Easter Term 2010 Richard Weber

OPTIMIZATION

Contents
Schedules 1ii
Notation iv
Index A%
1 Preliminaries 1
1.1 Linear programming 1
1.2 Optimization under constraints 1
1.3 Representation of constraints 1
1.4 Convexity 2
1.5 Extreme points and optimality L. 3
1.6 *Efficiency of algorithms™, 4
2 Lagrangian Methods 5
2.1 The Lagrangian sufficiency theorem 5%
2.2 Example: use of the Lagrangian sufficiency theorem 6
2.3 Strategy to solve problems with the Lagrangian sufficiency theorem 7
2.4 Example: further use of the Lagrangian sufficiency theorem 7
3 The Lagrangian Dual 9
3.1 The Lagrangian dual problem 9
3.2 The dual problem for LP 10
3.3 The weak duality theorem in the case of LP 11
3.4 Sufficient conditions for optimality 12
3.5 The utility of primal-dual theory 12
4 Solutions to Linear Programming Problems 13
4.1 Basic solutions 13
4.2 Primal-dual relationships 15
5 The Simplex Method 18
5.1 Preview of the simplex algorithm 18

5.2 The simplex algorithm 20

6 The Simplex Tableau
6.1 Choice of pivot column
6.2 Initialization: the two-phase method

7 Algebra of Linear Programming
7.1 Sensitivity: shadow prices L L.
7.2 Algebra of the simplex method

8 Shadow Prices and Lagrangian Necessity
8.1 Shadow prices
8.2 Lagrangian necessityo

9 Two Person Zero-Sum Games
9.1 Games with a saddle-point
9.2 Example: Two-finger Morra, a game without a saddle-point
9.3 Determination of an optimal strategy
9.4 Example: Colonel Blotto

10 Maximal Flow in a Network
10.1 Max-flow/min-cut theoryo
10.2 Ford-Fulkerson algorithm
10.3 Minimal cost circulations L

11 Minimum Cost Circulation Problems
11.1 Sufficient conditions for a minimal cost circulation
11.2 Max-flow as a minimum cost circulation problem
11.3 The transportation problem

12 Transportation and Transshipment Problems
12.1 The transportation algorithm
12.2 *Simplex-on-a-graph™o
12.3 Example: optimal power generation and distribution

i

22
22
23

26
26
27

30
30
32

34
34
34
35
37

38
38
40
41

43
43
44
45

Books

Bazaraa, M., Jarvis, J. and Sherali, H Linear Programming and Network Flows,
fourth edition, 2010, Wiley.

Luenberger, D. Introduction to Linear and Non-Linear Programmaing, second edi-
tion, 1984, Addison-Wesley.

Vanderbei, R. J. Linear programming: foundations and extensions. Kluwer
2001(61.50 hardback).

Schedules

Lagrangian methods

General formulation of constrained problems; the Lagrangian sufficiency theorem.
Interpretation of Lagrange multipliers as shadow prices. Examples. [2]

Linear programming in the nondegenerate case

Convexity of feasible region; sufficiency of extreme points. Standardization of prob-
lems, slack variables, equivalence of extreme points and basic solutions. The primal
simplex algorithm, artificial variables, the two-phase method. Practical use of the
algorithm; the tableau. Examples. The dual linear problem, duality theorem in a
standardized case, complementary slackness, dual variables and their interpretation
as shadow prices. Relationship of the primal simplex algorithm to dual problem.
Two person zero-sum games. [6]

Network problems

The Ford-Fulkerson algorithm and the max-flow min-cut theorems in the rational
case. Network flows with costs, the transportation algorithm, relationship of dual
variables with nodes. Examples. Conditions for optimality in more general networks;
*the simplex-on-a-graph algorithm™. [3]

Practice and applications

*Efficiency of algorithms™®. The formulation of simple practical and combinatorial
problems as linear programming or network problems. [1]

iii

Notation

n, m

g(w) < b, g(w) =b

Ar < b, Az +2=0

CT$

L(z,\)
reyY
B, N
Ap,q
l‘ij

numbers of decision variables and functional constraints
decision variable in a primal problem, x € R"”

decision variable in the dual problem, \ € R™

objective function in a primal problem

regional constraints, X C R"

functional constraints, g : R — R™

slack variable, z € R™

linear constraints

linear objective function

Lagrangian, L(z,\) = f(x) — X\ (g(z) — b)

Y ={X : mingex L(z,\) > —o0}.

sets of indices of basic and non-basic components of x.
pay-off matrix and decision variables in a matrix game
flow on arc (i,)

value of a flow, value of cut (S, S)

minimum /maximum allowed flows on arc (i, j)

costs per unit flow on arc (i,)

source and demands amounts in transportation problem
node numbers in transportation algorithm

v

Index

anti-symmetric matrix, 35
artificial variables, 22

basic, 14
basic feasible solution, 14

basic solution, 14
basis, 14

capacity, 37

choice of pivot column, 21
circulation, 40

circulation problem, minimal cost, 40
closed network, 40
complementary slackness, 12, 16
computational complexity, 4
concave function, 3

convex function, 3

convex set, 2

cut, 37

extreme point, 3

feasible circulation, 40
feasible set, 2
Ford-Fulkerson algorithm, 39
functional constraints, 2

integer LP, 4

Lagrange multiplier, 5
Lagrangian, 5

Lagrangian dual problem, 9
Lagrangian sufficiency theorem, 5
linear program, 1

max-flow /min-cut, 37
minimal cost circulation, 40
mixed strategy, 34

node numbers, 41
non-basic, 14

non-degenerate, 14

pay-off matrix, 33
pivoting, 20
potentials, 41

primal problem, 9
primal /dual theory, 15

regional constraints, 2
revised simplex algorithm, 27

saddle-point, 33

shadow prices, 25, 29
simplex algorithm, 4, 19
simplex tableau, 19

simplex-on-a-graph algorithm, 48

slack variable, 1
spanning tree, 45
strong duality, 9

supporting hyperplane theorem, 32

surplus variables, 22

tableau, 19

tension, 41

tight, 16

transportation algorithm, 45
transportation problem, 43
tree, 46

two person zero-sum games, 33
two-phase method, 22

value of the flow, 37
value of the game, 35

weak duality, 11

vi

1 Preliminaries

1.1 Linear programming
Consider the problem P.

P: maximize 7+ 29

subject to z1 +2z9 < 6
Tr1 — T2 S 3
r1,29 = 0

This is a completely linear problem — the objective function and all constraints are
linear. In matrix/vector notation we can write a typical linear program (LP) as

P: maximize ¢’z s.t. Az <b, = >0,

1.2 Optimization under constraints

The general type of problem we study in this course takes the form

maximize f(x)
subject to g(x) =b
reX
where
r € R"™ (n decision variables)
f:R" — R (objective function)

(
(
X C R"™ (regional constraints)
g:R" — R™ (m functional equations)
b € R™

Note that minimizing f(x) is the same as maximizing — f(x). We will discuss various
examples of constrained optimization problems. We will also talk briefly about ways
our methods can be applied to real-world problems.

1.3 Representation of constraints

We may wish to impose a constraint of the form g(z) < b. This can be turned into
an equality constraint by the addition of a slack variable z. We write

gx)+2z=5b, z>0.
It is frequently mathematically convenient to turn all our constraints into equalities.

1

We distinguish between functional constraints of the form g(z) = b and re-
gional constraints of the form x € X.

Together, these define the feasible set for . Typically, ‘obvious’ constraints like
x > 0 are catered for by defining X in an appropriate way and more complicated
constraints, that may change from instance to instance of the problem, are expressed
by functional constraints g(z) = b or g(x) < b.

Sometimes the choice is made for mathematical convenience. Methods of solution
typically treat regional and functional constraints differently.

The shaded region shown below is the feasible set defined by the constraints for
problem P.

x1:0 171—1'2:3

J}1+2l‘2:6

The feasible set for P is a convex set.

1.4 Convexity

Definition 1.1. A set S C R" is a convex set if z,y € S = M+ (1 - Ny € S
forallz,y e S and 0 < X < 1.

In other words, the line segment joining x and y lies in .S.

convex not convex

The following theorem is easily proved.

Theorem 1.1. The feasible set of a LP problem is convexz.

2

For functions defined on convex sets we make the following further definitions.

Definition 1.2. A function f : S — R is a convex function if the set above its
graph s convex. Equivalently, if

M)+ (1 =N fly) > fAz+ (1 —=Ny), forald< <.

A function f is a concave function if —f is convez.

convex
concave

T T

In a general problem of minimizing a general f over a general S there may be
local minima of f which are not global minimal. It is usually difficult to find the
global minimum when there are lots of local minima.

This is why convexity is important: if S is a conver set and f is a convex function
then any local minimum of f is also a global minimum.

A linear function (as in LP) is both concave and convex, and so all local optima
of a linear objective function are also global optima.

1.5 Extreme points and optimality

Notice that in problem P the optimum of ¢'x occurs at a ‘corner’ of the feasible set,
regardless of what is the linear objective function. In our case, ¢’ = (1,1) and the
maximum is at corner C.

objective function
" all solutions on this edge are optimal

\/ including the two endpoints

feasible set ¥+ _

~
~
~
N

If the objective function is parallel to an edge, then there may be other optima on
that edge, but there is always an optimum at a corner. This motivates the following
definition.

Definition 1.3. We say that x is an extreme point of a convex set S if whenever
r=0y+(1—-0)z, fory,z€ S,0<0<1, thenx=y = z.

3

In other words, x is not in the interior of any line segment within S.

Examples of extreme points of two convex sets
all boundary points
are extreme

corners are the only extreme points
V v 'l

Theorem 1.2. If an LP has a finite optimum it has an optimum at an extreme point
of the feasible set.

For LP problems the feasible set will always have a finite number of extreme points
(vertices). The feasible set is ‘polyhedral’, though it may be bounded or unbounded.
This suggests the following algorithm for solving LPs.

1. Find all the vertices of the feasible set.

Algorithm: | 5.1 the best one.

This will work, but there may be very many vertices. In fact, for Az < b, x > 0,
there can be (n:;m) vertices. So if m = n, say, then the number of vertices is of order

(2n)", which increases exponentially in n. This is not a good algorithm!

1.6 *Efficiency of algorithms*

There is an important distinction between those algorithms whose running times (in
the worst cases) are exponential functions of ‘problem size’, e.g., (2n)", and those
algorithms whose running times are polynomial functions of problem size, e.g., n*.
For example, the problem of finding the smallest number in a list of n numbers is
solvable in polynomial-time n by simply scanning the numbers. There is a beautiful
theory about the computational complexity of algorithms and one of its main
messages is that problems solvable in polynomial-time are the ‘easy’ ones.

We shall be learning the simplex algorithm, due to Dantzig, 1947. In worst-
case instances it does not run in polynomial-time. In 1974, Khachian discovered a
polynomial-time algorithm for general LLP problems (the ellipsoid method). It is of
mainly theoretical interest, being slow in practice. In 1984, Karmarkar discovered a
new polynomial-time algorithm (an interior point method) that competes in speed
with the simplex algorithm.

In contrast, no polynomial-time algorithm is known for general integer LP, in
which z is restricted to be integer-valued. ILP includes important problems such
as bin packing, job-shop scheduling, traveling salesman and many other essentially
equivalent problems of a combinatorial nature.

4

2 Lagrangian Methods

2.1 The Lagrangian sufficiency theorem

Suppose we are given a general optimization problem,
P: minimize f(z) s.t. g(x) =0, z€ X,
with z € R", b € R™ (n variables and m constraints). The Lagrangian is

L(z,\) = f(z) = A (g(x) =),

with A € R™ (one component for each constraint). Each component of A is called a
Lagrange multiplier.

The following theorem is simple to prove, and extremely useful in practice.

Theorem 2.1 (Lagrangian sufficiency theorem). If x* and * ewist such that x* is
feasible for P and

L(z", \") < L(z,*) Vze X,
then x* is optimal for P.

Proof. Define
Xy ={x:2 € X and g(z) = b}.

Note that X, C X and that for any x € X,

L(z,\) = f(z) = X' (g(x) = b) = f(2).

Now L(z*, *) < L(x, *) for all x € X, by assumption, and in particular for z € Xp.
S0
f(x®) = L(z*,\") < L(z, *) = f(x), forall x € X,.

Thus x* is optimal for P.]
Remarks.

1. Note the ‘If” which starts the statement of the theorem. There is no guaran-
tee that we can find a * satisfying the conditions of the theorem for general
problems P. (However, there is a large class of problems for which A* do exist.)

2. At first sight the theorem offers us a method for testing that a solution z* is
optimal for P without helping us to find x* if we don’t already know it. Certainly
we will sometimes use the theorem this way. But for some problems, there is a
way we can use the theorem to find the optimal z*.

5

2.2 Example: use of the Lagrangian sufficiency theorem
Example 2.1.
minimize r; — x9 — 23
st. x1+x9+23=25
v+ ws =4

re X =R5

Solution. Since we have two constraints we take A\ € R? and write the Lagrangian

Lz, A) = f(z) = A" (g(z) — b)
:xl—$2—2$3—A1($1+$2+$3—5)—>\2($%+$%—4)

_ [x1(1 —\) — Aga:%] + {:1:2(—1 — A1) — Aot

+ [— 5133(2 +)\1)} + DA + 4.

We first try to minimize L(x, \) for fixed X in € R?. Notice that we can minimize
each square bracket separately.

First notice that —z3(2+ A1) has minimum —oo unless Ay = —2. So we only want
to consider A\ = —2.

Observe that the terms in x1, 9 have a finite minimum only if Ay < 0, in which
case the minimum occurs at a stationary point where,

OL/0x1= 1—X\ —2X 21 =0 = 27 =3/2)\
OL/0xy = —1—X —2X29=0 = x9=1/2).
Let Y be the set of (A, A\y) such that L(z, \) has a finite minimum. So
Y ={\: A\ =-2, Ay <0},

and for A € Y the minimum of L(z, \) occurs at x(\) = (3/2Xa, 1/2X9, 23)".
Now to find a feasible z(\) we need

9 1
VRO

So x1 = —31/2/5, 19 = —+/2/5 and x3 =5 — 11 — 19 =5+ 4,/2/5.

The conditions of the Lagrangian sufficiency theorem are satisfied by

= (—3\/%, —\/%,5+4\/%>T and * = (—2,— 5/8)

So z* is optimal. o

i =4 = =4 = M= —/5/8.

T

2.3 Strategy to solve problems with the Lagrangian sufficiency theorem

Attempt to find x*, * satisfying the conditions of the theorem as follows.
1. For each A solve the problem

minimize L(x, \) subject to z € X.

Note that the only constraints involved in this problem are x € X so this should
be an easier problem to solve than P.

2. Define the set
Y ={\: mi)E_lL(x, A) > —oo}.
xre

If we obtain —oo for the minimum in step 1 then that A is no good. We consider
only those A € Y for which we obtain a finite minimum.

3. For A € Y, the minimum will be obtained at some x(\) (that depends on A in
general). Typically, (\) will not be feasible for P.

4. Adjust A € Y so that x(\) is feasible. If * € Y exists such that * = z(*) is
feasible then z* is optimal for P by the theorem.

2.4 Example: further use of the Lagrangian sufficiency theorem

Example 2.2.

1 1
minimize + st. x1+x0=0, x1,29>0.
‘ 1+z 242 ! ? b=

Solution. We define X = {z : > 0} and the Lagrangian

1 1
L(z,\) = — A —b

1 1
= — A - A Ab.
() + () +
1 1
— Az | and — Aoy
1+ 2 2+ 19

do not have a finite minimum in 2 > 0 unless A < 0. So we take A < 0. Observe that

in the range x > 0 a function of the form (a%m —)\x) will have its minimum either at

x = 0, if this function is increasing at 0, or at the stationary point of the function,

Note that

occurring where x > 0, if the function is decreasing at 0. So the minimum occurs at

0
x{a+ 7 as /—1/A

a

AVARVAN

7

so defining ¢* = max(0, ¢),

o) = (a+ —1/)\>+

At first sight it appears that we don’t know which values of 1, zs to substitute
into the constraint until we know A, and we don’t know A until we substitute x1, o
into the constraint. But notice that x1(\) + x2(\) satisfies

r1(A\) + x2(N) = (—1 + \/—1/)\)Jr + (—2 + \/—1/)\>+
0 < -1
=< —14+1/v/=X as)\ €[-1,—1/4]
—34+2/vV=X e [—1/4,0]

So we can see that x1(\)
it is not differentiable at A

+x9(A) is an increasing and continuous function (although
= —1 and at A = —1/4).

z1(A) + z2(N)

Thus (by the Intermediate Value Theorem) for any b > 0 there will be a unique
value of A, say *, for which z1(*) + 29(A*) = b. This A* and corresponding z* will
satisfy the conditions of the theorem and so z* is optimal. o

Examples of this kind are fairly common.

3 The Lagrangian Dual

3.1 The Lagrangian dual problem
We have defined the set

Y ={\:min L(x, \) > —oc}.
reX

For A € Y define

L(\) = min L(z, A).
reX

The following theorem is almost as easy to prove as the sufficiency theorem.

Theorem 3.1 (weak duality theorem). For any feasible x € Xj, and any A € Y

LX) < f(x).
Proof. For x € X, A €Y,
f(x) = L(x,\) > min L(xz, \) > min L(z, \) = L(\).

zeXy rzeX

[]

Thus, provided the set Y is non-empty, we can pick any A € Y, and observe that
L(A) is a lower bound for the minimum value of the objective function f(z).
We can now try and make this lower bound as great as possible, i.e., let us consider
the problem
D: maximize L()\) subject to A € Y,

equivalently,

D: maximize {min L(z,)\)} :
AEY reX

This is known as the Lagrangian dual problem. The original problem is called
the primal problem. The optimal value of the dual is < the optimal value of the
primal. If they are equal (as happens in LP) we say there is strong duality.

Notice that the idea of a dual problem is quite general. For example, we can look
again at the two examples we just studied.

Example 3.1. In Example 2.1 we had Y = {\ : A\ = =2, X2 < 0} and that
mingexy L(z, \) occurred for z(A) = (3/2Xa, 1/2Xg, x3). Thus
10
L) = L(x(A\),\) = — — 10+ 4)\,.
4o

The dual problem is thus

10
imi — —104+4Xy ;.
maiilg)nze {4)\2 + 2}

9

The max is at Ay = —4/5/8, and the primal and dual have the same optimal value,
namely —2(1/10 + 5).

Example 3.2. In Example 2.2, Y = {\ : A < 0}. By substituting the optimal value
of z into L(x, \) we obtain

3/2 4+ b < -1
L) =< 1/2+2/=X+(b+1)X as X\ €[-1,—1/4]
4/ =X+ (b+3)\ e [—1/4,0]

We can solve the dual problem, which is maximize L(A) s.t. A < 0. The solution lies
in —1<A<—-1/4if0<b<landin —1/4 <A <0if 1 <b. You can confirm that
for all b the primal and dual here have the same optimal values.

3.2 The dual problem for LP

Construction of the dual problem for LP is straightforward. Consider the primal
problem P:

maximize ¢z

subject to Ax < b, v >0
equivalently Az + 2 =0, x,z > 0.

Write the Lagrangian
Lz, 2z, \)=c'o - AN (Az+z2—-0b) =(c" = A Az —Az+Ab

As in the general case, we can find the set Y such that A € Y implies
max, .>o L(x, z, A) is finite, and for A € Y we compute the minimum of L(\).
Consider the linear term —\'z. If any coordinate \; < 0 we can make —\;z; as
large as we like, by taking z; large. So there is only a finite maximum in z > 0 if
A; > 0 for all 4.
Similarly, considering the term (¢ — AT A)z, this can be made as large as we like
unless (¢ — ATA); <0 for all i. Thus

Y={\:A>0 AA—-c" >0}

If we pick a A € Y then max.>o—\'z = 0 (by choosing z; = 0 if \; > 0 and any z; if
A = 0) and also max,>o(c" — AT A)x = 0 similarly. Thus for A € Y, L(\) = ATbh. So
a pair of primal P, and dual D is,

P: maximize c¢'z s.t. Az <b, x>0
D: minimize A'b st. ATA>cT, A >0.

10

Notice that D is itself a linear program. For example,

P: maximize 27+ 29

subject to z1 +2z9 < 6
r1—x2 < 3
T1,T9 Z 0

D: minimize 6\ + 39
subject to M+ > 1
20 — Ay > 1
A, Ay > 0

Furthermore, we might write D as
D: maximize (—=b)'A st. (=A)TA<(=c), A >0.

So D is of the same form as P, but with ¢ — —b, b — —c, and A — —A". This
means that the dual of D is P, and so we have proved the following lemma.

Lemma 3.2. In linear programming, the dual of the dual is the primal.

3.3 The weak duality theorem in the case of LP

We can now apply Theorem 3.1 directly to P and D to obtain the following.

Theorem 3.3 (weak duality theorem for LP). If x is feasible for P (so Az <,
x> 0) and \ is feasible for D (so X >0, AT >c) then c'z < \Tb.

Since this is an important result it is worth knowing a proof for this particular
case which does not appeal to the general Theorem 3.1. Naturally enough, the proof
is very similar.

Proof. Write
L(z,z,\)=c'z — X\ (Az + 2z — b)

where Ax + 2z = b, z > 0. Now for x and)\ satisfying the conditions of the theorem,

c'ex = Lx,2,\) = (¢! =AXTA)z =X z+ A0 < \'b.

11

3.4 Sufficient conditions for optimality

Theorem 3.3 provides a quick proof of the sufficient conditions for optimality of z*, z*
and * in a P and D.

Theorem 3.4 (sufficient conditions for optimality in LP). If z*, z* is feasible for
P and * is feasible for D and (¢ — AT A)a* = *"2* = 0 (complementary slackness)
then x* is optimal for P and * is optimal for D. Furthermore ¢ 2* = *Tb.

Proof. Write L(z*, 2", *) = c¢'a* — X*T(Az* + 2* — b). Now
'zt = L(z*, 2%, \)
— (CT .)*TA)I‘* .)*TZ* +)*Tb
_)*Tb
But for all z feasible for P we have ¢’z < A*"b (by the weak duality theorem 3.3)

and this implies that for all feasible =, ¢'z < ¢"z*. So z* is optimal for P. Similarly,
A* is optimal for D (and the problems have the same optimums). []

The conditions (¢ — A*TA)z* = 0 and *Tz* = 0 are called complementary
slackness conditions.

3.5 The utility of primal-dual theory
Why do we care about D instead of just getting on with the solution of P?

1. It is sometimes easier to solve D than P (and they have the same optimal values).

2. For some problems it is natural to consider both P and D together (e.g., two
person zero-sum games, see Lecture 9).

3. Theorem 3.4 says that for optimality we need three things: primal feasibility,
dual feasibility and complementary slackness.

Some algorithms start with solutions that are primal feasible and work towards
dual feasibility. Others start with dual feasibility. Yet others (in particular
network problems) alternately look at the primal and dual variables and move
towards feasibility for both at once.

12

4 Solutions to Linear Programming Problems

4.1 Basic solutions

Let us return to the LP problem P in Lecture 1 and look for a more algebraic (less
geometric) characterisation of the extreme points. Let us rewrite P with equality
constraints, using slack variables.

P: maximize T+ o
subject to z14+2x9+21 = 6
T1— o+ 2o = 3
r1,T9,21,20 > 0

Let us calculate the value of the variables at each of the 6 points marked A-F in
our picture of the feasible set for P. The values are:

ry T2 21 22 /
A 0 0 6 3 0
B 3 0 3 0 3
C 4 1 0 0 5
D 0 3 0 6 3
E 6 0 0 -3 6
F 0 -3 12 0 -3

At each point there are two zero and two non-zero variables. This is not surprising.

Geometrically: The 4 lines defining the feasible set can be written x1 = 0; x9 = 0;
z1 = 0; 29 = 0. At the intersection of each pair of lines, two variables are zero.

Algebraically: Constraints Ax 4+ z = b are 2 equations in 4 unknowns. If we choose
2 variables (which can be done in (;1) = 6 ways) and set them equal to zero we
will be left with two equations in the other two variables. So (provided A and
b are ‘nice’) there will be a unique solution for the two non-zero variables.

Instead of calling the slack variables z; and 29, let us call them x3 and x4 so that

we can write P as
P: maximize x1+ 29

subject to Axr = b
z > 0
Ty
Note we have to extend A to 210 and x to L2
1 -1 0 1 T3
Ty

Ais (m x n) with n > m and there are m equations in n > m unknowns. We can

13

choose n —m variables in (:;‘1) ways. Set them to zero. There is a unique solution to
Az = b for the remaining m variables (provided A and b are ‘nice’).

Definition 4.1.
e A basic solution to Az = b is a solution with at least n — m zero variables.
e A basic solution is non-degenerate if exactly n — m vartables are zero.

e The choice of the m non-zero variables is called the basis. Variables in the basis
are called basic, the others are called non-basic.

e If a basic solution satisfies x > 0 then it is called a basic feasible solution.

So A-F are basic solutions (and non-degenerate) and A-D are basic feasible solu-
tions. Henceforth, we make an assumption.

Assumption 4.1. The m x n matrix A has the property that
e The rank of A is m.

e Every set of m columns of A is linearly independent.

e If z is a b.f.s. of P, then z has exactly m non-zero entries. (non-degeneracy)
Theorem 4.1. Basic feasible solutions = extreme points of the feasible set.

Proof. Suppose x is a b.f.s. Then x has exactly m non-zero entries. Suppose r =
0y + (1 —)z for feasible y,z and 0 < § < 1. Then if the ith entry of = is non-basic
then z; = 0 and hence y; = z; = 0, since y;, 2; > 0. This means both y and z have
at least n — m zero entries. The equation Ay = b = Az implies A(y — z) = 0. Since
at most m entries of y — 2z are non-zero, and any set of m columns of A are linearly
independent, we have y = z, and x is an extreme point as claimed.

Now suppose z is feasible and extreme but not basic. Then x has r(> m) non-zero
entries, say x;,,...,x; > 0. Let a; denote the ith column of A. Since the columms
ai,, . ..,a; are linearly dependent, there exists non-zero numbers y; , ..., y; such that
Y @i, + -+ vy, a;, =0, Set y; = 0if ¢ #£ dy,...,0.. Now Ay =0, so A(z + ey) = b.
We can choose € > 0 small enough so that both x + ey and = — ey are feasible. Hence,
we have succeeded in expressing x as a convex combination of two distinct points of
X, since x = 3(x + ey) + 3(z — ey). That is, x is not extreme. O

Theorem 4.2. If an LP has a finite solution then there is an optimal basic feasible
solution.

Proof. Suppose x is an optimal solution, but is not basic. Then there exists nonzero
yst.z; =0 = y; =0 and Ay = 0. Consider z(¢) = x + ey. Clearly there exist
some € chosen positive or negative so that c'z(e) > ¢'x, and such that z(e) > 0,
and Ax(e) = Az < b, but z(€) has fewer nonzero entries than . O

14

Taking Theorems 4.1 and 4.2 together, we have proved Theorem 1.2. So we can
do algebra instead of drawing a picture (which is good for a computer, and good for
us if there are many variables and constraints.) A simple (and foolish) algorithm can
be stated:

1. Find all the basic solutions.
Algorithm: 2. Test to see which are feasible.
3. Choose the best basic feasible solution.

Unfortunately it is not usually easy to know which basic solutions will turn out to
be feasible before calculating them. Hence, even though there are often considerably
fewer basic feasible solutions we will still need to calculate all (:1) basic solutions.
4.2 Primal-dual relationships

Now let us look at problem D which can be written, after introducing slack variables
v1 and vy as

A =0
D: minimize 61 + 39 T %
subject to A1+ X —v; = 1 Ao
2)\1 —)\2 — Uy = 1 ; A
>\17)\27 U1, U2 Z 0

F
1)2:0/

The value of the variables, etc., at the points A—F in P (as above) and D are:

Ty T2 2w f v v M A f

A0 0 6 3 0 A -1 -1 0 0 0

B 3 0 3 0 3 B 0 -2 0 1 3

P C 4 1 0 0 5 D: C 0 0 2 1 5
D 0 3 0 6 3 D -1 0o L1 0 3

E 6 0 0 -3 6 E 0 1 1 0 6

F 0 -3 12 0 -3 F -2 0 0 -1 -3

Observe, that for D, as for P above, there are two zero and two non-zero variables
at each intersection (basic solution). C and E are feasible for D. The optimum is at
C with optimum value 5 (assuming we are minimizing and the other basic solutions
are not feasible.)

15

We make the following observations by comparing lists of basic solutions for P
and D.

1. For each basic solution for P there is a corresponding basic solution for D.
[Labels A—F have been chosen so that corresponding solutions have the same
labels.] Each pair

(a) has the same value of the objective function.

(b) satisfies complementary slackness, i.e., x;v; = 0, \;z; = 0,

so for each corresponding pair,

P D
variables x constraints
x; basic (x; # 0) constraint: tight (v; = 0)
x; non-basic (x; = 0) constraint: slack (v; # 0)
constraints variables A
constraint: tight (z; = 0) A; basic (A\; # 0)
constraint: slack (z; # 0) A; non-basic (A; = 0)

(N

(These conditions determine which basic solutions in P and D are paired; the
implications go both ways because in this example all basic solutions are non-
degenerate.)

2. There is only one pair that is feasible for both P and D, and that solution is C,
which is optimal, with value 5, for both.

3. For any z feasible for P and) feasible for D we have ¢'z < b' X with equality
if and only if z, A are optima for P and D.

This correspondence between P and D is so symmetrical and pretty that it feels as
though it ought to be obvious why it works. Indeed we have already proved the
following:

Lemma 3.2 In linear programming, the dual of the dual is the primal.

Theorem 3.3 (weak duality in LP). If x is feasible for P and X is feasible for D
then ¢c'x < b\, (In particular, if one problem is feasible then the other is bounded.)

Theorem 3.4 (sufficient conditions for optimality in LP). If z is feasible for P
and X is feasible for D, and x, \ satisfy complementary slackness, then x is optimal
for P and) is optimal for D. Furthermore c¢'x = \'b.

The following will be proved in Lecture 7.

Theorem 4.3 (strong duality in LP). If both P and D are feasible (each has at
least one feasible solution), then there exists x, A satisfying the conditions of Theorem
3.4 above.

16

5 The Simplex Method

5.1 Preview of the simplex algorithm

Let us look very closely at problem P and see if we can construct an algorithm that
behaves as follows.

Simplex algorithm

1. Start with a basic feasible solution.

2. Test — is it optimal?

3. It YES — stop.

4. If NO, move to ‘adjacent’ and better b.f.s. Return to 2.

We need to pick a b.f.s. to start. Let us take vertex A.
xlzxgz(); 21:6, 22:3.

[Even for very large problems it is easy to pick a b.f.s. provided the original constraints
are m constraints in n variables, Ax < b with b > 0. Once we add slack variables
Ax 4+ z = b we have n + m variables and m constraints. If we pick x = 0, z = b this
is a b.f.s. More about picking the initial b.f. solutions in other cases later.]

Now we can write problem P as:

zi, zi 2 0
1 +2x9 +2 = 6 (1)
1 — X2 +2z2o = 3 (2)
max T, + X9 == f (0)

The peculiar arrangement on the page is deliberate. Now it is obvious that A is not
optimal because,

1. AtA,$1:$2:0;21:6,22:3.

2. From the form of the objective function we see that increasing either z; or x»
will improve the solution.

3. From (1) we see that it is possible to increase x; to 6 and decrease z; to 0
without violating this equation or making any variable infeasible.

4. From (2) we see that it is possible to increase z7 to 3 and decrease 2, to 0 before
any variable becomes infeasible.

5. Taking (1) and (2) together, then, we can increase 7 to 3, decrease z; to 3 and
decrease z, to 0, preserving equality in the two constraints, preserving feasibility
and increasing the objective function.

17

That is, we should move to the b.f.s.
517123, 33220, 2123, 2220, (f:?)),

which is vertex B. Note that one variable (x;) has entered the basis and one (z3) has
left; i.e., we have moved to an ‘adjacent’ vertex. Why was this easy to see?

1. The objective function f was written in terms of the non-basic variables (x; =
xo = 0), so it was easy to see that increasing one of them would improve the
solution.

2. Each basic variable (z1, 29) appeared just once in one constraint, so we could con-
sider the effect of increasing x; on each basic variable separately when deciding
how much we could increase 7.

This suggests we try and write the problem so that the conditions above hold at
B, our new b.f.s.. We can do this by adding multiples of the second equation to the
others (which is obviously allowed as we are only interested in variables satisfying
the constraints.)

So P can be written,

T, 2z 2> 0

(1) —(2) 3ry +21 —z = 3 (1)

(2) Ty — T2 +z9 = 3 (2)

(0) = (2) 2 —z = [=3 (0)
This form of P (equivalent to the original) is what we wanted.

1. The objective function is written in terms of the non-basic variables x9, z5.
2. Basic variables x1, z; each appear just once in one constraint.
The next step is now easy. Remember we are at B:
r1=3, 20=0, 21 =3, 22=0, (f =3).

1. From the objective function it is obvious that increasing x, is good, whereas
increasing z would be bad (and since z is zero we can only increase it).

2. Equation (1) shows that we can increase xs to 1 and decrease z; to 0.

3. Equation (2)" doesn’t impose any restriction on how much we can increase
(we just would need to increase 1 also.)

4. Thus we can increase x5 to 1, while decreasing z; to 0 and increasing x; to 4.

18

So we move to vertex C:
r1=4, xo=1, 21 =0, 20=0, (f =5).

Now, rewriting the problem again into the desired form for vertex C we obtain

xiy 2z 2 0

L1y Ty +3m —3z =
(2)/—{—%(1)/ T —|—%21 —|—§ZQ =4
(0) — 2(1) —22 —320 =f—5

Now it is clear that we have reached the optimum since
1. We know 21 =4,29 = 1,21 =0, 20 = 0 is feasible.

2. We know that for any feasible x, z we have f =5 — %zl — %zg < 5. So clearly
our solution (with z; = 25 = 0) is the best possible.

5.2 The simplex algorithm

The procedure just described for problem P can be formalised. Rather than writing
out all the equations each time we write just the coefficients in a table known as the
simplex tableau. To repeat what we have just done, we would write:—

Iy T2 21 k2 U
z1 basic 1 2 1 0
29 basic 1 -1 0 1 3
Qap; 1 1 0 0

If we label the coefficients in the body of the table (a;;), the right hand sides of the
equations (a;), the coefficients in the expression for the objective function as (ag;)
and the value of the objective function —agg, so the tableau contains

(aij) aio

ao; ano

The algorithm is

1. Choose a variable to enter the basis. Pick a j such that ap; > 0. (The
variable corresponding to column j will enter the basis.) If all ap; < 0, j > 1,
then the current solution is optimal.

We picked 5 = 1, so x1 is entering the basis.

19

2. Find the variable to leave the basis. Choose i to minimize a;o/a;; from
the set {i : a;; > 0}. If a;; < 0 for all ¢ then the problem is unbounded (see
examples sheet) and the objective function can be increased without limit. If
there is more than one ¢ minimizing a;o/a;; the problem has a degenerate basic
feasible solution (see example sheet.) For small problems you will be OK if you
just choose any one of them and carry on regardless.

We choose i = 2 since 3/1 < 6/1, so the variable corresponding to equation 2

leaves the basis.

3. Pivot on the element q;;. (i.e., get the equations into the appropriate form
for the new basic solution.)

(a) multiply row ¢ by 1/a;;.
(b) add —(ax;/a;j)x(row i) to each row k # ¢, including the objective function

Trow.

We obtain as before

ry T2 21 22 G

z1 basic 0 3 1 -1 3
1 basic 1 -1 0 1 3
ag; ‘ 0 2 0 —1| =3

which is the appropriate form for the tableau for vertex B.

Check that repeating these instructions on the new tableau, by pivoting on a2,
produces the appropriate tableau for vertex C.

ry T2 21 22 G

9 basic 0 1 % —% 1
x1 basic 0 % % 4
a; 0 0 —2 —%| -5

Note that the columns of the tableau corresponding to the basic variables always
make up the columns of an identity matrix.

Since the bottom row is now all < 0 the algorithm stops. Don’t hesitate to look
back at Subsection 5.1 to see why we take these steps.

20

6 The Simplex Tableau

6.1 Choice of pivot column

We might have chosen the first pivot as a;o2 which would have resulted in

xry T2 Z1 Z2 Q40

z1 basic 1 2 1 0 6

29 basic 1 -1 0 1 3

Cloj 1 1 0 0 0

ry T2 21 22 G

To basic % 1 % 0 3

—

Zo basic % 0 % 1 6

ag; 5 0 —3 0] -3

This is the tableau for vertex D. A further iteration, with pivot as; takes us to the
optimal solution at vertex C. Therefore both choices of initial pivot column resulted
in it requiring two steps to reach the optimum.

Remarks.

1. In general, there is no way to tell in advance which choice of pivot column will
result in the smallest number of iterations. We may choose any column where
apj > 0. A common rule-of-thumb is to choose the column for which ay; is
greatest, since the objective function increases by the greatest amount per unit
increase in the variable corresponding to that column.

2. At each stage of the simplex algorithm we have two things in mind.

First — a particular choice of basis and basic solution.
Second — a rewriting of the problem in a convenient form.

There is always an identity matrix embedded in the tableau corresponding to
the basic variables. Hence, when the non-basic variables are set to zero the
equations are trivial to solve for the values of the basic variables. They are just
given by the right-hand column.

Check that provided we start with the equations written in this form in the
initial tableau, the simplex algorithm rules ensure that we obtain an identity
matrix at each stage.

3. The tableau obviously contains some redundant information. For example, pro-
vided we keep track of which equation corresponds to a basic variable, we could
omit the columns corresponding to the identity matrix (and zeros in the objec-
tive row). This is good for computer programs, but it is probably better to keep
the whole thing for hand calculation.

21

6.2 Initialization: the two-phase method

In our example there was an obvious basic feasible solution with which to start the
simplex algorithm. This is not always the case. For example, suppose we have a
problem like

maximize —6x; — 3x9

subject to T1+x9 > 1
2331 — X9 2 1

3%2 S 2

T1,T9 Z 0

which we wish to solve using the simplex algorithm. We can add slack variables
(sometimes called surplus variables when they appear in > constraints) to obtain

maximize —6x1 — 319
subject to 14+ 29 —21 = 1
21’1 — X9 — 29 — 1
3[62 +2z3 = 2
T, Zj Z 0
but there is no obvious b.f.s. since z1 = —1, 20 = —1, 23 = 2 is not feasible.

The trick is to add extra variables called artificial variables, v, 12 so that the
constraints are

Titre—2+y = 1
2x1—x2—22+y2 =1
3$2+23 = 2
xi, zi, Y = 0

Phase I is to minimize y; 4+ yo and we can start this phase with y; = 1, yo = 1
and z3 = 2. (Notice we did not need an artificial variable in the third equation.)
Provided the original problem is feasible we should be able to obtain a minimum
of 0 with 3, = y» = 0 (since y; and y» are not needed to satisfy the constraints if
the original problem is feasible). The point of this is that at the end of Phase I the
simplex algorithm will have found a b.f.s. for the original problem. Phase II is then
to proceed with the solution of the original problem, starting from this b.f.s.

Note: the original objective function doesn’t enter into Phase I, but it is useful to
carry it along as an extra row in the tableau since the algorithm will then arrange
for it to be in the appropriate form to start Phase II.

Note also: the Phase I objective must be written in terms of the non-basic variables

22

to begin Phase I. This can also be accomplished in the tableau. We start with

I I9 21 29 zZ

w
<
—
<
2

Y1 1 1 -1 0 0 1 0 1
Yo 2 —1 0 —1 0 O 1 1
23 o 3 0 0 1 0 O 2
PhaseIl | -6 -3 0 O 0 0 O 0
Phase 1 0 0 0 0 0 -1 -1 0

Preliminary step. Add rows 1 and 2 to the Phase I objective so that it is written
in terms of non-basic variables.

I i) 21 Z9 Z

w
<
=
<
S

Y1 1 1 -1 0 O 1 0 1

| 2 -1 0 -1 0 0 1 1

z/1 0 3 0O O 1 0 0] 2

PhaseIl | -6 -3 0 0 0O O 0| O

Phase I 3 0 -1 -1 0 0 0] 2

Begin Phase 1.

xrr T2 21 29 23 U1 Yo

w0 2 -1 2 o 1 -3 1

Pivot on 1 1 —% 0 —% 0 0 % %

agptoget 1 0 3 0 0 1 0 0] 2

o -6 0 -3 0 0 3| 3

3 1 3 1

o 5 -1 5 0 0 —5| 3

»| 0 3 -2 1 0 2 —-1| 1
Pivoton 1| 1 1 -1 0 0 1 0| 1
agtoget | 0 3 0 0 1 0 0] 2
0 3 -6 0 0 6 0 6
0 0 0 0 0 —1 —1| 0

End of Phase I. y; = y» = 0 and we no longer need these variables (so we drop the
last two columns and Phase I objective row.) But we do have a b.f.s. to start Phase
IT with (x; =1, 20 = 1, 23 = 2) and the rest of the tableau is already in appropriate
form. So we rewrite the last tableau without the v, y2 columns.

23

Begin Phase II.
T Ty 21 Zy 23
29 0o 3 -2 1 0
1 1 1 -1 0 0
23 o 3 0 0 1
0O 3 -6 0 0| 6

O = =

Ty To 21 X2 Z3
] 0 1 -2 & 0| 3
x| 1 0 —3 —5 0] 2
| 0 0 2 -1 1 1

0 0 -4 -1 0 5

Notice that in fact, the problem we have considered is the same as the problem D,
except that x replaces A and we have added a constraint 229 < 3 (which is not tight
at the optimum). It is interesting to compare the final tableau with the final tableau
for problem P (shown again below).

In general, artificial variables are needed when there are constraints like

<—-1,or >1, or =1,

unless constraints happen to be of a special form where it is easy to spot a b.f.s.

If the Phase I objective does not reach zero then the original problem is infeasible.

24

7 Algebra of Linear Programming

7.1 Sensitivity: shadow prices

Each row of each tableau merely consists of sums of multiples of rows of the original
tableau. The objective row = original objective row + scalar multiples of other rows.
Consider the initial and final tableau for problem P.

1 2 1 0 6 0 1 5 —3
initial 1 -1 0 1| 3] final 1 0 3 2| 4
1 1 0 0 0 0 0 —% —3| =5

In particular, look at the columns 3 and 4, corresponding to variables z; and zo. We
can see that

Final row (1) =
Final row (2) =
Final objective row = initial objective row —2 initial row (1) —1% initial row (2).

3 3
In particular, suppose we want to make a small change in b, so we replace

initial row (1) —3 initial row (2)

initial row (1) +2 initial row (2)

Wl Lol

< g > by (gi? > Providing €1, €5 are small enough they will not affect the sequence
2

of simplex operations. Thus if the constraints move just a little the optimum will
still occur with the same variables in the basis. The argument above indicates that
the final tableau will be

1 1 1 1
O 1 3 -3 1 + 361 — 562
1 2 1 2
1 0 3 3 4 + —361 + —362
2 1 2 1
0 0 -3 —3 _5 _ 361 _ §€2

with corresponding solution x1 = 4+ %61 - %62 and x9 =1+ %61 +§62 and objective

function value 5 + %61 + %62. If €1, €5 are such that we have 1 < 0 or 29 < 0 then
vertex C is no longer optimal.

The objective function row of the final tableau shows the sensitivity of the opti-
mal solution to changes in b and how the optimum value varies with small changes in
b. For this reason the values in the objective row are sometimes known as shadow
prices. The idea, in the above example, is that we would be willing to a pay price
of %el for relaxation of the right hand side of the first constraint from 6 to 6 + ;.

Notice also that being able to see how the final tableau is related to the initial
one without looking at the intermediate steps provides a useful way of checking your
arithmetic if you suspect you have got something wrong!

25

Notice that for problem P the objective rows at the vertices A, B, C and D are:

A 1 1 0 0 0
B 0 2 0 -1 -3
C 0 0 -2 -—3| -5
D 5 0 —3 0] -3

Compare these values with the basic solutions of the dual problem (on page 16). You
will see that the objective row of the simplex tableau corresponding to each b.f.s.
of problem P contains the values of the variables for a complementary slack basic
solution to problem D (after a sign change).

The simplex algorithm can (and should) be viewed as searching amongst basic
feasible solutions of P, for a complementary-slack basic solution of D which is also
feasible.

At the optimum of P the shadow prices (which we can read off in the bottom row)
are also the dual variables for the optimal solution of D.

7.2 Algebra of the simplex method

It is convenient to divide the variables into two sets, and to split the matrix A
accordingly. For example, given

X1
ajp 12 ai3 o b1
i) =
21 Q22 Q23 b
X3
we can partition the variables into two disjoint subsets (basic and non—basic) B =
{1,2} and N = {3} and rewrite the equation

(&11 a12><3:1) <6L13) _<b1)
+ T3 —
21 A22 T2 as3 b

Aprp + Axxy =,

or

o)
ables in IV, and Ap has the columns of A corresponding to variables in B (columns
1 and 2) and Ay has columns corresponding to variables from N (column 3).

You should convince yourself that the two forms of the linear equations are equiv-
alent and that the same trick would work for general m x n matrices A and partition

where xp = (!) contains the variables in B and =z = (3) contains the vari-

of variables into two sets. If A = (aq,...,a,), where a; is the ith column, then
Az = Zaixi + Zaiazi = Aprp + Ayxy = .
i€B iEN

26

We usually choose B to have m elements (a basis) and N to have n — m elements.
Then setting xy = 0, we solve Agxrp = b where Ap is an m X m matrix to find the
basic solution xp = Aglb, xn = 0.

Let us take problem P in the form

P: maxc'z st. Az =b, x> 0.
Given a choice of basis B we can rewrite the problem as above
max {chB + CJT\;xN} s.t. Agxp + Anyxn =0, g, xny > 0.

At this stage we are just rewriting the equations in terms of the two sets of variables
rp and zy. The equations hold for any feasible . Now Apg is invertible by our
non-degeneracy assumptions in Assumption 4.1. Thus we can write

TR = Aglb — A;ANxN, (1)
and
f = cprp+cyay
= cp(AG'b — A Ayay) + cyay
= cpAg'b+ (e — cpAz An)an (2)

Equation (1) gives the constraints in a form where x5 appears with an identity matrix
and (2) gives the objective function in terms of the non-basic variables. Thus the
tableau corresponding to basis B will contain (after appropriate rearrangement of
rows and columns)

basic non-basic
I ARt Ay AG'b
0 ey — cLAG AN | —ch AR

Thus, given a basis (choice of variables) we can work out the appropriate tableau
by inverting Ap. Note that for many choices of B we will find that A;'b has negative
components and so the basic solution zg = Aglb is not feasible; we need the simplex
algorithm to tell which Bs to look at.

In programming a computer to implement the simplex algorithm you need only
remember what your current basis is, since the whole tableau can then be computed
from Al;l. The revised simplex algorithm works this way and employs various

27

tricks to compute the inverse of the new Ap from the old AZ' (using the fact that
only one variable enters and one leaves). This can be very much more efficient.
Now we know that the simplex algorithm terminates at an optimal feasible basis
when the coefficients of the objective row are all < 0. In other words, there is a basis
B for which
cy — cpAZ Ay <0.

Recall the dual problem is
D: minA'b st ATA>ec.

Let us write \ = (Agl)TcB. Then we have A\ = cp and AL\ > cy, and hence A is
feasible. Furthermore, g = A]__glb, xny = 0 is a basic solution for P and complemen-
tary slackness is satisfied since

cp — AE)\ =0= (CB — A;)\)TZ’B == 0,
ry =0=—= (CN — A})\)TSCN = 0.

Consequently, zp = A5'b, xx = 0 and A\ = (A1) Tcp are respectively optimal for
the primal and dual. We also have that with these solutions

f=cprp=cprAzb=\"b.
B BB

So we have a proof of Theorem 4.3, that the primal and dual have the same objective
value (if we accept that the simplex algorithm terminates at an optimum with < 0
objective row) for the case of LP problems.

Remark

We have shown that in general the objective row of the final (optimal) tableau will
contain ¢y, — AT Ay in the non-basic columns, where A are dual variables. This
is consistent with our observation that the final tableau the vector —A\ sits in the
bottom row, of the columns corresponding to the slack variables. We start with a
primal Ax < b and add slack variables z. In this case the the objective function is
c'z4+0"z, so ¢; = 0 in columns corresponding to slack variables, and columns of Ay
which correspond to the slack variables are the columns of an identity matrix (since
Az + Iz = b). So the part of the objective row beneath the original slack variables
will contain 0T — A"Iy = —AT, and X are the dual variables corresponding to the
primal constraints. The rest of the objective row, beneath the original x, contains
cp — A Ap, i.e., the values of the slack variables in the dual problem. This is what
we observed in our earlier example.

28

8 Shadow Prices and Lagrangian Necessity

8.1 Shadow prices

Lagrangian multipliers, dual variables and shadow prices are the same things. Let
us say a bit more about the latter.

Suppose you require an amounts by, ..., b, of m different vitamins. There are n
foodstuffs available. Let

a;; = amounts of vitamin ¢ in one unit of foodstuff j,

and suppose foodstuft j costs ¢; per unit. Your problem is therefore to choose the
amount z; of foodstuff j you buy to solve the LP

min E ijj
J

subject to Zaijxj > b;, each @
J
and x; > 0 each j.

Now suppose that a vitamin company decides to market m different vitamin pills
(one for each vitamin) and sell them at price p; per unit for vitamin i. Assuming
you are prepared to switch entirely to a diet of vitamin pills, but that you are not
prepared to pay more for an artificial carrot (vitamin equivalent) than a real one,
the company has to maximize profit by choosing prices p; to

max Z bipi
i
subject to Zaijpi < ¢j, each j
i
and p; > 0 each 1.

Note that this is the LP which is dual to your problem. The dual variable p; is the
price you are prepared to pay for a unit of vitamin ¢ and is called a shadow price.
By extension, dual variables are sometimes called shadow prices in problems where
their interpretation as prices is very hard (or impossible) to see.

The dual variables tell us how the optimum value of our problem changes with
changes in the right-hand side (b) of our functional constraints. This makes sense in
the example given above. If you require an amount b; + € of vitamin ¢ instead of an
amount b; you would expect the total cost of your foodstuff to change by an amount
ep;, where p; is the value to you of a unit of vitamin 4, even though in your problem
you cannot buy vitamin ¢ separately from the others.

29

The above makes clear the relationship between dual variables/Langrange mulit-
pliers and shadow prices in the case of linear programming.

More generally, in linear problems we can use what we know about the optimal
solutions to see how this works. Let us assume the primal problem

P(b) : minc' x
st. Ax —z=0b, 2,2 > 0.
has the optimal solution ¢(b), depending on b. Consider two close together values
of b, say b’ and b”, and suppose that optimal solutions have the same basic variables
(so optimums occur with the same variables being non-zero, though the values of the

variables will change slightly). The optimum still occurs at the same vertex of the
feasible region though it moves slightly. Now consider the dual problem. This is

max \'b

st. ATA<¢, A>0.

In the dual problem the feasible set does not depend on b, so the optimum of the dual
will occur with the same basic variables and the same values of the dual variables .
But the value of the optimum dual objective function is AT# in one case and ATd” in
the other and we have seen that the primal and dual have the same solutions. Hence

o(V) = AT and (") = ATV

and the values of the dual variables A give the rate of change of the objective value
with 0. The change is linear in this case.

The same idea works in nonlinear problems.

Example 8.1. Recall Example 2.1, where we had constraints

$1+$2+$3:5

2, .2 _
x]+x5; =4

and obtained values of Lagrange multipliers of \j = —2, A\ = —4/5/8.
If we replace the constraints by

T1 4+ 29+ 23 =0y

and write ¢(b) = optimal value of the problem with b = (b1,bs)" then you can check

that 3 5
sl __, % __gw
oby b=(5,4) Oby b=(5,4)

30

Let P(b) be the problem: maximize f(x) : g(z) < b, = € R". Let ¢(b) be its
optimal value.

Theorem 8.1. Suppose f and g are continuously differentiable on X = R", and that
for each b there exist unique

e 2*(b) optimal for P(b), and
e \'(b) € R™, A*(b) > 0 such that ¢(b) = sup,ex{f(x) + A (b)T(b—g(z))}.
If x* and X* are continuously differentiable, then

o) .,
S = A, 3)

Proof.
¢(b) = L(a", ") = f(z") + X*(b)" (b — g(27))
Since L(x*, *) is stationary with respect to x;, we have for each j,
OL(x*, *)
ox’

J

=0.

For each k we have either g.(z*) = by, or gi(2*) < bg. Since *(b)" (b — g(z*)) = 0
we have in the later case, A\; = 0, and so dA;/db; = 0. So

Op(b) OL(z*, \¥) N z”: OL(x*, *) O

On the r.h.s. above, the second term is 0 and the first term is

TG =+ > T b ot)]

Now the second term on the r.h.s. above is 0, and so we have (3). O]

8.2 Lagrangian necessity

In the examples we have studied we have been able to find Lagrange multipliers A
that work in the Lagrangian Sufficiency Theorem. We have also observed that the
primal and dual problems have the same optimum values. It is outside the scope of
the course to establish conditions under which we expect these results to hold, but
we can give a brief summary.

Let P(b) be the problem: minimize f(z) s.t. g(z) = b and z € X. Let ¢(b) be its
optimal value. Suppose that ¢(b) is convex in b, as shown in the figure. The convexity
of ¢ implies that for each b* there is a tangent hyperplane to ¢(b) at b* with the graph

31

feasible (g(z), f(x))

AT(g(x) = %)

of ¢(b) lying entirely above it. This uses the supporting hyperplane theorem for
convex sets, which is geometrically obvious, but some work to prove. In the (g, f)
plane, the equation of this tanget hyperplane, through the point (b*, ¢(b*)) can be
written y(z) = ¢(b*) + X' (g(x) — b*) for some A. So f(x) — y(z) is minimized to
0 (over all z € X) by taking x such that (g(x), f(z)) = (b*,¢(b*)). Equivalently,
L(xz,\) = f(z) — AT (g(x) — b*) is minimized to ¢(b*).

Compare, for example, two problems: (i) minimizex? s.t. * = b, and (ii)
minimize 2° s.t. 2* = b. In (i) we have ¢(b) = b? and L(x,\) = 2% — X\(x — b) is
minimized at 2 = b when we take A = 2b, whereas in (ii) we have ¢(b) = b'/? and
there is no A such that L(z,\) = 22 — A(2? — b) is minimized at x = b, (since for
A > 0 the minimum is at x = oo, and for A < 0 the minimum is at x = 0.)

The following theorem gives simple conditions under which ¢(b) is convex in b.

Theorem 8.2 (Sufficient conditions for Lagrangian methods to work). Let
P(b) be the problem: minimize f(x) s.t. g(x) < b and x € X. If the functions f,g
are convex, X is convex and x* is an optimal solution to P, then there exist Lagrange
multipliers A € R™ such that L(x*, \) < L(xz,\) for all z € X.

In particular, Lagrange multipliers always exist in linear programming programs,
provided they have optimal solutions (i.e., are feasible and bounded).

Assuming the supporting hyperplane theorem, the proof of Theorem 8.2 relies
on showing that ¢(b) is convex. To see this, suppose that z; is optimal for P(b;),
i = 1,2, Let x = 0x1 + (1 — 0)xg, and b = 6by + (1 — 0)bs. Convexity of X
implies x € X, and convexity of ¢ implies g(x) < b, so z is feasible for P(b). So
o(b) < f(z) < O0f(x1) + (1 —0)f(x2) = 0p(b1) + (1 — 8)p(by), where the second
inequality follows from convexity of f. Thus ¢(b) is convex in b.

32

9 Two Person Zero-Sum Games

9.1 Games with a saddle-point

We consider games that are zero-sum, in the sense that one player wins what the
other loses. The players make moves simultaneously. Each has a choice of moves
(not necessarily the same). If player I makes move ¢ and player II makes move j then
player I wins (and player II loses) a;;. Both players know the m x n pay-off matrix

IT plays j
1 2 3 4
1| -5 3 120
Iplaysi 2| 5 5 4 6]+« (a;)
3| —4 6 0 -5

Let us ask what is the best that player I can do if player II plays move j.

IT’s move: j = 1 2 3 4
I’s best response: 1 = 2 3 2 1
I wins 5 6 4 20 < column maximums

Similarly, we ask what is the best that player II can do if I plays move 7

I’s move: 1 = 1 2 3
IT’s best response: j = 1 3 4
I wins -5 4 —5 < row minimums

Here the minimal column maximum = min; max; a;; = max; min; a;; = maximal
row minimum = 4, when player I plays 2 and player II plays 3. In this case we say
that A has a saddle-point (2,3) and the game is solved.

Remarks. The game is solved by ‘I plays 2’ and ‘II plays 3’ in the sense that
1. Each player maximizes his minimum gain.

2. If either player announces any strategy (in advance) other than ‘I plays 2" and
‘II plays 3’, he will do worse.

3. If either player announces that he will play the saddle-point move in advance,
the other player cannot improve on the saddle-point.
9.2 Example: Two-finger Morra, a game without a saddle-point

Morra is a hand game dating from Roman and Greek times. Each player displays
either one or two fingers and simultaneously guesses how many fingers his opponent

33

will show. If both players guess correctly or both guess incorrectly then the game
is a tie. If only one player guesses correctly, then that player wins from the other
player an amount equal to the total number of fingers shown. A strategy for a player
is (a,b) =‘show a, guess b’. The pay-off matrix is

(L,L1) (1,2) (2,1) (2,2)

L) 0 2 -3

12 =2 0o 0 3|_,
eyl 3 0 o —a |l
22) 0 -3 4 0

Column maximums are all positive and row minimums are all negative. So there
is no saddle point (even though the game is symmetric and fair). If either player
announces a fixed strategy (in advance), the other player will win.

We must look for a solution to the game in terms of mixed strategies.

9.3 Determination of an optimal strategy

Each player must use a mixed strategy. Player I plays move ¢ with probability p;,
¢ =1,...,m and player II plays moves j with probability ¢;, j = 1,...,n. Player I's
expected payoff if player II plays move j is

Zpiaij-
i

So player I attempts to

maximize {mjianiaij} s.t. zi:pi =1, p;, 2 0.

7

Note that this is equivalent to

P: maxv s.t. Zaijpi > v, each 7, and Zp,' =1, p; >0,
i i

since v on being maximized will increase until it equals the minimum of the). a;;p;.
By similar arguments, player II’s problem is

D: minv s.t. Zaijqj < v, each 7, and qu =1, ¢; =2 0.
J J

It is possible to show that P and D are duals to one another (by the standard
technique of finding the dual of P). Consequently, the general theory gives sufficient
conditions for strategies p and ¢ to be optimal.

Let e denote a vector of 1s, the number of components determined by context.

34

Theorem 9.1. Suppose p € R, g € R", and v € R, such that
(a) p>0,e'p=1,p A>ve' (primal feasibility);

(b) ¢q>0,e'q=1, Ag < wve (dual feasibility);

(c) v=p'Aq (complementary slackness).

Then p is optimal for P and q is optimal for D with common optimum (the value
of the game) v.

Proof. The fact that p and ¢ are optimal solutions to linear programs P and D follows
from Theorem 3.4. Alternatively, note that Player I can guarantee to get at least

minp' Ag > min(ve')q = v,
q q
and Player II can guarantee that Player I gets no more than

max p' Ag < maxp' (ve) = w = v.
p P

In fact, (c) is redundant; it is implied by (a) and (b). O
Remarks.

1. Notice that this gives the right answer for a game with a saddle-point (¥, j*),
(i.e., v = a;+j», with p;» = ¢;» = 1 and other p;, ¢; = 0).

2. Two-finger Morra has an optimal solution p = ¢ = (0, %, %,O), v = 0, as can

be easily checked. E.g. p'A = (0,0,0,1/5) > 0 x 1. It is obvious that we
expect to have p = ¢ and v = 0 since the game is symmetric between the players
(A= —AT). Ais called an anti-symmetric matrix.

The optimal strategy is not unique. Another optimal solution is p = ¢
(0, %, %,O). Player 1 can play any mixed strategy of the form (0,6,1 — 6,0)
provided % <fg< %

3. These conditions allow us to check optimality. For small problems one can often
use them to find the optimal strategies, but for larger problems it will be best to
use some other technique to find the optimum (e.g., simplex algorithm). Note,
however, that the problems P and D are not in a form where we can apply
the simplex algorithm directly;v does not have a positivity constraint. Also
the constraints are) . a;jp; — v = 0 with r.h.s.= 0. It is possible, however, to
transform the problem into a form amenable to the simplex algorithm.

(a) Add a constant k to each a;; so that a;; > 0 each ¢, j. This doesn’t change
anything, except the value which is now guaranteed to be positive (v > 0).

35

(b) Change variables to x; = p;/v. We now have that P is
maxv S.t. Zaijxi > 1, sz =1/v, x; >0,

which is equivalent to
minZa}i s.t. Zaijxi >1, 2, >0
i i
and this is the type of LP that we are used to.

9.4 Example: Colonel Blotto

Colonel Blotto has three regiments and his enemy has two regiments. Both comman-
ders are to divide their regiments between two posts. At each post the commander
with the greater number of regiments wins one for each conquered regiment, plus one
for the post. If the commanders allocate equal numbers of regiments to a post there
is a stand-off. This gives the pay-off matrix

Enemy commander
(2,0) (1,1) (0,2)

(3,0) 3 1 0
Colonel (2,1) 1 2 —1
Blotto (1,2) | —1 2 1
(0,3) 0 1 3

Clearly it is optimal for Colonel Blotto to divide his regiments (7, j) and (j,4) with
equal probability. So the game reduces to one with the payoff matrix

(2,0) (1,1) (0,2)
30)or(03) & 1 3
2)or(12)| 0 2 0

To derive the optimal solution we can

(a) look at player Colonel Blotto’s original problem: maximize {min; . p;a;;}, i.e.,
maximize, min{3p,p + 2(1 — p)},

(b) attempt to derive p, ¢, v from the conditions of Theorem 9.1, or

(¢) convert the problem as explained above and use the simplex method.

For this game, p = (%,%), q = (%,%,%) and v = g is optimal. In the original

problem, this means that Colonel Blotto should distribute his regiments as (3,0),
(2,1), (1,2), (0,3) with probabilities %,%,%,% respectively, and his enemy should

distribute hers as (2,0), (1,1), (0,2) with probabilities 1, 2, § respectively.

36

10 Maximal Flow in a Network

10.1 Max-flow/min-cut theory

Consider a network consisting of n nodes labelled 1, ..., n and directed edges between
them with capacities ¢;; on the arc from node ¢ to node j. Let z;; denote the flow in
the arc i — 7, where 0 < x;; < ¢y5.

Problem: Find maximal flow from node 1 (the source) to node n (the sink)
subject to the conservation of flow at nodes, i.e.,

maximize v s.t. 0 < ay; < ¢y, forall ¢,

and
P v ifi=1
flow out of flow into e
node 1 | node i :inj_zxﬂ: U ?fz.:2,...,n—1
JjEN JjEN —v ifi=n

where the summations are understood to be over existing arcs only. v is known as
the value of the flow.

This is obviously an LP problem, but with lots of variables and constraints. We
can solve it more quickly (taking advantage of the special network structure) as
follows.

Definition 10.1. A cut (S,S) is a partition of the nodes into two disjoint subsets
S and S with1 € S andn € S.

Definition 10.2. The capacity of a cut
C(S,8) =) «
i€S,jeS

Thus given a cut (S, S) the capacity of the cut is the maximal flow from nodes
in S to nodes in S. It is intuitively clear that any flow from node 1 to node n must
cross the cut (S, S), since in getting from 1 to n at some stage it must cross from S
to S. This holds for any flow and any cut.

37

Example 10.1.

Cut S = {1,3}, S ={2,4}, C(S,S) = 3. Check that the maximal flow is 3.

In fact, we have:

Theorem 10.1 (Max flow/min cut Theorem). The mazimal flow value through the
network is equal to the minimal cut capacity.

Proof. Summing the feasibility constraint

v ifi=1
inj_zxji: 0 1f’L=2,,TL—1
jEN JEN —v ifi=n

over ¢ € S, yields

V= E Lij — E Xji

1€9,jeN JENES
- E : Lij — E : L ji

i€S,jeS jesies
< 0(S,9)

since for all ¢, 7 we have 0 < x;; < ¢;;. Hence the value of any feasible flow is less
than or equal to the capacity of any cut.
So any flow < any cut capacity, (and in particular max flow < min cut).

Now let f be a maximal flow, and define S C N recursively as follows:

(1)1es.

(2) If i € S and x5 < ¢;j, then j € S.

(3) If i € S and z;; > 0, then j € S.

Keep applying (2) and (3) until no more can be added to S.

38

So S is the set of nodes to which we can increase flow. Now if n € S we can
increase flow along a path in S and f is not maximal. Son € S = N\ S and (S, 5)
is a cut. From the definition of S we know that for i € S and j € S, x;; = ¢;j and
xj; = 0, so in the formula above we get

V= Z Tij — Z IJZ:C(S,S)
ieS,jes jeSies
So max flow = min cut capacity. []

Corollary 10.2. If a flow value v = cut capacity C' then v is maximal and C' minimal.

The proof suggests an algorithm for finding the maximal flow.

10.2 Ford-Fulkerson algorithm

1. Start with a feasible flow (e.g., z;; = 0).
2. Construct S recursively by the algorithm defined in the box above.
3. If n € S then there is a path from 1 to n along which we can increase flow by
€= n(%l? max|[z;, ¢ij — x;j] > 0.
where the minimum is taken with respect to all arcs ¢ — j on the path.

Replace the flow by this increased flow. Return to 2.
If n ¢ S then the flow is optimal.

The algorithm is crude and simple; we just push flow through where we can, until
we can’t do so anymore. There is no guarantee that it will be very efficient. With
hand examples it is usually easy to ‘see’ the maximal flow. You just demonstrate
that it is maximal by giving a cut with the same capacity as the flow and appeal to
the min cut = max flow theorem.

The algorithm can be made not to converge if the capacities are not rational
multiples of one another. However,

Theorem 10.3. If capacities and initial flows are rational then the algorithm termi-
nates at a mazimal flow in a finite number of steps. (Capacities are assumed to be

finite.)

Proof. Multiply by a constant so that all capacities and initial flows are integers.
The algorithm increases flow by at least 1 on each step. [

39

Example: Failure to stop when capacities and initial flows are not rational

w 2
w
—_ —_
0
+w 0

The network consists of a square bcd e of directed arcs of capacity 1. The corners of
the square are connected to a source at a and a sink at f by arcs of capacity 10. The
initial flow of 1-+w is shown in the first picture, where w = (v/5—1)/2, so 1 —w = w?.
The first iteration is to increase flow by w along a = ¢ — b — e — d — f. The
second increases it by w along a — d — e — b — f. The flow has increased by 2w
and the resulting flow in the square is the same as at the start, but multiplied by w
and rotated through 180°. Hence the algorithm can continue in this manner forever

without stopping and never reach the optimal flow of 40.

10.3 Minimal cost circulations

Definition 10.3. A network is a closed network if there is no flow into or out of
the network.

Definition 10.4. A flow in a closed network is a circulation if >, x;;—> 2 =0
for each node 1.

Most network problems can be formulated as the problem of finding a minimal
cost circulation in a closed network where there are capacity constraints c¢;; <
zij < c;rj on arcs (7,7) and a cost per unit flow of d;; in arcs (4, j). The full problem
is

minimize Z dijTi;
ij
subject to szj — Zxﬂ =0, each i, and ¢;; < x;; < c:;
J J

Definition 10.5. A circulation which satisfies the capacity constraints is called a
feasible circulation.

There is a beautiful algorithm called the out-of-kilter algorithm which will solve
general problems of this kind. It does not even require a feasible solution with which
to start. In the next lecture we shall just derive conditions for a flow to be optimal.

We shall also see, although it should be obvious already, that the max flow problem
that is studied in this lecture can be formulated as a minimal cost circulation problem.

40

11 Minimum Cost Circulation Problems

11.1 Sufficient conditions for a minimal cost circulation
Recall the minimum cost circulation problem:
minimize Z dijTi;
]
subject to lej — Zxﬂ =0, each 7, and Cij S i < C:;
J J

Consider the Lagrangian for the problem of finding the minimum cost circulation.
We shall treat the capacity constraints as the region constraints, so

B <t
X ={wy:¢; <wy <}

We introduce Lagrange multipliers A; (one for each node) and write

ZESVED SR R O S 90
ij i J J
Rearranging we obtain

L(SU, /\) = Z(d” — A\ +)\j)ﬂfij.

i

We attempt to minimize L(x,) in X.
Provided ¢, c;-

1+ Ci; are finite we see that there is a finite minimum for all A, achieved
such that

o Cz'_j if dij_>\i+)\j>0
ij { C;; if dij -)\z +)\j <0 (1)

Theorem 11.1. If (x;;) is a feasible circulation and there exists X such that (x;;), A
satisfy conditions (1) and (2) above, then (x;;) is a minimal cost circulation.

Proof. Apply the Lagrangian sufficiency theorem. []

Definition 11.1. The Lagrange multipliers \; are usually known as node numbers
or potentials in network problems.

Definition 11.2. \; — \; is known as the tension in the arc (i, 7).

41

11.2 Max-flow as a minimum cost circulation problem

The maximal flow problem we studied earlier can be set up as a minimal cost
circulation problem. For each arc in the network we assign a capacity constraint
0 <y < czrj and all cost d;j; = 0. Add an arc from node n to 1 with no capacity
constraint and cost —1.

The cost of the circulation is —v, so minimizing —v is the same as maximizing v.
Let us seek node numbers \; which will satisfy optimality for this problem. Since
arc (n, 1) has no capacity constraints, for a finite optimum we will require

dpyp — A+ =0= X\ =\, + 1.

Let us set A\, =0, \; = 1. (Since it is only the differences in the As that matter, we
can pick one arbitrarily.) Let (S,S) be a minimal cut. Assign \; = 1 for i € S and
A\; = 0 for i € S. Now check that

(a) Fori,j € Sori,j €S =>d;; — N\ +\; =0 so z;; can take any feasible value.
(b) For i € S, j € S we have

dij—)\i—l-)\j:0—14-0:—1:.%”:6;;.

(c) Fori € S, j € S we have
dij_/\i+)\j:0_0+1:1:>$ij:0-

But conditions (a)—(c) are precisely those satisfied by a maximal flow and minimal
cut.

If we like, we can say that the Ford-Fulkerson algorithm in looking for a cut is
trying to find node numbers and a flow to satisfy optimality conditions.

Remark
In many problems it is natural to take ¢;; =0, cj} = 00. In this case we will achieve
a finite optimum only if d;; — A; + X; > 0 for each arc.

42

Theorem 11.2. For a minimal cost circulation problem with capacity constraints
0 < z;; < oo on each arc (i,7), if we have a feasible circulation (x;;) and node
numbers \; such that

dij — N\i +A; >0, each (7,7), and
IijIOifdij—Ai+)\j>0,

then (x;;) is optimal.
Proof. Apply the Lagrangian sufficiency theorem.]

Note: The optimality conditions imply (d;; — A; + Aj)x;; = 0 in this case (comple-
mentary slackness).

11.3 The transportation problem

Consider a network representing the problem of a supplier who has n supply depots
from which goods must be shipped to m destinations. We assume there are quantities
S1, ..., 8, of the goods at depots {S1,...,95,} and that the demands at destinations
{D1,..., Dy} are given by di,...,dy,. We also assume that), s; =). d; so that
total supply = total demand. Any amount of goods may be taken directly from
source i to destination j at a cost of d;; (¢ = 1,...,n;j = 1,...,m) per unit. One
formulation of the problem is

minimize Z dijﬂfij
ij
subject to inj = s; each 1, inj = d; each j
j i
with x;; > 0 each 1, .

Here x;; is the flow from S; to D;. The network looks like:

n sources m destinations
S1
59 dl
do
dm
STL

43

with arcs (7,7), 0 < z;; < oo, and cost d;; per unit flow.
The Lagrangian for the problem can be written

Lz, A p) =) dijmij — Y A (Z Tij — 52’) +) u (Z Tij — dj) ;
i i j j i

where we label Lagrange multipliers (node numbers) A; for sources and y; for destina-
tions. (We choose the sign of 1, in this apparently unusual way since it is convenient
to think of the demands d; as being negative supplies. In Section 12.2, we describe
he simplex-on-a-graph algorithm, for a problem in which we suppose that there is a
supply b; at each node i.) Rearranging,

L(I’,)\, u) = Z(d” —)\z + ,uj)l'ij + Z >\732 — Z,ujdj.
ij i j

This will have a finite minimum in x;; > 0, and the minimum occurs with (d;; —

Ai + f4j)xi; = 0 on each arc. Thus the Lagrangian sufficiency theorem give the same

optimality conditions as before.

Theorem 11.3. A flow x;; is optimal for the transportation problem if 3 \;, u; such
that dij -)\Z + 22 Z 0 each (Z,]) and (d/]j -)\7 + ,uj)xz-j = 0.

Proof. The Lagrangian sufficiency theorem applies. []

Remark

It is no surprise that the same optimality conditions appear as in the minimal cost
circulation problem. If we augment the transportation network by connecting all
sources and all destinations to a common ‘artificial node’ by arcs where the flow is
constrained to be exactly that which is required (and zero cost) we obtain the same
problem as in minimal cost circulation form.

arcs s; < xg; < S; arcs dj < xjp < d;

cost dy; = 0 cost djp = 0

The optimality conditions on the extra arcs are automatically satisfied by a feasible
flow since z o = d;, x¢; = s; regardless of node numbers.

44

12 Transportation and Transshipment Problems

12.1 The transportation algorithm

1. Set out the supplies and costs in a table as below

D, D, D; D,

5| |3 |4] |6

So 10

2. Allocate an initial feasible flow (by North-West corner rule or any other sensible
method). NW corner rule says start at top left corner and dispose of supplies
and fulfill demands in order ¢, 5 increasing. In our case we get

6 2

In the absence of degeneracy (which we assume) there are not less than (m-+n—1)
non-zero entries, which appear in a ‘stair-case’ arrangement.

Remark. In our network picture we have constructed a feasible flow on a
spanning tree of m +n — 1 arcs connecting n sources and m destinations.

ONONORO

45

A set of undirected arcs is spanning if it connects all nodes. It is a tree if it
contains no circuits. A spanning tree is the equivalent of a basic solution for
this problem.

. For optimality we require d;;—\;+p; = 0 on any arc with non-zero flow. Set A\ =
0 (arbitrarily) and then compute the remaining A;, pt; by using d;; — \i +p; =0
on arcs for which x;; > 0. On the table we have

ANi\pj =5 =3 0 -2
0 6 2

5 6 2 4

The node numbers are also shown on the network version above. With non-zero

flows forming a spanning tree we will always be able to compute uniquely all
node numbers given one of them.

. We now compute \; — p; for all the remaining boxes (arcs) and write these
elsewhere in the boxes. E.g.,

)‘i \ o —5 -3 0 —2

9 0 2

0 65 3 4 6
9 6

1 23774 1
7 5

: 5 61284

It all djj > A\ — pj, then the flow is optimal. Stop.

If not, (eg., i = 2, j = 1, where Ay — 3 = 9 > dyy = 2) we attempt to
increase the flow in arc (7, j) for some (¢, j) such that A\; — p; > d;;. We seek an
adjustment of +€ to the flow in arc (7, j) which keeps the solution feasible (and
therefore preserves total supplies and demands). In our case we do this by

6—€|24+€¢| O 0
+e |3 —¢€ 7 0
0 0 1 8

46

and pick € as large as possible (without any flow going negative) to obtain a
new flow (for e = 3).

There is only one way to do this in a non-degenerate problem. The operation
is perhaps clearer in the network picture.

6—¢€

We attempt to increase flow in the dotted arc. Adding an arc to a spanning
tree creates a circuit. Increase flow around the circuit until one arc drops out,
leaving a new spanning tree. The new solution is

7. Now return to step 3 and recompute node numbers. of

>\i \ 27 —d -3 -7 -9

7 9

¥ 3553 4 6
B 0

s 32 77461
B 0 —2

. 5 61284

In our example we obtain \; = 0,3, -5 and p; = —5, -3, =7, —9 at the next
stage. The expression d;;—\;+p; < 0for (4, j) = (1,3),(2,4) and (1,4). Increase
the flow in (2,4) by 7 to obtain the new flow below. This is now optimal, as we

47

can check from the final node numbers:

>\i \ My -5 —3 —2 —4

2 1
0 35 53 4 6
_ 0 |-1
g 32 7 4 71
5 3
U 5! 6 82 14

Remark. The route around which you may need to alter flows can be quite compli-
cated though it is always clear how you should do it. For example, had we tried to
increase the flow in arc (3,1) instead of (2,1) at step 5 we would have obtained

6—¢€|2+¢€ 0 0
0 |3—€|74+€| O
+e€ 0 1—¢€ 8

To summarise:

1.

2.

12.2

Pick initial feasible solution with m + n — 1 non-zero flows (NW corner rule).

Set A\ = 0 and compute A;, uj using d;; — A; + p; = 0 on arcs with non-zero
flows.

At dij — N + p; > 0 for all (4, 7) then flow is optimal.
. If not, pick (4, 7) for which d;; — \; + p; < 0.

. Increase flow in arc (4, 7) by as much as possible without making the flow in any

other arc negative. Return to 2.

Simplex-on-a-graph

The transportation algorithm can easily be generalised to a problem of minimizing
costs in a general network in which there is a constraint 0 < x;; < oo on each directed
arc (i,7), and a flow b; enters the network at each node ¢ (though it is hard to keep
track of all the numbers by hand). Here we don’t label sources and destinations
separately, but do allow b; > 0 and b; < 0. Clearly, > .b; = 0 for conservation
of flow. The simplex-on-a-graph algorithm solves this problem in an identical
fashion to the transportation algorithm. Once again a basic solution is a spanning

tree of non-zero flow arcs. Suppose there are n nodes.

1.

Pick an initial basic feasible solution. Obtain n — 1 non-zero flow arcs.

48

2. Set A\; = 0 and compute \; on other nodes using d;; — A\; +A; = 0 on arcs of the
spanning tree.

3. Compute d;; — A\; + A; for other arcs. If all these are > 0 then optimal. If not,
ple (Z,]) such that dij —)\z +)\j < 0.

4. Add arc (4, 7) to the tree. This creates a circuit. Increase flow around the circuit
(in direction of arc (4, 7)) until one non-zero flow drops to zero and a new basic
solution is created. Return to 2.

If it is hard to find an initial basic solution then there is a two-phase version of the
algorithm (just as for the ordinary simplex algorithm).

Phase I. Add artificial node 0 with arcs from all nodes with b; > 0 and to all nodes
with b; < 0. For Phase I objective put costs of 1 on all arcs to and from node 0
and costs 0 elsewhere in the network. The initial basic solution for Phase I is the
spanning tree consisting of the node 0 and all arcs joining it to the original nodes.

At the end of Phase I (if the original problem was feasible) you will have reduced
the Phase I cost to 0 (no flow in arcs to or from node 0), so have a basic solution
(Spanning tree solution) for the original problem.

Phase II. Solve the original problem using the initial solution found by Phase I.

There are several applications of the network theory to problems of graph theory
and operations research on the further examples sheet.

12.3 Example: optimal power generation and distribution

The following real-life problem can be solved by the simplex-on-a-graph algorithm.

49

Scotland

Cumbria

Northwest

Wales

..........

Central

Southwest

\1_9 Thames

Southcoast

The demand for electricity at node 7 is d;. Node 7 has k; generators, that can generate
electricity at costs of a;1, ..., a;,, up to amounts b;y, ..., bi,. There are n = 12 nodes
and 351 generators in all. The capacity for transmission from node i to j is ¢;; (= ¢;i).

Let z;; = amount of electricity carried ¢ — j and let y;; = amount of electricity
generated by generator 7 at node 2. The LP is

minimize Z @i VYij
ij
subject to Zyij —me—f—Zl'ﬂ :di7 1= 1,...,12,
J J J
0 <@ <cy, 0=y < byj.

In addition, there are constraints on the maximum amount of power that may be
shipped across the cuts shown by the dotted lines in the diagram.

50

