
Feasible set for P

A B

C

D

E

F

x1 = 0

x2 = 0

x1 + 2x2 = 6

x1 − x2 = 3

x1

x2

P: maximize x1 + x2
subject to x1 + 2x2 ≤ 6

x1 − x2 ≤ 3
x1, x2 ≥ 0

Primal and Dual

P
maximize c⊤x : Ax ≤ b, x ≥ 0

maximize x1 + x2
subject to x1 + 2x2 ≤ 6

x1 − x2 ≤ 3
x1, x2 ≥ 0

D
minimize y⊤b : y⊤A ≥ c⊤, y ≥ 0

maximize 6y1 + 3y2
subject to y1 + yx2 ≥ 1

2y1 − y2 ≥ 1
y1, y2 ≥ 0

Feasible sets

A B

C

D

E

F

x1 = 0

x2 = 0

x1 + 2x2 = 6

x1 − x2 = 3

x1

x2

A

B
C

D

E

F

λ2

λ1

λ1 = 0

λ2 = 0

v1 = 0

v2 = 0

Unboundedness and Infeasibility

Suppose in D we change ‘minimize 6y1 + 3y2’
to ‘maximize 6y1 + 3y2’

D*: maximize 6y1 + 3y2
subject to y1 + y2 ≥ 1

2y1 − y2 ≥ 1
y1, y2 ≥ 0

≡ subject to −y1 − y2 ≤ −1
−2y1 + y2 ≤ −1

is unbounded.

The dual is of D is like P, but with Ax ≥ b.

P*: minimize x1 + x2
subject to x1 + 2x2 ≥ 6

x1 − x2 ≥ 3
x1, x2 ≤ 0

which is infeasible.

Fundamental Theorem of LP

For an arbitrary linear program in standard form,
the following statements are true:

• If there is no optimal solution, then the problem
is either infeasible or unbounded.

• If a feasible solution exists, then a basic feasible
solution exists.

• If an optimal solution exists, then a basic optimal
solution

Relationships between Primal and Dual

• P has a finite optimum ⇐⇒ D has a finite
optimum

• P feasible =⇒ D is bounded.

• P is infeasible =⇒ D is infeasible or unbounded.

Basic solutions

Primal:

x1 x2 z1 z2 f

A 0 0 6 3 0

B 3 0 3 0 3

C 4 1 0 0 5

D 0 3 0 6 3

E 6 0 0 −3 6

F 0 −3 12 0 −3

Dual:

v1 v2 λ1 λ2 f

A −1 −1 0 0 0

B 0 −2 0 1 3

C 0 0 2
3

1
3 5

D −1
2 0 1

2 0 3

E 0 1 1 0 6

F −2 0 0 −1 −3

Comparison of final tableaus for P and D

P:

x1 x2 z1 z2

0 1 1
3 −1

3 1

1 0 1
3

2
3 4

0 0 −2
3 −1

3 −5

D:

λ1 λ2 v1 v2

0 1 −2
3

2
3

1
3

1 0 −1
3 −1

3
2
3

0 0 −4 −1 5

Note the positions of the primal and dual variables.

Given a free choice of problems, either the primal
or dual may be the easier one to solve.

Once we have a final tableau for either problem we
can read off the solutions to both.

Effect of perturbing a constraint

A B

C

D

E

F

x1 = 0

x2 = 0

f = x1 + x2

x1 + 2x2 = 6

x1 − x2 = 3

x1 − x2 = 3 + ǫ2

x1

x2

The final tableau is

0 1 1
3 −1

3 1− 1
3ǫ2

1 0 1
3

2
3 4 + 2

3ǫ2

0 0 −2
3 −1

3 −5− 1
3ǫ2

We retain the same basis provided −6 ≤ ǫ2 ≤ 3.

Example 2.2

x1(λ) + x2(λ) =
(

−1 +
√

−1/λ
)+

+
(

−2 +
√

−1/λ
)+

=

0 ≤ −1

−1 + 1/
√
−λ as λ ∈ [−1,−1/4]

−3 + 2/
√
−λ ∈ [−1/4, 0]

0λ

x1(λ) + x2(λ)

−1 +
1√
−λ

−3 +
2√
−λ

−1 −1
4

1

Example: set partitioning
Given n positive numbers a1, . . . , an, partition them
into two disjoint sets, A and Ā, such that the sums of
the numbers in the two sets are as equal as possible.

Example: job scheduling
Given n tasks of lengths a1, . . . , an, process them on
two machines operating in parallel so as to complete
all n tasks in the minimal time possible.

These problems can be formulated as an ILP

minimize x0

subject to
∑

i xiai ≤ x0
∑

i(1− xi)ai ≤ x0

xi ∈ {0, 1}, i = 1, . . . , n, and x0 ≥ 0

Here xi is 1 or 0 as i ∈ A or i ∈ Ā. The first two
inequalities require the sum of the items in A and Ā
to each be less that x0 (which is unconstrained).

Hence x0 is minimized when the sums of the numbers
in the two sets are a nearly equal as possible.

Example: bin packing

Given n rational numbers a1, . . . , an ∈ (0, 1), parti-
tion them into the minimum number of subsets such
that the sum of the numbers in each subset is ≤ 1.

This is a bin packing problem in which items of
sizes a1, . . . , an are to be packed into the minimum
number of bins of size 1. It can be formulated as an
ILP problem in decision variables xij, yj,

minimize
∑

j yj

subject to
∑

i xijai ≤ yj

xij, yj ∈ {0, 1}, i, j ∈ {1, . . . , n}

Here yj is 1 or 0 as a jth bin is or is not used
and xij is 1 or 0 as item i is or is not placed in
bin j. Clearly, no more than n bins are needed and
∑

j yj is minimized when the items are packed into
the minimum number of bins.

The problem size is the number of bits need to
specify an instance of the problem (i.e., to specify n
and a1, . . . , an). All known algorithms have running

time which grows essentially like e(problem size).

Power generation & distribution

Node i has ki generators, that can generate electricity at costs
of ai1, . . . , aiki, up to amounts bi1, . . . , biki.

12

3 4

5

67

8

9

10

11

12

London

Scotland

Cumbria Northeast

Northwest Yorkshire

Wales

Central

Southwest

Southcoast Thames

Midlands

di = demand for electricity at node i.
cij = cji = transmission capacity between nodes i and j.

yij = MW generated by generator j at node i.
xij = MW carried i → j.

minimize
∑

ij

aijyij

subject to
∑

j

yij −
∑

j

xij +
∑

j

xji = di,

0 ≤ xij ≤ cij, 0 ≤ yij ≤ bij.

Example: insects as optimizers

A colony of insects consists of workers and queens, of num-
bers w(t) and q(t) at time t.

A time-dependent proportion u(t) of the colony’s effort may
be put into producing workers,
0 ≤ u(t) ≤ 1. The problem is

maximize q(T)

subject to dq/dt = c(1− u)w

dw/dt = auw − bw

0 ≤ u ≤ 1.

where a, b, c are constants, with a > b.
This optimization problem is substantially more complicated

than the LP problem. Firstly, there are effectively an infinite
number of variables and constraints (since the differential equa-
tions must hold at every time t, 0 ≤ t ≤ T). Secondly, the
constraints between the variables w, q and u are non-linear.

There exists a beautiful method to solve this type of problem
(taught inOptimization and Control IIB). The optimal policy
is to produce only workers up to some moment, and produce
only queens thereafter. This is what such insects do in practice!

Polynomial vs. Exponential Growth

n n2 n3 2n

1 1 1 2

2 4 8 4

3 9 27 8

4 16 64 16

5 25 125 32

6 36 216 64

7 49 343 128

8 64 512 256

9 81 729 512

10 100 1000 1024

12 144 1728 4096

14 196 2744 16384

16 256 4096 65536

18 324 5832 262144

20 400 8000 1048576

22 484 10648 4194304

24 576 13824 16777216

26 676 17576 67108864

28 784 21952 268435456

30 900 27000 1073741824

Sorting: n log n

Matrix multiplication: n3

Simplex method:

• worst case: n22n

• average case: n3

Running times of algorithms

2 4 6 8 10
0

10

20

30

40

50

n2
2n

f
(n
)

log10(n)

n

n

Suppose instances of size 1000 can be solved in one
second.

Technology increases computing speed by a factor
of 16.

What size of problem can we now solve in one
second?

If T (n) = n2 we can now solve problems of size
4000.

If T (n) = 2n we can now solve problems of size
1004.

lp solve.exe

lp_solve.exe [options] "<" <input_file>

list of options:

-h prints this message

-v verbose mode, gives flow through the program

-d debug mode, all intermediate results are printed,

and the branch-and-bound decisions

-p print the values of the dual variables

-i print all intermediate valid solutions.

Can give you useful solutions even if the

total run time is too long

-t trace pivot selection

LPO is a file containing lines of:

x1 + x2;

row1: x1 + 2 x2 <= 6;

row2: x1 - x2 <= 3;

>lp_solve -p < LP0

Value of objective function: 5

x1 4

x2 1

Dual values:

row1 0.66667

row2 0.33333

Mathematica

In[127]:= b={6,3}

c={1,1}

m={{1,2},{1,-1}};

AbsoluteTiming[

For[i=1,i<=100000,i++,

x=LinearProgramming[-c,-m,-b]];

]

Print[x];

Out[128]= {6,3}

Out[129]= {1,1}

Out[130]= {4.0900000,Null}

{4,1}

The problem is solved in

about 0.000004 seconds.

The solutionis x1=4, x2=1.

Simple2x

Klee and Minty’s Example

n variables and n constraints:

maximize 2n−1x1 + 2n−2x2 + · · · + 2xn−1 + xn

subject to x1 ≤ 5

4x1 + x2 ≤ 25

8x1 + 4x2 + x3 ≤ 125

...

2nx1 + 2n−1x2 + · · · + 4xn−1 + xn ≤ 5n

x1, . . . , xn ≥ 0

Solution requires 2n−1 iterations if we start at x1 =
· · · = xn = 0 and use the rule of always choosing the
largest number in the bottom row to select the pivot
column. This shows that the simplex algorithm can
have exponential running-time in the worst case.

In fact, the optimal solution is x1 = · · · = xn−1 =
0, xn = 5n, which can be reached in just one pivot
from x1 = · · · = xn−1 = xn = 0 by pivoting in the
column with the smallest entry in the bottom row!

The Hirsch Conjecture (1957)

n = 2, m = 7 n = 3, m = 6

∆(n,m) = maximum distance between two ver-
tices of a polytope in R

n that is defined by m in-
equalites.

Hirsch Conjecture: ∆(n,m) ≤ m− n.

Example: Project assignment in CUED

Third year Engineering students are required to do
2 projects during the Easter Term, out of a choice
of 32 projects. The process of assigning projects to
students is complicated. There are timetable con-
straints and there is a limit on the number of students
that can do each project. The problem is solved
by asking students to allocate preference scores for
projects. The instructions are:

You should indicate your preferences for

exactly eight projects by assigning scores to eight

projects that satisfy the following rules

1. Your eight scores should be precisely the

numbers 4,4,3,3,2,2,1,1. A 4 indicates a

project for which you have the strongest pref-

erence. You may score two projects with 4,

two with 3, and so on.

2. No two projects in the same category should

be given the same score . . .

3. You may place a score against Fi1 only if . . .

4. European projects . . .

Suppose there are n students. Let us define 32n
variables of the form xij where

xij =

{

1

0
if student i

is

is not
assigned project j.

Student i assigns a score of aij to project j.
We seek to:

maximize

n
∑

i=1

32
∑

j=1

aijxij,

over xij ∈ {0, 1}, subject to:
(a) No more that cj students are assigned to project
j. This is expressed

n
∑

i=1

xij ≤ cj, for all j = 1, . . . , 32.

Here we have 32 constraints.

(b) Each student does exactly 2 projects:

32
∑

j=1

xij = 2, for all i = 1, . . . , n.

Here we have n constraints.

(c) Students are not assigned a pair of projects
timetabled at the same time. Consideration of Table
2 shows that this can be written as,

4
∑

j=1

xij +
17
∑

j=15

xij ≤ 1,

7
∑

j=5

xij +
20
∑

j=18

xij +
32
∑

j=31

xij ≤ 1,

10
∑

j=8

xij +
23
∑

j=21

xij +
32
∑

j=31

xij ≤ 1,

14
∑

j=11

xij +
26
∑

j=24

xij ≤ 1,

30
∑

j=27

xij +

32
∑

j=31

xij ≤ 1,

for all i = 1, . . . , n. This is system of 5n constraints.

(d) Students are not assigned more that one com-
puter project or one design project.

14
∑

j=1

xij ≤ 1, for all i = 1, . . . , n,

26
∑

j=15

xij ≤ 1, for all i = 1, . . . , n.

Here we have 2n constraints.

Thus the problem has a total of 32n variables and
8n + 32 constraints, with the additional constraint
that each xij ∈ {0, 1}. For n = 250 we have a inte-
ger LP with 8,000 variables and 2,032 constraints.

This is a large ILP, but the relaxed LP version, in
which we require only 0 ≤ xij ≤ 1 can be solved.
In fact, this gives an integer solution. (Can you see
why it must?) The method provides a very satisfac-
tory allocation of projects to students. A computer
package called LPSOLVE is used to do this, which
runs in about 1 minute.

Results:

The bottom line is that once all the students have
responded it is possible to have the allocations ready
to hang in CUED’s foyer in less than 4 minutes. All
248 students were assigned either their first and sec-
ond choices.

assigned ranking weights

combinations 4,3,2,1 8,6,2,1 20,6,2,1

1st 1st 161 158 162

1st 2nd 75 81 74

2nd 2nd 10 9 9

1st 3rd 2 1

2nd 3rd 1

1st 4th 1

It was decided to use the weights 8, 6, 2, 1.

Some practical examples of LP

Military logistics planning

The problem is concerned with the feasibility of sup-
porting military operations overseas during a crisis.
The aim is to determine if materials can be trans-

ported overseas within strict time windows. The LP
includes capacities at embarkation ports, capacities
of the various aircraft and ships that carry the move-
ment requirements and penalties for missing delivery
dates. One problem that has been solved resulted in
an LP with 20,500 constraints and 520,000 variables
(solved in 75 minutes on a mini-supercomputer.)

Yield management at American Airlines

Critical to an airline’s operation is the effective use
of its reservation inventory. American Airlines has
developed a series of OR models that effectively re-
duce the large problem to three smaller problems:
overbooking, discount allocation and traffic manage-
ment. They estimate the quantifiable benefit at $1.4
billion over the last three years and expect annual
revenue contribution of over $500 million.

More practical examples of LP

Basin facility planning for AT&T

To determine where undersea cables and satellite cir-
cuits should be installed, when they will be needed,
the number of circuits needed, cable technology, call
routing, etc., over a 19 year planning horizon (an LP
with 28,000 constraints and 77,000 variables.)

Military officer personnel planning

The problem is to plan US Army officer promotions
(to Lieutenant, Captain, Major, Lieutenant Colonel
and Colonel), taking into account the people entering
and leaving the Army and training requirements by
skill categories to meet the overall force structure (an
LP with 21,000 constraints and 43,000 variables.)

Bond arbitrage

Many financial transactions can be modelled as LPs,
e.g., bond arbitrage, switching amongst various fi-
nancial instruments (bonds) so as to to make money.
Typical problems have around1,000 constraints and
50,000 variables and can be solved in ‘real-time’.

How large an LP can we solve?

The key factor is the number of constraints.

A typical workstation/mainframe LP package (e.g.,
OSL) has the capacity of 2 billion variables and 16
million constraints. However, this overstates what
can be done in practice.

Code Number Number Time Computer

of con- of

straints variables

OSL 105,000 155,000 240 mins IBM 3090

750 12,000,000 27 mins IBM 3090

OB1 10,000 233,000 12 mins IBM 3090

Cplex 145 1,000,000 6 mins Cray Y-MP

41,000 79,000 3 mins Cray 2

OSL = Optimization Subroutine Library from IBM
OB1 (Roy Marsten, Georgia Institute of Technology)
CPlex (Bob Bixby, Rice University)

Example: On-line bin packing
An infinite sequence of items are to be packed into
bins of size 5. Each successive item is equally likely
to be of sizes 1, 2 or 3. One possible packing algo-
rithm is Best Fit (BF), which puts each item into
the smallest gap into which it will fit amongst the
existing gaps in partially full bins, or if there is no
gap large enough, the item goes into an empty bin.
The state at time t is written x = (x1, x2, x3, x4)

T

where xi is the number of partially full bins with a
gap of size i. Then, for example,

(0, 4, 0, 0) −→
(1, 3, 0, 0)

(0, 3, 0, 0)

(0, 5, 0, 0)

on arrival of a

1

2

3

w.p.

1
3
1
3
1
3

Let d(x) = E[x(t + 1) − x(t) | x(t) = x], be the

expected drift, e.g., d(0, 4, 0, 0) =
(

1
3,−1

3, 0, 0
)T

.

Problem: Let E|x(t)| = x1+x2+x3+x4 be the
number of partially full bins. Does E|x(t)| → ∞ or
is E|x(t)| bounded as t → ∞?

Practical considerations suggest that it is better if
E|x(t)| is bounded than if E|x(t)| → ∞.

Theorem E|x(t)| is bounded as t → ∞ ⇐⇒ ∃
δ < 0 and potential function φ(x) ≥ 0 such that

E[φ(x(t+ 1))− φ(x) | x(t) = x] ≤ δ < 0 for all x.

This theorem makes sense because it says that from
every possible starting state the value of the potential
function is drifting (on average) towards 0.

Suppose we try φ(x) =
∑4

i=1 aixi and hunt for ai
that will work by considering the LP

minimize δ

subject to d(x)Ta ≤ δ, for all x

a1, a2, a3, a4 ≥ 0.

If the optimal solution is δ < 0 this proves that
E|x(t)| is bounded as t → ∞.

This is what happens for our example. The LP has
only 6 constraints.

For packing items of sizes 1, . . . , 8 into bins of size
14 a version of this method gives a LP with 415,953
constraints and takes 24 hours to construct and solve!
For packing 1, . . . , 8 into bins of size 11 the answer

can be shown to be E|x(t)| → ∞ .

When Lagrangian methods work

Suppose f, g are convex, X is convex. Then

• φ(b) = min{f (x) : x ∈ X, g(x) = b} is convex.

• ∃ a supporting hyperplane at b∗.

• The equation of this is y(b) = φ(b∗)+λT (b− b∗).

We have the picture

minL L = f − λT (g − b∗)

f

g

b∗

φ(b)

φ(b∗)

feasible (g, f)

φ(b∗) + λT (g − b∗)

λT (g − b∗)

Notice that
∂φ(b)

∂b

∣

∣

∣

∣

b=b∗
= λ

.

Example: Hanging chain

A chain of n links, each length 1, hangs between two
points a distance L apart. To find the form in which
the chain hangs we minimize the potential energy.

Let (xi, yi) be the displacement of the right hand
end of the ith link from the right hand end of the
(i− 1)th link.

L

x1 + x2

y1 + y2 +
1
2y3

The potential energy is therefore
1
2y1 + (y1 +

1
2y2) + · · · + (y1 + · · · + yn−1 +

1
2yn).

We wish to minimize this subject to
n
∑

i=1

yi = 0

n
∑

i=1

xi =
n
∑

i=1

√

1− y2i = L.

So the problem is

minimize

n
∑

i=1

(n− i + 1
2)yi

subject to

n
∑

i=1

yi = 0,

n
∑

i=1

√

1− y2i = L.

Hence the Lagrangian is

L =

n
∑

i=1

(n− i + 1
2)yi − λ

n
∑

i=1

yi

− µ

n
∑

i=1

√

1− y2i − L

From ∂L/∂yi = 0 we find

yi =
−(n− i + 1

2 − λ)
√

µ2 + (n− i + 1
2 − λ)2

,

The solution is not unique and that some station-
ary points give local minima that are not the global
minimum. For example, a chain of 4 links has local
minimums in both V and W shapes.

Example: Airline luggage

On the Virgin Atlantic New York — London route
the instructions given to economy class passengers
used to read

2 pieces up to 32 kg/70 lbs maximum
each piece. Dimensions when added to-
gether must not exceed 62” for one piece
and 55” for the other.

For a rectangular box with sides x1,x2,x3 we

maximize x1x2x3

subject to x1 + x2 + x3 ≤ c, xi ≥ 0.

The Lagrangian is

L = x1x2x3 − λ(x1 + x2 + x3 + z − c)

which has a maximum where λ > 0, z = 0 and

∂L

∂xi
= xjxk − λ = 0.

Hence the optimum occurs where x1 = x2 = x3 =
c/3 (as expected). λ = c2/9.

In fact, this means we can carry 14, 989 cubic
inches, or about as much as 246 litres (if we use
cube-shaped luggage)!

MacDiet (a LP with 30 variables, 19 constraints)

The LP is based on data for 22 MacDonald’s foods.

Diet 1 2 3 4

Cost £ 1.30 4.83 5.23 5.99

Big Mac .99 1.3 1

Cheeseburger .91 1

MacChicken sandwich .99 1

Scambled eggs & muffin .86 2

French fries .57 2 3 2

Tomato ketchup portion .00 70.5 4 6 4

Banana milkshake .90 3 2 2

Hot chocolate .55 1

Orange juice .60 1

Calories 2400 2308 2303 2303

Protein 55.0 59.8 66.2 63.8

Fat 41.4 76.2 76.3 75.4

Saturated fat 16.5 33.8 29.3 27.1

Carbohydrate 450.0 343.0 336.0 340.4

Sugars 326.2 204.4 148.2 190.1

Sodium 1.2 2.0 1.7 2.5

Fibre 4.9 15.3 22.0 19.1

Diet 1. At least 2300 calories of which no more than 30% from
fat. At least 55g protein and no more than 3g sodium.

Diet 2. Require an integer solution. No more than twice as
many tomato ketcup portions as french fries.

Diet 3. No more than 2 banana milkshakes.

Diet 4. No more than 2 french fries and less than 64g protein.

-.65AP - .99BA - 1.29BB - .99BM - .91CB - 1.49CM - .69CC - .60CO -

1.32FI - .57FF - .79HA - .55HC - .99MS - .45MI - .90BS - 1.69PI -

.60OJ - 1.49QP - 1.80GS - .99SM - .86SE + 0TK ;

219AP + 333BA + 631BB + 486BM + 300CB + 266CM + 103CC + 19CO + 350FI

+ 267FF + 244HA + 124HC + 370MS + 120MI + 396BS + 573PI + 83OJ +

411QP + 111GS + 427SM + 280SE + 25TK = CALORIES;

2.4AP + 19.9BA + 28.8BB + 25.8BM + 17.0CB + 18.6CM + 0CC + 0.4CO +

16.0FI + 3.2FF + 13.9HA + 1.84HC + 18.3MS + 8.5MI + 8.8BS + 27.3PI +

1.5OJ + 23.6QP + 8.9GS + 23.5SM + 18.6SE + 0.3TK = PROTEIN;

21.4AP + 26.9BA + 41.2BB + 36.7BM + 28.0CB + 16.9CM + 26.8CC + 0.6CO

+ 36.1FI + 31.2FF + 27.7HA + 22.6HC + 38.6MS + 12.5MI + 73.7BS +

51.7PI + 18.6OJ + 29.7QP + 4.0GS + 24.6SM + 30.4SE + 5.7TK = CARB;

9.9AP + 2.1BA + 2.6BB + 6.9BM + 6.5CB + 0.6CM + 26.8CC + 0.6CO +

4.6FI + 0.8FF + 5.7HA + 21.1HC + 7.9MS + 12.5MI + 59.3BS + 5.4PI +

16.4OJ + 8.0QP + 1.0GS + 2.7SM + 0.1SE + 4.5TK = SUGAR;

13.8AP + 16.1BA + 39BB + 26.2BM + 13.3CB + 13.9CM + 0CC + 1.7CO +

15.8FI + 14.3FF + 8.6HA + 3.0HC + 15.8MS + 4.3MI + 7.0BS + 28.6PI +

0.3OJ + 22.0QP + 6.6GS + 26.1SM + 9.4SE + 0.1TK = FAT;

4.5AP + 12.1BA + 19.1BB + 12.6BM + 7.0CB + 5.4CM + 0CC + 1.1CO +

6.8FI + 3.1FF + 4.0HA + 0.9HC + 2.9MS + 2.5MI + 5.0BS + 10.1PI +

0.1OJ + 10.3QP + 3.7GS + 17.2SM + 5.0SE + 0TK = SATURATES;

0.2AP + 0.8BA + 1.1BB + 0.9BM + 0.7CB + 0.1CM + 0CC + 0CO + 0.7FI +

0.1FF + 0.4HA + 0.2HC + 0.8MS + 0.3MI + 0.3BS + 1.0PI + 0OJ + 0.6QP +

0.2GS + 0.9SM + 0.4SE + 0TK = SODIUM;

4.3AP + 1.8BA + 0.9BB + 3.7BM + 4.0CB + 1.0CM + 0CC + 0CO + 3.4FI +

5.8FF + 2.7HA + 1.1HC + 2.1MS + 0MI + 0BS + 7.8PI + 0.3OJ + 4.0QP +

7.5GS + 6.7SM + 2.3SE + 0TK = FIBRE;

CALORIES ≥ 2300;

CALORIES ≤ 2550;

TOTALFAT = 9FAT;

TOTALFAT ≤ .3CALORIES;

SODIUM ≤ 3;

PROTEIN ≥ 55;

PROTEIN ≤ 64;

BS ≤ 2;

FF ≤ 2;

CC+OJ+BS+HC+CO+MI ≤ 4;

TK ≤ 2FF;

int BA,BB,BS,BM,CB,CC,CM,CO,FF,FI,GS,HA,HC,MI,OJ,QP,SE,SM,AP,MS,PI,TK;

Example: A saddle

max
x

{

min
y

f (x, y)
}

= min
y

{

max
x

f (x, y)
}

Springs puzzle

A

B

C

D

A′

D′

Springs of equal strength are stretched AB and CD.
Strings A′C and BD′ (shown as dotted) are initially
‘just slack’.

What happens to the weight if string BC breaks?

Springs puzzle

AA

B

B

C C

D

D

A′A′

D′

D′

Springs of equal strength are stretched AB and CD.
Strings A′C and BD′ (shown as dotted) are initially
‘just slack’.

If string BC breaks the springs are now acting in
parallel rather than in series. Each carries half the
weight. They contract and the weight moves up (by
one-half the distance AB)!

Braess’s Paradox

x

10 cars/min

6 cars

6 cars4 cars

4 cars

2 cars

2x

2x

10 + x

10 + x

A

B C

D

The time to traverse links AB and CD is 2x minutes,
where x is the number of cars carried per minute. On
links AC and BD it is 10 + x and on BC it is x.

A load of 10 cars/min splits into the equilibrium
shown above. The journey along ABD and ACD
takes 2(6) + 10 + (4) = 26 mins and the journey
along ABCD also takes 2(6) + (2) + 2(6) = 26 mins.
No driver has any incentive to change his route.

Suppose BC is closed. The traffic readjusts to the
equilibrium shown below.

x

10 cars/min

5 cars

5 cars5 cars

5 cars

2x

2x

10 + x

10 + x

A

B C

D

The journey from A to D now takes 2(5)+10+(5) =
25 mins.

Thus closing BC has reduced the journey time by
1 minute for all drivers!

If BC is now reopened the equilibrium is unstable.
Some drivers will find it to their advantage to use
BC and the equilibrium will readjust to the one in
the first picture, in which the journey from A to D
takes 26 minutes.

Example: The Rendezvous Problem

Two people have become separated. What can they
do to minimize the expected time required to find
one another? This is roughly the problem you face if
you go to a shopping mall with a friend, become sep-
arated, and then want to find your friend in minimal
time, knowing that he is also be hunting for you.

In a model of this, we think of each player as being
in one of n rooms. At each discrete step a player
can move to any of the rooms, or stay in the same
room. Players have no common map of the rooms
and everything looks symmetric. A player can only
remember which rooms he has visited. They wish to
meet in the minimal expected number of steps.

Optimal instruction manual

Each player has a copy of the Hitchhikers’ Guide to
the Galaxy, and looks up instructions what to do in
this situation. What should these instructions be?

One possibility is the instruction search at ran-
dom. Under this strategy the expected number of
steps until the players meet is n.

Optimal instructions for n = 3

In the case n = 3 the optimal instructions are:

1. Move to at room a random (i.e., probability 1/3
for each room).

2. If you have not met your friend then compare your
present location with the location that you have
just come from. If they are the same then stay
there for the next step. If they differ then go to
the third room, i.e., the one which you are not in
now nor which you visited on the previous step.

3. If you have still not met your friend then restart
the instructions at step 1.

Under this algorithm the expected number of steps
to meet is 8/3. This is less than the expected time
of 3 which results under search at random.

There are many interesting unsolved questions:

•What are the optimal instructions for n ≥ 4?

• Does the minimal expected time to meet increase
in n?

•What are the optimal instructions if the players
are allowed to leave notes behind in the rooms
they have visited? What should the notes say?

Example: Optimal coding

Suppose words w1, . . . , wm are to be coded into bi-
nary. Not all codes are decipherable. For example,

w1 −→ 0 w2 −→ 01 w3 −→ 101

is no good because we wouldn’t know whether 0101
is code for w1w3 or w2w2.
Suppose wi is coded by a binary string of length

si, where 1 ≤ si ≤ s̄. Then

(

2−s1 + 2−s2 + · · · + 2−sm
)n

=

ns̄
∑

i=n

ai2
−i,

where the coefficient ai is the number of distinct ways
that the binary codes for n words can be appended
one after another to make a string which is i bits
long. If these i-strings are to be uniquely decipher-
able, we must have no more than 2i of them, so
ai ≤ 2i. This gives

(

2−s1 + 2−s2 + · · · + 2−sm
)n ≤ ns̄

for all n. Clearly tn < ns̄ for all n only if |t| ≤ 1.
Hence we have the necessary condition

2−s1 + 2−s2 + · · · + 2−sm ≤ 1

Now suppose word i occurs with probability pi.
Problem: (minimize the mean code word length)

minimize
∑m

i=1 pisi

subject to
∑m

i=1 2
−si ≤ 1 and si ∈ {1, 2, . . . , s̄}.

Solution:

We relax the constraint si ∈ {1, 2, . . . , s̄} to si ≥ 0
and consider minimizing the Lagrangian, i.e.,

min
si,z≥0

m
∑

i=1

pisi − λ

m
∑

i=1

2−si + z − 1

 .

We need λ < 0 and z∗ = 0. Differentiating with
respect to si we have

pi + λ(loge 2) 2
−s∗i = 0.

The constraint
∑

i 2
−s∗i = 1 implies 1+λ∗ loge 2 = 0

and so s∗i = − log2 pi. The minimized value is
m
∑

i=1

pis
∗
i = −

m
∑

i=1

pi log2 pi (the source entropy).

This is a lower bound on the average word length
under an optimal coding. In Communication The-
ory IIB we learn how to construct codes that
(asymptotically) achieve this lower bound.

Example: Consumer behaviour

A consumer with £c to spend can purchase any
of n goods at prices p1, . . . , pn. If the con-
sumer purchases quantities q1, . . . , qn her utility is
u(q1, . . . , qn). Hence she will seek to

maximize u(q1, . . . , qn)

subject to
∑

i qipi = c, qi ≥ 0.

The Lagrangian is

L(q, λ) = u(q1, . . . , qn)− λ (
∑

i qipi − c)

which (under suitable conditions on u) has a maxi-
mum where

∂L

∂qi
=

∂u

∂qi
− λpi = 0.

From this we derive the intuitively obvious result
that at the optimum

1

p1

∂u

∂q1
= · · · = 1

pn

∂u

∂qn
.

In other words, at the optimum, an extra increment
of spending increases the total utility by the same
amount, no matter upon which good it is spent.

Option Trading

The owner of a

British Airways 420 Jul put option

has the right to sell one share of BA for 420p at
anytime between today (3/5/95) and the option’s
expiry date at the end of July. Today’s price of a
BA share is 400p. So if exercised today, the owner
can clear a profit of 20p (by buying one share on
the market and then selling it at 420p). However,
the quoted price for the option is 32p, which reflects
the fact that the owner doesn’t have to exercise the
option today and can wait for BA shares to fall lower.
The option has 12p (= 32− 20p) of time value.

Optimization problem: How can we extract
the optimal value out of ownership of an option?

Let Vt(x) = market price for the option when a
BA share costs x and there are t days until expiry.

One approach is dynamic programming:

Vt(x) = max
[

420− x , E∆Vt−δ(x(1 + ∆))
]

V0(x) = max
[

420− x , 0
]

But this requires knowledge of the distribution of ∆,
the random percentage change in x over time δ.

Hedging

An alternative approach is to create a hedged
portfolio, by buying h BA shares to hold along-
side the option. Suppose that over a time interval
of length δ the price is equally likely to change by a
factor 1 + µδ + σ

√
δ or 1 + µδ − σ

√
δ.

We can find h > 0 such that

Vt−δ

(

x + µδx + σ
√
δx

)

+
(

1 + µδ + σ
√
δ
)

hx

=Vt−δ

(

x + µδx− σ
√
δx

)

+
(

1 + µδ − σ
√
δ
)

hx.

In this case we don’t care whether the BA price rises
or falls. The resulting value of the portfolio is the
same. In fact, equating the increase in the value of
the portfolio to what the cost of the portfolio would
have earned in a bank account implies what the value
of Vt(x) should be. In general, Vt(x) and h will
depend on x, t and σ (but not on µ). We must adjust
h from moment to moment as x and t change. (See
the IIA course Stochastic Financial Models.)
Notice that we both buy the put and buy an ap-

propriate number of BA shares. In this case there is
no risk. The ‘Nick Leeson strategy’ would be to buy
puts and short-sell BA shares. Risky!

Example: Failure to stop when capacities
and initial flows are not rational

a

b

c

d

e

f0

0

0
0

0

0

0

0

1

1

1

1

w
ww

w

ww

w2 w2

+w

+w

1− w − w2 = 0

The network consists of a square b c d e of directed
arcs of capacity 1. The corners of the square are
connected to a source at a and sink at f by arcs of
capacity 10. The initial flow of 1 + w is shown in
the top picture, where w = (

√
5− 1)/2, so 1−w =

w2. The first iteration is to increase flow by w along
a → c → b → e → d → f . The second increases
it by w along a → d → e → b → f . The flow
has increased by 2w and the resulting flow in the
square is the same as at the start, but multiplied by
w and rotated through 180o. Hence the algorithm
can continue in this manner forever without stopping
and never reach the optimal flow of 40.

String covering

This problem is unsolved.

Optimization problem:

Find the shape of ‘mat’ of minimum area that can
cover a piece of string of length 1 foot, no matter
how this string is placed on the table.

We could use a semicircle with a base of length 1.
But what is best?

