Why study large deviations?

@ The performance of many systems is limited by events
which have a small probability of occurring, but which

have severe consequences when they occur.

@ The theory deals with rare events, and is asymptotic in

nature.

@ It can be viewed as a refinement of the law of large

numbers.

@ It is useful when simulation or numerical techniques
become increasingly difficult as a parameter tends to its
limit.

@ |t has many applications:
queueing and communications models,
information theory,
simulation techniques,
parameter estimation,

hypothesis testing, . ..

These slides were written to support an informal discussion of Chapters 1 and 2 of

“Large Deviations for Performance Analysis”, by Shwartz and Weiss.

Richard Weber, 12 October 1995

The problem of estimating buffer overflow frequency

The figure below shows a 2 X 2 switch, where output links

are served at rate c.

In order to know how many virtual circuits may be allowed to
use this output link, for a given Quality of Service constraint,
we need to estimate the probability that the content of the

queue, 4, exceeds the buffer of size B.

P(Q: > B) should be small.

The overflow probability ina M /M /1/B queue

Simply to illustrate ideas consider a single server
M/M/1/B queue, with finite buffer, here being shared by

two traffic sources, with combined Poisson arrivals at rate A

C

A >O»| POOPP—
B
We know
o [ 1=(A/¢) B
P(Q:=B) = [W] (A/e)”.
Hence

P(Q:=B)~ e Bls(¢/N)  for large B,
where ~ means

o1
Jim —log P(Q: = B) = —log(c/A).

This is typical.

Elements of large deviation theory

Here is another result of large deviation theory.

Suppose €1, T2,... are i.i.d. r.v.s then
1 n
P — Z x; € [a,b] | ~ e~ "infrefa ) (@) +o(n)]
n 4
=1

We had for the queue:
P(Q; = B) ~ e B18(c/Y)  for |arge B.
These are typical. The general conclusions are:

@ The asymptotic frequency of occurence of rare events
depends in an exponential manner on some parameters of

the problem. E.g., n, B.

e If a rare events occurs then it occurs in the most likely

way. E.g., inf e £(x).

@ Rare events occur as a Poisson process.




Chernoff's theorem (upper bound)

Suppose 1, T2,... is a sequence of i.i.d. random variables
anda > FEx,. Let S, = o1+ -+ + x,. Then for all
6 >0,

P(S,>na)=FEl[x,+---+ x, — na > 0]
< E (69[z1+---+zn—na])
— e—n[aG—log Eeeml]

Hence

P (Sn > ’na) < e_"S“P(’ZO[o"—lOg Eegml]

Note that by Jensen's inequality that for all 8,
Eegzl > eGEzl
and hence fa — log Ee®® < 0(a — Ex;).
Thus
L(a) dZEfsup [6a — log Ee™1]
6

= sup [Ha — log Eeozl]
6>0

and we conclude
‘P (S, > na) < e ")
Note £(Ex;) = 0.

Observations

e Note the key role of moment generating function,
M (0) = Ee%* and logarithmic moment generating
function, log M (0) (also called the cumulant

generating function.)
e log M (0) is a convex function of 6.

e ((a) := supy [@a — log M (0)] is called the Legendre
transform of log M (0).

® {(a) is a convex function of a.

e {(a) and log M (0) are Legendre transform duals, i.e.,
sup[af@—~(a)] = sup[al — sup(¢pa — log M (¢))]
a a ¢
= sup infllog M(¢) — a(6 — ¢)]
= inf log M
Auf, log M(¢)
= log M (6)

e The optimizing 0, say 0*, satisfies

a = M'(6%)/M(6%).

A typical rate function
Suppose x; = 0,1 with probabilities q, p. Then

log M (8) = log(q + pe’),

and
a 1—a
t(a) = alog(;)—i—(l—a)log(ﬂ), 0<a<1
oo, otherwise.
£(a)
1
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Here Exy = p = 0.6.
e {(a) is convex.
e |¢/(a)| — oo as @ — boundary of the set where £(a)
is finite.

e ((Ex,) = 0.

Chernoff’s theorem (lower bound)

Suppose F' is the distribution of &y and define

Gly) = M) [ i)

hde o}
where 6* is as above. Then G is a distribution. It is called a
tilted distribution. Note that if £ ~ G,

E(&) = M(0*)7! /_io ze’ *dF(x) = JJ\\/[/I((:)) =a

Now dG(y) = M (6*)~e? ¥dF(y), so
P (S, > na) :// dF(y1)...dF (y,)

y1t+--+yn>na

= M(o*)"/---/e—"*(yl+"'+yn>dG(y1)...dG(yn)
y1++yn>na

> M(G*)"/---/e_a*(y1+"'+y")dG(y1)...dG(yn)

na+ne>yi+---+yn>na

> oo @) [ [aG(y) ... dG(w)

na+ne>yy+--+yn>na

= e ") "P(na 4+ ne > & + - + &, > na)

— e—nl(a)—ﬂép (\/7_746 2 Ty + ° ';ﬁwn — na Z 0>




Chernoff’s theorem (lower bound), continued

P (S, > na)

> e~na)-nep <\/E€Z i+ +x, —na >0>

Now

P<ﬁ62w1+”'+w"_"a>o>_>1

So since € is arbitrarily small,

1
liminf —log P (S, > na) > —{(a)

n—oo n

@ The upper and lower bounds together imply
P (S, > na) = e—"lt(a)+o(n)]

® \We need conditions to ensure that fa — log M (6) is
differentiable at 6* and that its derivative is 0. It is
enough to assume that M (@) is finite in some
neighborhood of 0 and that there is a 8* in the interior
of this neighborhood such that
L(a) = 0*a — log M (6*).
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[llustration with the normal distribution
In the simple case that x; ~ N (u, o?),
log M (6) = 6p + 16°07
and
t(a) = (1 — a)*/20°
A more refined estimate can be obtained from

1 1.2 © _1p 1 1
e < [ e A< e =
y+y y

<

1
\/27m(t;— n)/o

- V2rn(a — p)/o

o—n(a—p)?/20?

P(S, > na) =

—nt(a)

@ The appearance of 1/4/n (= e_%log") is typical.

@ An application of the theory would be to approximate

P(S, > na) by e~™a=n?*/20*

e Sometimes one can get refined approximations, e.g., as
above, or the Bahadur-Rao approximation for the

binomial distribution.
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Generalization to i.i.d. vectors

Theorem 1.22. Suppose 1, x3, ... € R? is a sequence
of random vectors and

M(0) = Ee<%"1>,
Define the rate function

L(a) = Sl;p[< 0,a > —log M(0)].

Then for any set C C R?

1
lim —log P | — C)>—inf ¢
im — log <n;wt€ > > — inf, (a),

n—ooTl

1 1
im —log P | —Y @ € C | < — inf £(a),
ni4 acC

n—oon,

where C° and C are respectively the interior and closure of

C.

Note: If you go back to the proof of Chernoff’s theorem, you
will see that you can easily extend the proof to statements
about P(S,,/n € C). You can take C' a closed set when
doing the upper bound, but will need to take C to be an
open set for the lower bound. (You'll want to let a* be the
minimizer of £(a) and bound the probability of being in C
by the probability of being in a neighbouhood of a*; so you'll
need that if a* € C then a neighborhood of a* is also in
C)
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General statement of a large deviation principle

Suppose 21, 22,... is a sequence of random vectors in a
probability space (X, 2, F). Here X might be RY, or
perhaps C[0, T'], the space of continuous functions.

E.g., think of 2, = (&1 + -+« 4+ x,) /0.

Definition 2.1. A real valued function I on X is called a
“rate function” if

(i) I(x) = 0,

(ii) I is lower semi-continuous; i.e., if Yy1,Ya2,... isa
sequence such that y,, — y in X then

liminf, .. I(y,) > I(y).

Definition 2.2. We say z1, z2, . .. satisfy a large deviation
principle with rate function I if for every set C C X

.1 .
lim —log P (z, € C) > — inf I(z),
zeC°

n—ooTl

I 1 .

lim —log P (z, € C) < — inf I(x),
n—oon, $€C

where C° and C are respectively the interior and closure of

C.

If inf,eco I(x) = inf & then the two bounds coincide
and C is said to be an I'-continuity set for I.
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Varadhan's lemma

Theorem 2.12. Suppose that z1, z2, ... satisfy a large
deviation principle with rate function I. Then for any

bounded continuous function g on X,
1
lim —log E (e"g(z”)) = sup[g(xz) — I(x)].
n—oo n x

The intuitive idea is that

E (e"g(z")) = /e"g(m)P(zn ~ x)dx

T
~ / emI@ e (@) gy

~ e spalo(@)—1()]

where the last line follows from Laplace's argument, that the
rate of growth of an integral (or sum) is obtained by

approximating it by its largest term.

Eg.,
46—211 _|_ 66_3n + e—lOOn ~ 46—2n

for large n.
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The contraction principle

Definition 2.1. A rate function is said to be a good rate

function if
(iii) The set {x : I(x) < a} is compact for every a.

Suppose that z1, 22, ... satisfy a large deviation principle

with rate function I. Let f be a continuous function and let
y; = f(2;). Define
inf{I(x) : x € X, f(x) = y}

I'(y) =
oo, ify = f(x)fornox € X

Theorem 2.13.

(i) If I is a good rate function then I' is a good rate
function.

(ii) If z1, 22, . .. satisfy a large deviation principle with good
rate function I then yy,Ys, ... satisfy a large deviation

principle with good rate function I’.

Again, Laplace’s argument gives the right intuition why this

is true.
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Sanov's theorem

Definition A.82. Let x1, x>, ... be a sequence random
variables with distribution F' and values in some metric space
X. The empirical distribution pt,, of a measurable set A is

1 n
pn(A) = ;Z 1[z; € A].
i=1
Suppose @1, T3, ... arei.i.d. with distribution p, i.e.,

P(21 < y) = u((~00,y]). Define
10) = [108 (0 ) dww)

In the case that of a discrete distribution (p1,... ,Pd4),
over a discrete set of d points this would be

I(q)=éqj10g (Z) = H(q | p)-

Theorem 1.22. Consider the sequence 1, pto, . ... For
every set C' contained in the space of probability
distributions,

.1 .
lim —log P (un € C) 2 — inf I(v),

n—ooTl

n—oon

— 1
lim —log P (uy, € C) < — inf I(v),
veC

where C° and C' are respectively the interior and closure of

C.
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Sanov’s theorem for a discrete distribution

Suppose X = {1,...,d}. Given z; = j, let

yi € {0,1}% be a vector whose jth component is equal to
1 and all others are equal to 0. For any z € R?, let

|z| = maxi<j<q|zj|. Then

1 )
P<‘;;yi—q 26)

d
. q;
ex —n inf log | —
e q:|q—q|ze;q] g(?j)

Example. Suppose we roll a die n times and the total is

> 4n. The expected value is 3.512. So we have seen a rare
event. How did this happen? For

g = (.103,.123,.146,.174, .207, .247), we have

n

d
. q;
ex —n inf oo | =
P wla—al2e); i 24 = 4708 (1/6)
— 0
d -
exp | —n_inf q;log <—J )
q:ijq,->4j§ ! 1/6

where § is chosen as infimizer of the denominator.
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Information theory and large deviations

Suppose a source generates letters from an alphabet of d
symbols. Letters are i.i.d. choices amongst the d symbols,
with probabilities q1, ... , gq4. The empirical distribution of
the symbols in a string of m symbols will be close to g, so
without losing much information, we could ignore strings for

which the empirical distribution is far from gq.

There are d™ possible strings of length n, but we would be
using only a fraction of these. The number we would be

using, say M, is given by

d ; nh(q)
my . q; 2
@ Ser (T ke (57a) | = "o
where h(q) = —_; g;log, g;. Hence

m, = 2nh(q) S 2nlog2 d‘

This shows that the source has information rate

h(q) < log, d.
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