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Topics to be revisited

Markov, Chebyshev and Jensen’s inequalities,

moment generating function,

sums of Bernoulli r.vs,

Stirling’s formula,

normal distribution,

gambler’s ruin,

tower property of conditional expectation,

expected value of a sum of r.vs,

Dyke words,

generating functions,

change of variable,

convergence in distribution,

Central limit theorem.



Games of chance: American roulette wheel

The wheel has 38 slots: 18 red, 18 black, 0 and 00.

Betting on red has probability of success
p = 18/38 = 0.4737.



Large deviations and
Chernoff’s bound



Gambler’s success

John plays roulette at Las Vegas, placing $1 on red
at each turn, which is then doubled, with probability
p = 9

19 , or lost, with probability q = 1− p = 10
19 .

He tries to increase his wealth by $100.

This is very unlikely. The probability he should ever
be up by $100 is (p/q)100 = (9/10)100 = 0.0000265.

But suppose this rare event or large deviation
occurs and after n games he is up by $100.

What can we say about n, and about the path
followed by John’s wealth?
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Model for the game

X1, . . . , Xn are i.i.d. B(1, p).

Sn = X1 + · · ·+Xn be the number of games John
wins in the first n.

His wealth is Wn = 2Sn − n.

Let µ = EX1 = p and σ2 = Var(Xi) = pq.

Note that EWn = −(q − p)n < 0.

To reach 100 he must win 1
2n+ 50, and lose

1
2n− 50, games.
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Some bounds

How likely is P (Sn > na) for a > p?

Using the Chebyshev bound

P (Sn > na) = P (Sn − nµ ≥ n(a− µ)) ≤ Var(Sn)

n2(a− µ)2
=

σ2

n(a− µ)2
.

Alternatively, by the Central limit theorem,

Both show that P (Sn > na)→ 0 as n→∞.
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Alternatively, by the Central limit theorem,

P (Sn > na)) = P

(
Sn − nµ√

nσ
>
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√
n

σ

)
≈ 1− Φ

(
(a− µ)

√
n

σ
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Both show that P (Sn > na)→ 0 as n→∞.



Chernoff upper bound

Let m(θ) = EeθX1 be the m.g.f. of X1. Let θ > 0,

P (Sn > na) = P
(
eθSn > eθna

)

≤ E[eθSn]

eθna
(by Markov inequality)

=

(
m(θ)

eθa

)n
= e−n[θa−logm(θ)].

Now minimize rhs over θ to get the best bound.

P (Sn > na) ≤ e−nI(a) (the Chernoff bound), (1)

where I(a) = maxθ>0 [θa− logm(θ)].
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Chernoff lower bound

P (Sn > na) ≤ e−nI(a) (the Chernoff bound), (1)

where I(a) = maxθ>0[θa− logm(θ)].

This bound is tight, in that given any δ > 0,

P (Sn > na) ≥ e−n(I(a)+δ), (2)

for all sufficiently large n. Hence

logP (Sn > an) ∼ −nI(a) (3)

∼ means that the quotient of the two sides tends to 1 as n→∞.
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Case of normal random variable

This holds for random variables more generally. If

Xi ∼ N(0, 1) then m(θ) = e
1
2θ

2

and

I(a) = max
θ

[
θa− 1

2θ
2
]

= 1
2a

2.

So
logP (Sn > an) ∼ −n1

2a
2.



Case of normal random variable

logP (Sn > an) ∼ −n1
2a

2.

Compare this to

P (Sn > an) =

∫ ∞
an

1√
2πn

e−t
2/(2n)dt

<

∫ ∞
an

1√
2πn

(
1 +

n

t2

)
e−t

2/(2n)dt

=
1√

2πa2n
e−n

1
2a

2
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Herman and Judy Chernoff



Case of Bernoulli random variable

For B(1, p) the m.g.f. is m(θ) = q + peθ

and

I(a) = max
θ

[θa−m(θ] = (1−a) log
1− a
1− p

+a log
a

p
,

which is convex in a, with its minimum I(p) = 0.
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I(a) for p = 18/38.



Case of Bernoulli random variable

For B(1, p) the m.g.f. is m(θ) = q + peθ and

I(a) = max
θ

[θa−m(θ] = (1−a) log
1− a
1− p

+a log
a

p
,

which is convex in a, with its minimum I(p) = 0.

Can also verify the lower bound (2). Let jn = dnae.

P (Sn > na) =
n∑

i≥jn

(
n

i

)
pi(1− p)n−i >

(
n

jn

)
pjn(1− p)n−jn .

Applying Stirling’s formula on the rhs we will find:

limn→∞(1/n) logP (Sn > na) = −I(a).

Hence logP (Sn > an) ∼ −nI(a).



Most likely path to $100.

The path on which John’s wealth increases to $100
is most likely to look like a straight line.

For instance, suppose Sn increases at rate a1 for n1

bets, and then rate a2 for n2 bets, where
n1 + n2 = n and 2(n1a1 + n2a2)− n = 100.



Most likely path to $100.

The path on which John’s wealth increases to $100
is most likely to look like a straight line.

For instance, suppose Sn increases at rate a1 for n1

bets, and then rate a2 for n2 bets, where
n1 + n2 = n and 2(n1a1 + n2a2)− n = 100.



Most likely path to $100.

The path on which John’s wealth increases to $100
is most likely to look like a straight line.

For instance, suppose Sn increases at rate a1 for n1

bets, and then rate a2 for n2 bets, where
n1 + n2 = n and 2(n1a1 + n2a2)− n = 100.



Most likely path to $100.

The path on which John’s wealth increases to $100
is most likely to look like a straight line.

For instance, suppose Sn increases at rate a1 for n1

bets, and then rate a2 for n2 bets, where
n1 + n2 = n and 2(n1a1 + n2a2)− n = 100.

The log-probability of this is about
−n1I(a1)− n2I(a2), which is maximized by
a1 = a2, since I is a convex function.

−n1I(a1) + n2I(a2)

n1 + n2
≤ −I

(
n1a1+n2a2
n1+n2

)
by Jensen’s inequality, with equality when a1 = a2.



Most likely n to $100.

So the most likely route to 100 is over n bets, with
Sn increasing at a constant rate a, and such that
2na− n = 100.

Subject to these constraints
logP (Sn > an) ≈ −nI(a) is maximized by
n = 100/(1− 2p), a = 1− 2p.

This means it is highly likely that

n ≈ 100/(1− 2× (18/38)) = 1900.

Interestingly, this is the same as the number of
games over which his expected loss would be $100.
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Other applications

Recall from Examples sheet 1,

There are many other applications of large
deviations theory, especially in coding, and
queueing.



Random matrices



Random matrices

Consider a symmetric n× n matrix A, constructed
by setting diagonal elements 0, and independently
choosing each off-diagonal aij = aji as 1 or −1 by
tossing a fair coin.

A random 10× 10 symmetric

matrix, having eigenvalues

−4.515, −4.264, −2.667,

−1.345, −0.7234, 1.169,

2.162, 2.626, 3.279, 4.277.



0 −1 −1 −1 1 1 1 1 −1 −1
−1 0 1 1 1 1 −1 −1 1 −1
−1 1 0 −1 −1 −1 −1 −1 −1 1
−1 1 −1 0 −1 1 1 −1 −1 −1
1 1 −1 −1 0 −1 −1 −1 −1 −1
1 1 −1 1 −1 0 −1 −1 1 1
1 −1 −1 1 −1 −1 0 1 −1 1
1 −1 −1 −1 −1 −1 1 0 1 −1
−1 1 −1 −1 −1 1 −1 1 0 −1
−1 −1 1 −1 −1 1 1 −1 −1 0



Recall that the eigenvalues of a symmetric real matrix are real.



Moments of a random eigenvalue

Let Λ be a randomly chosen eigenvalue of a random
A. What can we say about the r.v. Λ?

A and −A are equally likely, so EΛk = 0 if k is odd.

Consider k = 4. Eigenvalues of A are λ1, . . . , λn.

E[Λ4] = 1
nE[λ4

1 + · · ·+ λ4
n] = 1

nE[Tr(A4)]

= 1
nE

∑
i1,i2,i3,i4

ai1i2ai2i3ai3i4ai4i1

= 1
n

∑
i1,i2,i3,i4

E[ai1i2ai2i3ai3i4ai4i1]

(4)

taking the sum over all paths of length 4 through a subset of
the n indices: i1 → i2 → i3 → i4 → i1.
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Limits for moments of a random eigenvalue

E[Tr(A4)] =
∑

i1,i2,i3,i4
E[ai1i2ai2i3ai3i4ai4i1] (4)

E[ai1i2ai2i3ai3i4ai4i1] = 1 if for each two i, j the total
number of aijs and ajis in {ai1i2, ai2i3, ai3i4, ai4i1} is
even. This happens for

n(n− 1)(n− 2) terms of the form E[aijajiaikaki];

n(n− 1)(n− 2) terms of the form E[aijajkakjaji];

n(n− 1) terms of the form E[aijajiaijaji].

Otherwise E[ai1i2ai2i3ai3i4ai4i1 ] = 0.Thus,

E[Λ4/n
4
2 ] = n−

4
2−1E[Tr(A4)]

= n−3[2n(n− 1)(n− 2) + n(n− 1)]→ 2, as n→∞.
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Dyck words, again!

n(n− 1)(n− 2) terms of the form E[aijajiaikaki];

n(n− 1)(n− 2) terms of the form E[aijajkakjaji];

n(n− 1) terms of the form E[aijajiaijaji].

E[Λ4/n
4
2 ] = n−3E[Tr(A4)]→ 2, as n→∞.

The limit 2 is C2, the number of Dyke words of length 4.

These words are ()() and (()), matching the patterns of the
first two bullet points above.

Generalizes to any even k, to show
limn→∞E[(Λ/n

1
2 )k]→ Ck/2,

a Catalan number, and the number of Dyck words of length k
(described in §12.2).
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Semicircle p.d.f.

This begs the question: what random variable X
has sequence of moments

{EXk}∞k=1 = {0, C1, 0, C2, 0, C3, . . . } = {0, 1, 0, 2, 0, 5, . . . }?

It is easy to check that this is true when X has the
p.d.f.

f(x) = 1
2π

√
4− x2, −2 ≤ x ≤ 2.

Ck =

∫ 2

−2
(x2)k 1

2π

√
4− x2 dx,

which is related to the fact that the generating function for
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Wigner’s semicircle law

Histogram of 50,000 eigenvalues ob-
tained by randomly generating 500 ran-
dom 100× 100 matrices.
Bin sizes are of width 1.

λ/
√
100 has empirical density closely

matching f .

Rescaling appropriately,
the red semicircle is

g(x) = 50000 1
10
f( x

10
), −20 ≤ x ≤ 20. 10 0 10 2020

500

1000

1500

- -

This result is Wigner’s semicircle law:

Λ/
√
n→D r.v. with semicircle p.d.f. f .



Wigner’s semicircle law is a universal law

Notice we did not really need the assumption that
aij are chosen from the discrete uniform distribution
on {−1, 1}.
Need only that Eakij = 0 for odd k and Eakij <∞
for even k.

Wigner’s theorem is in the same spirit as the
Central limit theorem, which holds for any random
variable with finite first two moments.

Wigner’s theorem dates from 1955, but the finer
analysis of the eigenvalues structure of random
matrices interests researchers in the present day.
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Topics revisted

Large deviations and random matrices are fruits of
research in probability in modern times.

In looking at them we have touched on many topics
covered in our course:

Markov, Chebyshev and Jensen’s inequalities,
moment generating function,
sums of Bernoulli r.vs,
Stirling’s formula,
normal distribution,
gambler’s ruin,
tower property of conditional expectation,
expected value of a sum of r.vs,
Dyke words,
generating functions,
change of variable,
convergence in distribution,
Central limit theorem.



Applicable courses in IB



Statistics

Statistics addresses the question,

“What is this data telling me?”

How should we design experiments and interpret their results?

In the Probability IA course we had the weak law of large numbers.
This underlies the frequentist approach of estimating the
probability p with which a drawing pin lands “point up” by tossing
it many times and looking at the proportion of landings “point
up”. Bayes Theorem also enters into statistics.

To address questions about estimation and hypothesis testing
we must model uncertainty and the way data is arises. That gives
Probability a central role in Statistics. In the Statistics IB course
you will put to good use what you have learned about random
variables and distributions this year.



Markov chains

A Markov Chain is a generalization of the idea of a sequence of
i.i.d. r.vs., X1, X2, . . . . There is a departure from independence
because we now allow the distribution of Xn+1 to depend on the
value of Xn.

Many things in the world are like this: e.g. tomorrow’s weather
state follows in some random way from today’s weather state.

A random walk is a Markov chain, as we have met in Probability
IA.

In Markov Chains IB you will learn many more interesting things
about random walks.

For example, Polya’s theorem about random walk implies that it is
possible to play the clarinet in our 3-D world but that this would
be impossible in 2-D Flatland.



Optimization

Randomizing strategies are used in two-person games.

Consider game scissors-stone-paper, for which the optimal strategy
is to randomize with probabilities 1/3, 1/3, 1/3.

In the Optimization course you will learn how to solve other games.

Here is one you will be able to solve (from a recent Ph.D. thesis):

I have lost k possessions in my room (keys, wallet,
phone, etc). Searching location i costs ci.
“Sod’s Law” predicts that I will have lost my objects
in whatever way makes finding them most difficult.

Assume there are n locations, and cost of searching
location i is ci. I will search until I find all my objects.

What is Sod’s Law? How do I minimize my expected
total search cost? (I will have to randomize.)
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Tripos questions 2015



The end
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