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Optimization - Examples Sheet 1

1. Show how to solve the problem

min

n
∑

i=1

1

(ai + xi)
subject to

n
∑

i=1

xi = b, xi ≥ 0 (i = 1, . . . , n)

where ai > 0, i = 1, . . . , n and b > 0.

2. Minimize each of the following functions in the region specified.

(a) 3x in {x : x ≥ 0}; (b) x2 − 2x+ 3 in {x : x ≥ 0}; (c) x2 + 2x+ 3 in {x : x ≥ 0}.

For each of the following functions specify the set Y of λ values for which the function has
a finite minimum in the region specified, and for each λ ∈ Y find the minimum value and
(all) optimal x.

(d) λx subject to x ≥ 0; (e) λx subject to x ∈ R; (f) λ1x
2 + λ2x subject to x ∈ R;

(g) λ1x
2 + λ2x subject to x ≥ 0; (h) (λ1 − λ2)x subject to 0 ≤ x ≤ M .

3. Maximize n1 log p1 + . . . + nk log pk subject to p1 + . . . + pk = 1, p1, . . . , pk > 0,
where n1, . . . , nk are given positive constants. [ The optimal (p1, . . . , pk) is the maximum
likelihood estimator for the multinomial distribution, p(n1, . . . , nk) =

(

n

n1,...,nk

)

pn1

1 · · · pnk

k .]

4. A probability vector is a vector p = (p1, . . . , pn)
⊤ with pi ≥ 0 for all i and

∑n

i=1
pi = 1.

The entropy H(p) is defined by

H(p) = −
n

∑

i=1

pi log pi,

where 0 log 0 = 0 by convention. Find the maximum and the minimum values of H(p) over
probability vectors p.

5. Maximize 2 tan−1 x1 + x2 subject to x1 + x2 ≤ b1, − log x2 ≤ b2, x1 ≥ 0, x2 ≥ 0,
where b1, b2 are constants such that b1 − e−b2 ≥ 0.

[ Hint. Think carefully about two cases in which the Lagrange multiplier for the second
constraint is either = 0 or > 0.]

6. Write down the Lagrangian for each of the following problems. In each case find the set
Y of λ values for which the Lagrangian has a finite minimum (subject to the appropriate
regional constraint), calculate the minimum L(λ) for each λ ∈ Y , and write down the dual
problem. In each case, write down the conditions for primal and dual feasibility and any
additional conditions (the complementary slackness conditions) needed for optimality.

(a) minimize c⊤x subject to Ax ≤ b, x ≥ 0; (b) minimize c⊤x subject to Ax = b, x ≥ 0.
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7. Let P be the linear problem

maximize x1 + x2

subject to 2x1 + x2 ≤ 4
x1 +2x2 ≤ 4
x1 − x2 ≤ 1

x1, x2 ≥ 0.

(a) Solve P graphically in the x1, x2 plane.

(b) Introduce slack variables x3, x4, x5 and extend c and A to rewrite P as

max c⊤e xe subject to Aexe = b, xe ≥ 0.

Determine the variables x1, . . . , x5 and of the objective function for all basic solutions
to the equation Aex = b.

Which of the basic solutions are the basic feasible solutions? Are all the basic solutions
non-degenerate?

(c) Find the problem D that is dual to P. Introduce slack variables λ4 and λ5 into this prob-
lem and write down the value of the variables λ1, . . . λ5 and of the objective function
for each basic solution of D. Which are the basic feasible solutions of D?

(d) Let z1 = x3, z2 = x4, z3 = x5 be the slack variables for P and v1 = λ4, v2 = λ5 be
the slack variables for D. Show that for each basic solution x of P there is exactly one
basic solution λ of D such that (i) c⊤e xe = b⊤λ (same objective value) and (ii) λizi = 0,
i = 1, 2, 3 and xjvj = 0, j = 1, 2 (complementary slackness).

For how many pairs {xe, λ} is xe feasible for P and λ feasible for D?

(e) Solve problem P using the simplex algorithm starting with initial basic feasible solution
x1 = x2 = 0. Try both choices of the variable to put into the basis on the first step.
Compare the objective rows of the various tableaux generated with appropriate basic
solutions to problem D? What do you observe?

8. Use the simplex algorithm to solve

maximize 3x1+ x2+3x3

subject to 2x1+ x2+ x3 ≤ 2
x1+2x2+3x3 ≤ 5
2x1+2x2+ x3 ≤ 6

x1, x2, x3 ≥ 0.

Each row of the final tableau is the sum of scalar multiples of the rows of the initial tableau.
Explain how to determine the scalar multipliers directly from the final tableau.

Let P(ǫ) to be the LP problem obtained by replacing the vector b = (2, 5, 6)⊤ by the
perturbed vector b(ǫ) = (2 + ǫ1, 5+ ǫ2, 6 + ǫ3)

⊤. Give a formula, in terms of ǫ = (ǫ1, ǫ2, ǫ3),
for the optimal value for P(ǫ) when the ǫi are small. If ǫ2 = ǫ3 = 0, for what range of ǫ1
values does the formula hold?
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9. Apply the simplex algorithm to

maximize x1 +3x2

subject to x1− 2x2 ≤ 4
−x1 + x2 ≤ 3

x1, x2 ≥ 0.

Explain what happens with the use of a diagram.

10. Use the two-phase algorithm to solve:

maximize −2x1− 2x2

subject to 2x1− 2x2 ≤ 1
5x1 +3x2 ≥ 3

x1, x2 ≥ 0.

Hint: You should get x1 = 9

16
, x2 = 1

16
. Note that it is possible to choose the first pivot

column so that phase I last only one step. But this requires a different choice of pivot
column than the one specified by the usual rule-of-thumb.

11. Use the two-phase algorithm to solve:

minimize 13x1+5x2 − 12x3

subject to 2x1+ x2 + 2x3 ≤ 5
3x1+3x2 + x3 ≥ 7
x1 +5x2 + 4x3 = 10

x1, x2, x3 ≥ 0.

12. Consider the problem

minimize 2x1+3x2+5x3+2x4+3x5

subject to x1+ x2+2x3+ x4+3x5 ≥ 4
2x1−2x2+3x3+ x4+ x5 ≥ 3

x1, x2, x3, x4, x5 ≥ 0.

Write down the dual problem, and solve this graphically. Hence deduce the optimal solution
to the primal problem.
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