,

Ee

�x

1

� e

�Ex

1

and hence �a� logEe

�x

1

� �(a� Ex

1

).

Thus

`(a)

def

= sup

�

�

�a� logEe

�x

1

�

= sup

��0

�

�a� logEe

�x

1

�

and we conclude

P (S

n

� na) � e

�n`(a)

Note `(Ex

1

) = 0.
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Observations

� Note the key role of moment generating function,

M(�) = Ee

�x

1

and logarithmic moment generating

function, logM(�) (also called the cumulant

generating function.)

� logM(�) is a convex function of �.

� `(a) := sup

�

[�a� logM(�)] is called the Legendre

transform of logM(�).

� `(a) is a convex function of a.

� `(a) and logM(�) are Legendre transform duals, i.e.,

sup

a

[a��`(a)] = sup

a

[a� � sup

�

(�a� logM(�))]

= sup

a

inf

�

[logM(�)� a(� � �)]

= inf

�:�=�

logM(�)

= logM(�)

� The optimizing �, say �

�

, satis�es

a = M

0

(�

�

)=M(�

�

):
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A typical rate function

Suppose x

i

= 0; 1 with probabilities q, p. Then

logM(�) = log(q + pe

�

);

and

`(a) =

8

<

:

a log

�

a

p

�

+ (1� a) log

�

1�a

1�p

�

; 0 � a � 1

1; otherwise:

0:2 0:4 0:6 0:8 1

0

0:2

0:4

0:6

0:8

1

`(a)

a

Here Ex

1

= p = 0:6.

� `(a) is convex.

� j`

0

(a)j ! 1 as a! boundary of the set where `(a)

is �nite.

� `(Ex

1

) = 0.
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Cherno�'s theorem (lower bound)

Suppose F is the distribution of x

1

and de�ne

G(y) = M(�

�

)

�1

Z

y

�1

e

�

�

x

dF (x)

where �

�

is as above. Then G is a distribution. It is called a

tilted distribution. Note that if ~x � G,

E(~x) = M(�

�

)

�1

Z

y

�1

xe

�

�

x

dF (x) =

M

0

(�

�

)

M(�

�

)

= a:

Now dG(y) = M(�

�

)

�1

e

�

�

y

dF (y), so

P (S

n

� na) =

Z

� � �

Z

y

1

+���+y

n

�na

dF (y

1

) : : : dF (y

n

)

= M(�

�

)

n

Z

� � �

Z

y

1

+���+y

n

�na

e

��

�

(y

1

+���+y

n

)

dG(y

1

) : : : dG(y

n

)

�M(�

�

)

n

Z

� � �

Z

na+n��y

1

+���+y

n

�na

e

��

�

(y

1

+���+y

n

)

dG(y

1

) : : : dG(y

n

)

� e

�n[�

�

(a+�)�logM(�

�

)]

Z

� � �

Z

na+n��y

1

+���+y

n

�na

dG(y

1

) : : : dG(y

n

)

= e

�n`(a)�n�

P (na + n� � ~x

1

+ � � �+ ~x

n

� na)

= e

�n`(a)�n�

P

�

p

n� �

~x

1

+ � � � + ~x

n

� na

p

n

� 0

�
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Cherno�'s theorem (lower bound), continued

P (S

n

� na)

� e

�n`(a)�n�

P

�

p

n� �

~x

1

+ � � � + ~x

n

� na

p

n

� 0

�

Now

P

�

p

n� �

~x

1

+ � � � + ~x

n

� na

p

n

� 0

�

!

1

2

So since � is arbitrarily small,

lim inf

n!1

1

n

log P (S

n

� na) � �`(a)

� The upper and lower bounds together imply

P (S

n

� na) = e

�n[`(a)+o(n)]

� We need conditions to ensure that �a� logM(�) is

di�erentiable at �

�

and that its derivative is 0. It is

enough to assume that M(�) is �nite in some

neighborhood of 0 and that there is a �

�

in the interior

of this neighborhood such that

`(a) = �

�

a� logM(�

�

).
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Illustration with the normal distribution

In the simple case that x

i

� N(�; �

2

),

logM(�) = ��+

1

2

�

2

�

2

and

`(a) = (�� a)

2

=2�

2

A more re�ned estimate can be obtained from

1

y + y

�1

e

�

1

2

y

2

�

Z

1

y

e

�

1

2

t

2

dt �

1

y

e

�

1

2

y

2

=)

P (S

n

� na) �

1

p

2�n(a� �)=�

e

�n(a��)

2

=2�

2

=

1

p

2�n(a� �)=�

e

�n`(a)

� The appearance of 1=

p

n (= e

�

1

2

logn

) is typical.

� An application of the theory would be to approximate

P (S

n

� na) by e

�n(a��)

2

=2�

2

.

� Sometimes one can get re�ned approximations, e.g., as

above, or the Bahadur-Rao approximation for the

binomial distribution.
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Generalization to i.i.d. vectors

Theorem 1.22. Suppose x

1

; x

2

; : : : 2 R

d

is a sequence

of random vectors and

M(�) = Ee

<�;x

1

>

:

De�ne the rate function

`(a) = sup

�

[< �; a > � logM(�)]:

Then for any set C � R

d

lim

n!1

1

n

log P

 

1

n

n

X

t=1

x

t

2 C

!

� � inf

a2C

o

`(a);

lim

n!1

1

n

log P

 

1

n

n

X

t=1

x

t

2 C

!

� � inf

a2

�

C

`(a);

where C

o

and

�

C are respectively the interior and closure of

C.

Note: If you go back to the proof of Cherno�'s theorem, you

will see that you can easily extend the proof to statements

about P (S

n

=n 2 C). You can take C a closed set when

doing the upper bound, but will need to take C to be an

open set for the lower bound. (You'll want to let a

�

be the

minimizer of `(a) and bound the probability of being in C

by the probability of being in a neighbouhood of a

�

; so you'll

need that if a

�

2 C then a neighborhood of a

�

is also in

C.)
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General statement of a large deviation principle

Suppose z

1

; z

2

; : : : is a sequence of random vectors in a

probability space (X ;
;F). Here X might be R

d

, or

perhaps C[0; T ], the space of continuous functions.

E.g., think of z

n

= (x

1

+ � � �+ x

n

)=n.

De�nition 2.1. A real valued function I on X is called a

\rate function" if

(i) I(x) � 0,

(ii) I is lower semi-continuous; i.e., if y

1

; y

2

; : : : is a

sequence such that y

n

! y in X then

lim inf

n!1

I(y

n

) � I(y).

De�nition 2.2. We say z

1

; z

2

; : : : satisfy a large deviation

principle with rate function I if for every set C � X

lim

n!1

1

n

log P (z

n

2 C) � � inf

x2C

o

I(x);

lim

n!1

1

n

log P (z

n

2 C) � � inf

x2

�

C

I(x);

where C

o

and

�

C are respectively the interior and closure of

C.

If inf

x2C

o

I(x) = inf

x2

�

C

then the two bounds coincide

and C is said to be an I-continuity set for I .
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Varadhan's lemma

Theorem 2.12. Suppose that z

1

; z

2

; : : : satisfy a large

deviation principle with rate function I . Then for any

bounded continuous function g on X ,

lim

n!1

1

n

logE

�

e

ng(z

n

)

�

= sup

x

[g(x)� I(x)]:

The intuitive idea is that

E

�

e

ng(z

n

)

�

=

Z

x

e

ng(x)

P (z

n

� x)dx

�

Z

x

e

ng(x)

e

�nI(x)

dx

� e

n sup

x

[g(x)�I(x)]

where the last line follows from Laplace's argument, that the

rate of growth of an integral (or sum) is obtained by

approximating it by its largest term.

E.g.,

4e

�2n

+ 6e

�3n

+ e

�100n

� 4e

�2n

for large n.
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The contraction principle

De�nition 2.1. A rate function is said to be a good rate

function if

(iii) The set fx : I(x) � ag is compact for every a.

Suppose that z

1

; z

2

; : : : satisfy a large deviation principle

with rate function I . Let f be a continuous function and let

y

i

= f(z

i

). De�ne

I

0

(y) =

8

<

:

inffI(x) : x 2 X ; f(x) = yg

1; if y = f(x) for no x 2 X

Theorem 2.13.

(i) If I is a good rate function then I

0

is a good rate

function.

(ii) If z

1

; z

2

; : : : satisfy a large deviation principle with good

rate function I then y

1

; y

2

; : : : satisfy a large deviation

principle with good rate function I

0

.

Again, Laplace's argument gives the right intuition why this

is true.
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Sanov's theorem

De�nition A.82. Let x

1

; x

2

; : : : be a sequence random

variables with distribution F and values in some metric space

X . The empirical distribution �

n

of a measurable set A is

�

n

(A) :=

1

n

n

X

i=1

1[x

i

2 A]:

Suppose x

1

; x

2

; : : : are i.i.d. with distribution �, i.e.,

P (x

1

� y) = �((�1; y]). De�ne

I(�) =

Z

log

�

d�

d�

(y)

�

d�(y):

In the case that of a discrete distribution (p

1

; : : : ; p

d

),

over a discrete set of d points this would be

I(q) =

d

X

j=1

q

j

log

�

q

j

p

j

�

= H(q j p):

Theorem 1.22. Consider the sequence �

1

; �

2

; : : : . For

every set C contained in the space of probability

distributions,

lim

n!1

1

n

log P (�

n

2 C) � � inf

�2C

o

I(�);

lim

n!1

1

n

log P (�

n

2 C) � � inf

�2

�

C

I(�);

where C

o

and

�

C are respectively the interior and closure of

C.
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Sanov's theorem for a discrete distribution

Suppose X = f1; : : : ; dg. Given x

i

= j, let

y

i

2 f0; 1g

d

be a vector whose jth component is equal to

1 and all others are equal to 0. For any z 2 R

d

, let

jzj = max

1�j�d

jz

j

j. Then

P

 

�

�

�

�

�

1

n

n

X

i=1

y

i

� �q

�

�

�

�

�

� �

!

� exp

0

@

�n inf

q:jq��qj��

d

X

j=1

q

j

log

�

q

j

p

j

�

1

A

:

Example. Suppose we roll a die n times and the total is

� 4n. The expected value is 3:5n. So we have seen a rare

event. How did this happen? For

�q = (:103; :123; :146; :174; :207; :247), we have

P

0

@

�

�

�

�

�

1

n

n

X

i=1

y

i

� �q

�

�

�

�

�

� �

�

�

�

�

�

1

n

n

X

j=1

jx

j

� 4

1

A

.

exp

0

@

�n inf

q:jq��qj��;

P

j

jq

j

�4

d

X

j=1

q

j

log

�

q

j

1=6

�

1

A

exp

0

@

�n inf

q:

P

j

jq

j

>4

d

X

j=1

q

j

log

�

q

j

1=6

�

1

A

! 0

where �q is chosen as in�mizer of the denominator.
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Information theory and large deviations

Suppose a source generates letters from an alphabet of d

symbols. Letters are i.i.d. choices amongst the d symbols,

with probabilities q

1

; : : : ; q

d

. The empirical distribution of

the symbols in a string of n symbols will be close to q, so

without losing much information, we could ignore strings for

which the empirical distribution is far from q.

There are d

n

possible strings of length n, but we would be

using only a fraction of these. The number we would be

using, say M

n

, is given by

m

n

d

n

� exp

0

@

�n

d

X

j=1

q

j

log

�

q

j

1=d

�

1

A

=

2

nh(q)

d

n

;

where h(q) = �

P

j

q

j

log

2

q

j

. Hence

m

n

= 2

nh(q)

� 2

n log

2

d

:

This shows that the source has information rate

h(q) � log

2

d.
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