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060229 A policy π is to be chosen to maximize

F (π, x) = Eπ

[ ∞∑
t=0

βtr(xt, ut)

∣∣∣∣∣ x0 = x

]
,

where 0 < β ≤ 1. Assuming r ≥ 0, prove that π is optimal if F (π, x) satisfies the optimality
equation.

An investor receives at time t an income xt, of which he spends ut, subject to 0 ≤ ut ≤ xt.
The reward is r(xt, ut) = ut, and his income evolves as

xt+1 = xt + (xt − ut)εt ,

where {εt} is a sequence of independent and positive random variables, such that Eεt = θ > 0.
Given x0 and 0 < β ≤ 1/(1 + θ), show that F (π, x) is maximized by taking ut = xt for all t.

What can you say about the problem if β > 1/(1 + θ)?



Tripos Questions in Optimization and Control 2

050328 A discrete-time controlled Markov process evolves according to

Xt+1 = λXt + ut + εt , t = 0, 1, 2, . . . ,

where the εt are independent zero-mean random variables with common variance σ2, and λ
is a known constant. Consider the problem of minimizing

Ft,T (x) = E

 T−1∑
j=t

βj−tC(Xj , uj) + βT−tR(XT )

 .

where C(x, u) = 1
2(u2 + ax2), β ∈ (0, 1) and R(x) = 1

2a0x
2 + b0. Show that the optimal

control at time j takes the form form uj = kT−txj , for certain constants ki. Show also that
the minimized value ofor Ft,T (x) is of the form

1
2aT−tx

2 + bT−t

for certain constants aj , bj . Explain how these constants are to be calculated. Prove that the
equation

f(z) = a +
λ2βz

1 + βz
= z

has a unique positive solution, z = a∗, and that the sequence of (aj)j≥0 converges monotoni-
cally to a∗.

Prove that the sequence (bj)j≥0 converges, to the limit

b∗ =
βσ2a∗

2(1− β)
.

Finally, prove that kj → k∗ ≡ −βa∗λ/(1 + βa∗).
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050429 An investor has a (possibly negative) bank balance x(t) at time t. For given positive
x(0), T , µ, A and r, he wishes to choose his spending rate u(t) ≥ 0 to maximize

Φ(u;µ) ≡
∫ T

0
e−βt log u(t) dt + µe−βT x(T ) ,

where dx(t)/dt = A+rx(t)−u(t). Find the investor’s optimal choice of control u(t) = u∗(t;µ).

Let x∗(t;µ) denote the optimally-controlled bank balance. By considering next how
x∗(T ;µ) depends on µ, show that there is a unique positive µ∗ such that x∗(T ;µ∗) = 0.
If the original problem is modified by setting µ = 0, but requiring that x(T ) ≥ 0 show that
the optimal control for this modified problem is u(t) = u∗(t;µ∗).
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050229 Explain what is meant by a time-homogeonous discrete time Markov decision prob-
lem.

What is the positive programming case?

A discrete time Markov decision problem has state space {0, 1, . . . , N}. In state i, i 6= 0, N ,
two actions are possible. We may either stop and obtain a terminal reward r(i) ≥ 0, or may
continue, in which case the subsequent state is equally likely to be i− 1 or i + 1. In states 0
and N stopping is automatic (with terminal rewards r(0) and r(N) respectively). Starting in
state i, denote by Vn(i) and V (i) the maximal expected terminal reward that can be obtained
over the first n steps and over the infinite horizon, respectively. Prove that limn→∞ Vn = V .

Prove that V is the smallest concave function such that V (i) ≥ r(i) for all i.

Describe an optimal policy.

Suppose r(0), . . . , r(N) are distinct numbers. Is the optimal policy necessarily unique?
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050328 Consider the problem

minimize E

[
x(T )2 +

∫ T

0
u(t)2 dt

]
where for 0 ≤ t ≤ T ,

ẋ(t) = y(t) and ẏ(t) = u(t) + ε(t) ,

u(t) is the control variable, and ε(t) is Gaussian white noise, Show that the problem can be
rewritten as one of controlling the scalar variable z(t), where

z(t) = x(t) + (T − t)y(t) .

By guessing the form of the optimal value function and ensuring it satisfies an appropriate
optimality equation, show that the optimal control is

u(t) = − (T − t)z(t)
1 + 1

3(T − t)3
.

Is this certainty equivalence control?
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050429 A continuous-time control problem is defined in terms of state variable x(t) ∈ Rn

and control u(t) ∈ Rm, 0 ≤ t ≤ T . We desire to minimize
∫ T
0 c(x, t) dt + K(x(T )), when T

is fixed and x(T ) is unconstrained. Given x(0) and ẋ = a(x, u), describe further boundary
conditions that can be used in conjunction with Pontryagin’s maximum principle to find x,
u and the adjoint variables λ1, . . . , λm.

Company 1 wishes to steal customers from company 2 and maximize the profit it obtains
over an interval [0, T ]. Denoting by xi(t) the number of customers of company i, and by u(t)
the advertising effort of company 1, this the leads to a problem

minimize
∫ T

0

[
x2(t) + 3u(t)

]
dt ,

where ẋ1 = ux2, ẋ2 = −ux2, and u(t) is constrained to the interval [0, 1]. Assuming x2(0) >
3/T , use Pontryagin’s maximum principle to show that the optimal advertising policy is
bang-bang, and that there is just one change in advertising effort, at a time t∗, where

3 et∗ = x2(0)(T − t∗) .
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04215 A gambler is presented with a sequence of random numbers N1, N2, . . . , Nn, one at a
time. The Nk’s are distributed so that

P (Nk = k) = 1− P (Nk = −k) = p,

where 1/(N − 2) < p ≤ 1/3. The gambler must choose exactly one of the numbers, just after
it has been presented and before any further numbers are presented, but must wait until all
the numbers are presented before his payback can be decided. It costs £1 to play the game.
The gambler receives payback as follows: nothing if he chooses the smallest all the numbers,
£2 if he chooses the largest of all the numbers, and £1 otherwise.

Let r0 = d1 + 1/pe. Show that the form of the optimal strategy is to choose the first
number such that either (i) Nk > 0 and k ≥ n− r0, or (ii) k = n− 1.



Tripos Questions in Optimization and Control 8

04315 The strength of the economy evolves according to the equation

ẍ = −α2xt + ut ,

where ẋ0 = x0 = 0 and ut is the effort that the government puts into reform at time t, t ≥ 0.
The government wishes to maximize its chance of re-election at a given future time T , where
this chance is some monotone increasing function of

xT − 1
2

∫ T

0
u2

t dt .

Use Pontryagin’s maximum principle to determine the government’s optimal reform policy,
and show that the optimal trajectory of xt is

xt = t
2α−2 cos (α(T − t))− 1

2α−3 cos(αT ) sin(αt) .

Hint: The general solution of the linear system(
ẏ1

ẏ2

)
=

(
0 γ2

−1 0

) (
y1

y2

)
is given by

y = a

(
cos(γt)

−γ−1 sin(γt)

)
+ b

(
sin(γt)

γ−1 cos(γt)

)
where a and b are scalar constants.
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04415 Consider the deterministic dynamical system

ẋt = Axt + But ,

where A and B are constant matrices, xt ∈ Rn and ut is the control variable, ut ∈ Rm.

What does it mean to say that the system is controllable?

Let yt = e−tAxt − x0. Show that if Vt is the set of possible values for yt as the control
{us : 0 ≤ s ≤ t} is allowed to vary, then Vt is a vector space.

Show that each of the following three conditions is equivalent to the controllability of the
system.

1. V ⊥
t :=

{
v ∈ Rn : v>yt = 0 ∀yt ∈ Vt

}
= {0}.

2. The matrix H(t) :=
∫ t
0 e−sABB>e−sA>

ds is (strictly) positive definite.

3. The matrix Mn := [B AB A2B · · · An−1B] has rank n.

Consider the scalar system
n∑

j=0

aj

(
d

dt

)n−j

ξ = u,

where a0 = 1. Show that this system is controllable.
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03215 The owner of a put option may exercise it on any one of the days 1, . . . , h, or not at
all. If he exercises it on day t, when the share price is xt, his profit will be p − xt. Suppose
the share price obeys xt+1 = xt + εt, where ε1, ε2, . . . are i.i.d. random variables for which
E|εt| < ∞. Let Fs(x) be the maximal expected profit the owner can obtain when there are s
further days to go and the share price is x. Show that

(i) Fs(x) is non-decreasing in s,

(ii) Fs(x) + x is non-decreasing in x, and

(iii) Fs(x) is continuous in x.

Deduce that there exists a non-decreasing sequence, a1, . . . , ah, such that expected profit
is maximized by exercising the option the first day that xt ≤ at.

Now suppose that the option never expires, so effectively h = ∞. Show by examples that
there may or may not exist an optimal policy of the form ‘exercise the option the first day
that xt ≤ a.’
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03314 State Pontryagin’s Maximum Principle (PMP).

In a given lake the tonnage of fish, x, obeys

dx/dt = 0.001(50− x)x− u , 0 < x ≤ 50 ,

where u is the rate at which fish are extracted. It is desired to maximize∫ ∞

0
u(t)e−0.03t dt ,

choosing u(t) under the constraints 0 ≤ u(t) ≤ 1.4, and u(t) = 0 if x(t) = 0. Assume the PMP
with an appropriate Hamiltonian of H(x, u, t, λ). Now define G(x, u, t, η) = e0.03tH(x, u, t, λ)
and η(t) = e0.03tλ(t). Show that there exists η(t), 0 ≤ t, such that on the optimal trajectory
u maximizes

G(x, u, t, η) = η[0.001(50− x)x− u] + u

and
dη/dt = 0.002(x− 10)η .

Suppose that x(0) = 20 and that under an optimal policy it is not optimal to extract
all the fish. Argue that η(0) ≥ 1 is impossible and describe qualitatively what must happen
under the optimal policy.
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03414 The scalars xt, yt, ut, are related by the equations

xt = xt−1 + ut−1 , yt = xt−1 + ηt−1 , t = 1, . . . , T

where {ηt} is a sequence of uncorrelated random variables with means of 0 and variances
of 1. Given that x̂0 is an unbiased estimate of x0 of variance 1, the control variable ut is
to be chosen at time t on the basis of the information Wt, where W0 = (x̂0) and Wt =
(x̂0, u0, . . . , ut−1, y1, . . . , yt), t = 1, 2, . . . , T − 1. Let x̂1, . . . , x̂T be the Kalman filter estimates
of x1, . . . , xT computed from

x̂t = x̂t−1 + ut−1 + ht(yt − x̂t−1)

by appropriate choices of h1, . . . , hT . Show that the variance of x̂t is Vt = 1/(1 + t).
Define F (WT ) = x̂2

T and

F (Wt) = inf
ut,...,uT−1

E

[
T−1∑
τ=t

u2
τ + x2

T

∣∣∣∣∣ Wt

]
, t = 0, . . . , T − 1 .

Show that F (Wt) = x̂2
t Pt + dt, where Pt = 1/(T − t + 1), dT = 1/(1 + T ) and, dt−1 =

Vt−1VtPt + dt.
How would the expression for F (W0) differ if x̂0 had a variance different from 1?
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02215 State Pontryagin’s maximum principle (PMP) for the problem of minimizing∫ T

0
c(x(t), u(t)) dt + K(x(T )) ,

where x(t) ∈ Rn, u(t) ∈ Rm, dx/dt = a(x(t), u(t)), x(0) and T are given, and x(T ) is
unconstrained.

Consider the 2-dimensional problem in which dx1/dt = x2, dx2/dt = u, c(x, u) = 1
2u2 and

K(x(T )) = 1
2qx1(T )2, q > 0. Show that by use of a variable z(t) = x1(t) + x2(t)(T − t) one

can rewrite this problem as an equivalent 1-dimensional problem.
Use PMP to solve this 1-dimensional problem, showing that the optimal control can be

expressed as u(t) = −qz(T )(T − t), where z(T ) = z(0)/[1 + 1
3qT 3].

Express u(t) in a feedback form of u(t) = k(t)x(t) for some k(t).
Suppose that the initial state is perturbed by a small amount to x(0) + (ε1, ε2). Give an

expression (in terms of ε1, ε2, x(0), q and T ) for the increase in minimal cost.
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02314 Consider a scalar system with xt+1 = (xt + ut)ξt, where ξ0, ξ1, . . . is a sequence of
independent random variables, uniform on the interval [−a, a], with a ≤ 1. We wish to choose
u0, . . . , uh−1 to minimize the expected value of

h−1∑
t=0

(c + x2
t + u2

t ) + 3x2
h ,

where ut is chosen knowing xt but not ξt. Prove that the minimal expected cost can be
written Vh(x0) = hc + x2

0Πh and derive a recurrence for calculating Π1, . . . ,Πh.
How does your answer change if ut is constrained to lie in the set U(xt) = {u : |u + xt| <

|xt|}?
Consider a stopping problem for which there are two options in state xt, t ≥ 0:

(1) stop: paying a terminal cost 3x2
t ; no further costs are incurred;

(2) continue: choosing ut ∈ U(xt), paying c+u2
t +x2

t , and moving to state xt+1 = (xt +ut)ξt.

Consider the problem of minimizing total expected cost subject to the constraint that no
more than h continuation steps are allowed. Suppose a = 1. Show that an optimal policy
stops if and only if either h continuation steps have already been taken or x2 ≤ 2c/3.

[Hint: Use induction on h to show that a one-step-look-ahead rule is optimal. You should
not need to find the optimal ut for the continuation steps.]
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02414 A discrete-time decision process is defined on a finite set of spaces I as follows. Upon
entry to state it at time t the decision-maker observes a variable ξt. He then chooses the next
state freely within I, at a cost of c(it, ξt, it+1). Here {ξ0, ξ1, . . .} is a sequence of integer-valued,
identically distributed random variables. Suppose there exist {φi : i ∈ I} and λ such that for
all i ∈ I

φi + λ =
∑
k∈Z

P (ξt = k) min
i′∈I

[
c(i, k, i′) + φi′

]
.

Let π denote a policy. Show that

λ = inf
π

lim sup
t→∞

Eπ

[
1
t

t−1∑
s=0

c(is, ξs, is+1)

]
.

At the start of each month a boat manufacturer receives orders for 1, 2 or 3 boats. These
numbers are equally likely and independent from month to month. He can produce j boats in
a month at a cost of 6 + 3j units. All orders are filled at the end of the month in which they
are ordered. It is possible to make extra boats, ending the month with a stock of i unsold
boats, but i cannot be more than 2, and a holding cost of ci is incurred during any month
that starts with i unsold boats in stock. Write down an optimality equation that can be used
to find the long-run expected average-cost.

Let π be the policy of only ever producing sufficient boats to fill the present month’s
orders. Show that it is optimal if and only if c ≥ 2.

Suppose c < 2. Starting from π, what policy is obtained after applying one step of the
policy improvement algorithm?
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01215 A street trader wishes to dispose of k counterfeit Swiss watches. If he offers one
for sale at price u he will sell it with probability ae−u. Here a is known and less than 1.
Subsequent to each attempted sale (successful or not) there is a probability 1−β, 0 < β < 1,
that he will be rumbled and can make no more sales. His aim is to choose the prices at which
he offers the watches so as to maximize the expected values of his sales up until the time he
is rumbled or has sold all k watches.

Let V (k) be the maximum expected amount he can obtain when he has k watches re-
maining and has not yet been rumbled. Explain why V (k) is the solution to

V (k) = max
u>0

{
ae−u[u + βV (k − 1)] + (1− ae−u)βV (k)

}
.

Denote the optimal price by uk and show that

uk = 1 + βV (k)− βV (k − 1)

and that
V (k) = ae−uk/(1− β) .

Show inductively that V (k) is a nondecreasing and concave function of k.
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01314 A file of X Mb is to be transmitted over a communications link. At each time t the
sender can choose a transmission rate, u(t), within the range [0, 1] Mb per second. The charge
for transmitting at rate u(t) at time t is u(t)p(t). The function p is fully known at time 0. If
it takes a total time T to transmit the file then there is a delay cost of γT 2, γ > 0. Thus u
and T are to be chosen to minimize∫ T

0
u(t)p(t)dt + γT 2 ,

where u(t) ∈ [0, 1], dx(t)/dt = −u(t), x(0) = X and x(T ) = 0. Quoting and applying
appropriate results of Pontryagin’s maximum principle show that a property of the optimal
policy is that there exists p∗ such u(t) = 1 if p(t) < p∗ and u(t) = 0 if p(t) > p∗.

Show that the optimal p∗ and T are related by p∗ = p(T ) + 2γT .
Suppose p(t) = t + 1/t and X = 1. For what value of γ is it optimal to transmit at a

constant rate 1 between times 1/2 and 3/2?
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01414 Consider the scalar system with plant equation xt+1 = xt + ut, t = 0, 1, . . . and cost

Cs(x0, u0, u1, . . .) =
s∑

t=0

[
u2

t +
4
3
x2

t

]
.

Show from first principles that minu0,u1,... Cs = Vsx
2
0, where V0 = 4/3 and for s = 0, 1, . . . ,

Vs+1 = 4/3 + Vs/(1 + Vs) .

Show that Vs → 2 as s →∞.
Prove that C∞ is minimized by the stationary control, ut = −2xt/3 for all t.
Consider the stationary policy π0 that has ut = −xt for all t. What is the value of C∞

under this policy?
Consider the following algorithm, in which steps 1 and 2 are repeated as many times as

desired.

1. For a given stationary policy πn, for which ut = knxt for all t, determine the value of
C∞ under this policy as V πnx2

0 by solving for V πn in

V πn = k2
n + 4/3 + (1 + kn)2V πn .

2. Now find kn+1 as the minimizer of

k2
n+1 + 4/3 + (1 + kn+1)2V πn .

and define πn+1 as the policy for which ut = kn+1xt for all t.

Explain why πn+1 is guaranteed to be a better policy than πn.
Let π0 be the stationary policy with ut = −xt. Determine π1 and verify that it minimizes

C∞ to within 0.2% of its optimum.
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00215 Let H denote the Hamiltonian of Pontryagin’s maximum principle. On an optimal
trajectory H is maximized to −λ0(t). In what circumstances is λ0(t) constant?

A man begins swimming from a point (0, 0) on the bank of a straight river. He swims at
constant speed v relative to the water. The speed of the downstream current at a distance y
from the shore is c(y). Hence his trajectory is described by

ẋ = v cos θ + c(y) , ẏ = v sin θ ,

where θ is the angle at which he swims relative to the direction of the current.
He desires to go as far as possible downstream in a given time T , ending upon the same

bank as he starts. Given that c(y) is increasing and differentiable in y, use Pontryagin’s
maximum principle to show that he should choose θ(t) to be a decreasing function of the
time, t.

Show that if on an optimal trajectory he is at a distance y from the bank at two distinct
times t1 and t2 then it must be that θ(t1) = −θ(t2).
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00314 In a television game show a contestant is successively asked questions Q1, . . . , Q9.
After correctly answering Qi and hearing Qi+1 she has the option of either going home with
2i pounds or attempting to answer Qi+1. If she answers Qi+1 incorrectly then she goes home
with nothing. If she answers Q9 correctly then the game ends and she takes home 29 pounds.

Upon hearing Qi she is able to classify it as either easy or hard; these types occur with
probabilities 0.95 and 0.05 respectively, independently for each question. If Qi is easy her
probability of answering it correctly is 9/(9 + i), but if it is hard the probability is only
6/(6 + i). At most once in the game she may choose to ‘phone a friend’; the effect is to
increase her chance of correctly answering Qi to 10/(10 + i), if it is easy, and to 7/(7 + i), if
it is hard.

Let Wi (and Vi) denote her expected winnings if she plays optimally from the point that
she has correctly answered i − 1 questions and has (or has not yet) phoned a friend. Write
down dynamic programming equations from which you could compute V1.

Show that W9 = 28 and V9 = (21/20)28.
Suppose she has answered 7 questions correctly and has not yet phoned a friend. What

should she do if Q8 is an easy question?
The producers of the show are considering a new game in which everything is the same

except that the potential number of questions is unlimited. The game ends only when the
contestant answers incorrectly or chooses to retire. Quoting any theorem necessary to justify
your answer, show that for a contestant who plays optimally the new game is the same as the
old.
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00414 Consider the system xt+1 = Axt + But, xt ∈ Rn, ut ∈ Rm, and let

Ft(x0) = min
u0,...,ut−1

t−1∑
s=0

x>s Rxs + x>t Π0xt, ,

where R is positive definite. Assuming that the optimal control is of the form us = Ksxs,
and Ft(x) = x>Πtx, show that

Πt = f(R,A, B,Πt−1) ≡ min
K

{
R + (A + BK)>Πt−1(A + BK)

}
.

Explain what is meant by saying the system is controllable.
State necessary and sufficient condition for controllability in terms of A and B.
Show that if the system is controllable and Π = 0, then Ft(x) is monotone increasing in t

and tends to the finite limit x>Πx, where Π = f(R, A,B,Π).
Suppose now that xt+1 = Axt +But + εt, where {εt} is noise, Eεt = 0, Eεtε

>
t = N , and εs

and εt are independent for s 6= t. Moreover, x0 is known, but x1, x2, . . . cannot be observed.
Instead, we observe y1, y2, . . . ∈ Rr, where yt = Cxt−1. Consider the estimate of xt given by

x̂t = Ax̂t−1 + But−1 −Ht(yt − Cx̂t−1)

where x̂0 = x0 and Ht is chosen to minimize, Vt, the covariance matrix of x̂t. Show that x̂t is
unbiased and that, with V0 = 0,

Vt = f(N,A>, C>, Vt−1) = min
H

{
N + (A + HC)Vt−1(A + HC)>

}
.

Hence, quoting a condition in terms of A and C for the noiseless system to be observable,
show that observability is a sufficient condition for Vt to tend to a finite limit as t →∞.
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99215

A linear system on a straight line has the plant equation of the form

xn+1 = Axn + ξnun + δn .

Here, x1, x2, . . . are subsequent states of the system, u1, u2, . . . are control variables, and
(ξ1, δ1), (ξ1, δ1), . . . are independent random vectors with E ξj = E δj = 0, varξj = varδj = ν
and and cov(ξ, δ) = 0. Find the closed loop controls over the time horizon N minimizing the
expected value of the following cost function

c
N∑

j=1

x2
j + d

N−1∑
j=1

uj ,

that is linear in u and quadratic in x. State the certainty-equivalence principle and check
whether your solution satisfies it.
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99314

A rodent in a northern forest collects hazelnuts to eat during the coming winter. Every
time the rodent forays from its lair it collects a random weight of nuts, but risks being
caught by a predator. The weights of nuts collected in successive forays form a sequence of
independent random variables, each having an exponential distribution with mean l/λ. On
each foray there is a probability p, 0 < p < 1, of the rodent being caught, and hence of eating
no nuts. Find a policy maximizing the expected weight of nuts eaten by the rodent during
the coming winter, and justify your answer.
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99414

A butterfly enjoys fluttering among blossoming trees on a sunny June morning. A wind
begins to blow as the butterfly flies between trees A and B at a distance L apart. Assume
that the wind blows at a constant non-zero speed u0 in the direction from tree A to tree B,
and the equation of motion is ẋ = u, or dx = udt, 0 < x < L. Here, x is the butterfly’s
distance from tree A, and velocity u is a control variable. When the butterfly reaches tree
A or tree B, it rests there until the wind dies. Find a trajectory from x to one of the trees,
minimising the cost ∫ T

0
(u− u0)2dt + c(x(T )) ,

where T is the time it reaches tree A or B, and c(A) and c(B) are given terminal costs (related
to an ‘attraction’, viz. the scent or the brightness of blossoms of a particular tree).

[Hint: The value function F (x) is piecewise linear.]

If the butterfly panics, the result is erratic movement, and the equation of motion becomes
stochastic: dx = udt + vdB(t), where v > 0 is a constant and B(t) is a standard Brownian
motion. This means that the butterfly follows the trajectory of a controlled diffusion process,
with the infinitesimal generator

Λ(u)φ(x) = uφ′(x) +
v

2
φ′′(x).

Solve the corresponding dynamic programming equation for the value function F (x):

0 = inf
u

[
(u− uo)2 + Λ(u)F

]
, 0 < x < L ,

with F (0) = c(A), F (L) = c(B).

[Hint: Use a standard substitution F (z) = α log φ(x) and adjust the boundary conditions.]
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98212

A discrete-time Markov decision process has discount factor β < 1, and one-step rewards,
r(x, u), with 0 ≤ r(x, u) ≤ 1, for all x, u. Starting in state x, let Fs(x) and F (x) denote
respectively the maximal expected discounted rewards that can be obtained over s steps and
over the infinite horizon. Prove that Fs(x) → F (x) as s →∞.

A hunter has limited time and bullets. Each day that he goes hunting he encounters
exactly one target and then assesses accurately the probability he can hit it. On the basis of
this assessment he decides to shoot once or not at all. The probabilities with which targets
can be hit are independent samples from the uniform distribution on [0, 1]. Each night there
is a probability 1− β that all his remaining bullets will be stolen. Given that on a particular
day he has i bullets left and must retire from hunting within s days, or when he has no bullets
left, show that he maximizes the expected number of targets he hits by shooting if and only
if he can hit the target he encounters that day with probability exceeding some z(s, i).

Prove that z(s, i) is a nonincreasing function of i.
Suppose that there is no limit on how many days he hunts. Show that with i bullets left

an optimal policy is to shoot if and only if the probability he can hit the target exceeds z(i),
where z(i) is also some nonincreasing function of i.



Tripos Questions in Optimization and Control 26

98312

The position, x1, and speed, x2, of a particle moving on the line obey

ẋ1 = x2, ẋ2 = u,

where u is an applied control force. Initially the particle is at rest and x1(0) = X, where
X > 0. It is desired to bring the particle to rest at the origin while minimizing the cost

J =
∫ T

0

1
2

(
k2 + u2

)
dt.

Here k is a constant, T is the time that the particle reaches the origin and T is unconstrained.
Use the maximum principle to show that under optimal control the particle reaches the

origin at time T = (6X/k)1/2 and that u varies linearly with time from −k to k.
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Consider the discrete-time controlled system xt = xt−1 + ut−1 + εt, where the εt are
independent N(0, 4) variables. At time t one observes not xt, but yt = xt−1 + ηt, where the
ηt are independent N(0, 3). One also has x̂0, an estimate of x0, such that x̂0 ∼ N(x0, 6).
Consider state estimates obtained from x̂t = x̂t−1 + ut−1 + Ht(yt − x̂t−1). Show that the
variances of these estimates are minimized by H1 = · · · = Hh = 2/3; find these variances and
show that they do not depend on u0, . . . , uh−1.

Solve the problem of minimizing

E

[
h−1∑
t=0

(x2
t + 6u2

t ) + 3x2
h

∣∣∣∣∣ x̂0

]
.

Show that ut = −x̂t/3 is optimal for all t and that the minimized value is 3x̂2
0 + 18(h + 1).

In giving your answer, mention at relevant points the terms ‘Kalman filter’, ‘separation
principle’, ‘Riccati equation’, ‘stationary policy’ and ‘certainty equivalence control.’
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A scalar linear system obeys the plant equation

xt+1 = xt + ut + εt, t = 0, . . . , h− 1 ,

where ε0, . . . , εh−1 are independent random variables, all having mean 0 and variance 1, x0 =
−1, and at the time the control ut must be chosen the state xt is known. It is desired to
minimize the expected value of the cost function

h−1∑
t=0

u2
t + Πx2

h .

Find the optimal closed-loop control and the minimal expected cost as functions of Π.

Suppose that at each time t it is possible to apply a control to the noise that reduces the
variance of εt to α, 0 ≤ α < 1. The control may be applied at some times, but not at others,
and the decision whether or not to apply it at time t may be deferred until xt is known and
ut is about to be chosen. For each t for which the variance of the noise is so reduced a cost
c is added to the total cost above. Find the policy which minimizes the expected value of
the sum of all costs. Show that noise reduction control should be used at least once provided
c < (1− α)Π.
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(a) Suppose an optimal control problem has a terminal cost K which depends only on the
final state x(T ) and this state is unconstrained. How can one determine boundary conditions
for the adjoint equations of Pontryagin’s maximum principle?

(b) For t in the interval [0, 1] the price of gold has been p(t) pounds per ounce. A gold
trader wishes to evaluate his trading in this interval. At the start of the interval he had
£x1(0) and x2(0) ounces of gold. Gold which he held in storage was charged at £γ per ounce
per unit time. Purchases, but not sales, of gold were taxed at £δ per ounce, δ > 0. Let u(t)
be the rate at which he sold gold at time t (with u(t) < 0 corresponding to purchase of gold).
Then supposing his stocks of money x1(t) and gold x2(t) were always positive, these obeyed

ẋ1(t) = p(t)u(t)− γx2(t) + δ min{0, u(t)} and ẋ2(t) = −u(t) .

The rate at which he could trade was constrained by −1 ≤ u(t) ≤ 1.

Use the maximum principle to show that with hindsight, and with x1(0) and x2(0) suffi-
ciently large, the trader would have minimized his trading loss of

K = [x1(0) + p(0)x2(0)]− [x1(1) + p(1)x2(1)]

by taking u(t) = −1, 0, or 1 as ∆(t) := p(t) − p(1) + γ(1 − t) was in the interval (−∞,−δ],
(−δ, 0], or (0,∞) respectively.

Comment on the reason for the requirement that x1(0) and x2(0) be sufficiently large.
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Each day a manufacturer receives an order with probability p and no order with probability
q = 1− p. If i orders are outstanding, he can choose either to process them all, at cost k, or
hold them over until the next day at a cost of ci, c > 0, except that if i = N he must process
them all. He desires to minimize the expected infinite-horizon discounted-cost, with discount
rate α < 1. Explain the relevance to this problem of V , where for i = 0, . . . , N − 1,

V (i) = min
{
k + αqV (0) + αpV (1) , ci + αqV (i) + αpV (i + 1)

}
,

and V (N) = k + αqV (0) + αpV (1).

For each j = 1, . . . , N , let πj denote the ‘threshold policy’ which processes the waiting
orders if and only if their number is at least j. Let Vj(i) denote the expected infinite-horizon
discounted-cost under πj when starting with i orders. Write down a set of simultaneous
linear equations in Vj(0), . . . , Vj(N) and use these to show that if i′ is the greatest integer not
exceeding j such that Vj(i′ − 1) < Vj(i′), then Vj(0) < · · · < Vj(i′) and Vj(i′) ≥ · · · ≥ Vj(N).

Let g(i) = ci + αqVj(i) + αpVj(i + 1). Show that g(0) < · · · < g(i′) and that if i′ < j then
g(i) ≥ Vj(N) for all i ≥ i′. Hence show that if the policy improvement algorithm is started
with πj then the policy obtained after one iteration of the algorithm is also a threshold policy.

Let p = 0.5, α = 0.8, c = 1. Show that π1 is optimal if and only if k ≤ 5/3. Suppose
additionally that N = 4, k = 3.6 and the algorithm begins with policy π1. Use the data in
the table below to find the number of iterations taken by the algorithm before it terminates.

j Vj(0) Vj(1) Vj(2) Vj(3) Vj(4)
1 7.2 10.8 10.8 10.8 10.8
2 4.88 7.32 8.48 8.48 8.48
3 5.2 7.8 9.2 8.8 8.8
4 5.96 8.94 10.92 11.38 9.56
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A fantasy kingdom has populations of x vampires and y humans. At the start of each of
the four yearly seasons the king takes a census and then intervenes to admit or expel some
humans. Suppose that the population dynamics of the kingdom are governed by the plant
equations

xt+1 = xt + (yt − Y ), yt+1 = yt − (xt −X) + ut,

where xt and yt are integers representing the respective populations of vampires and humans
in the t-th season, t = 0, 1, 2, 3, . . .; X and Y represent equilibrium values in the population
without regal intervention; and ut denotes the effect of the king’s intervention in the t-
th season. Show, by defining zt by an appropriate translation of (xt, yt)>, that the plant
equations can be written in the form

zt+1 = Azt + But, where A =
(

1 1
−1 1

)
, and B =

(
0
1

)
.

One spring, denoted t = 0, the king finds x0 = X + c and y0 = Y , where c is a positive
integer. Show that the equilibrium population (X, Y ) will not be regained without the king’s
intervention. What condition would have to be satisfied by A in order that zt → 0 as t →∞
without any interaction by the king?

Can the king regain equilibrium by only expelling humans?

Suppose, the census is taken during the day, so the king can only count humans, and
thus ut is allowed only to depend on yt−1 and Y . Quoting freely from the theory of LQ
regulation and Kalman filtering, show that there are constants a, b, c, a′, b′, c′ (which you
should not determine) such that controls of the form u0 = 0, u1 = 0, u2 = a + by0 + cy1,
u3 = a′+b′y0+c′y1 will regain equilibrium at t = 4, whatever the value of x0 and the observed
values y0, y1.

[Hint: You may find helpful the powers of A, tabulated below.]

t 2 3 4 5 6

At

(
0 2

−2 0

) (
−2 2
−2 −2

) (
−4 0

0 −4

) (
−4 −4

4 −4

) (
0 −8
8 0

)
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An oil company wishes to develop exactly one of n potential sites. If a test drilling is
made at site i then an estimate, xi, is obtained for the profit that will arise if that site is
selected for development. Prior to testing at site i, and independent of information obtained
about other sites, the distribution of xi has density function fi(x), x ≥ 0. Test drillings are
to be made at the sites sequentially, in whatever order is best, but these may be stopped at
any point and then the site with the greatest xi selected for development. Each test drilling
costs c and the aim is to maximize the expected profit from development minus the cost of
all the test drillings.

Suppose that U is the set of all sites that have not yet been tested. Let x(U) = maxj 6∈U xj

be the value of the best site tested. Show that following a test drilling, it is optimal to make
no further test drillings and develop the best site so far, if and only if

c ≥ max
j∈U

∫ ∞

x(U)
[y − x(U)]fj(y)dy.

Show that if the densities fi are equal then the site ultimately selected will also be the
location of the final test drilling. Show, on the other hand that is the fi are not equal it can
be optimal to select one of the previously tested sites.
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(i) Define the notions of open-loop and closed-loop control. Discuss their relative advan-
tages and describe circumstances in which they are the same or different.

The ranger at the Trumpington Safari Park has a problem with his prized population of
lesser striped gnus. The population of animals has deviated by x (which can be positive or
negative) from the sustainable equilibrium level. If x is negative, the population is in danger
of becoming extinct, whereas if x is positive, the gnus are considered a pest, intimidating
passing cyclists. Control of the gnu population is possible, either by culling to reduce their
numbers, or importing from other parks. At time t, the excess of the animal population above
its equilibrium is denoted by x(t), and evolves according to the plant equation

ẋ = −x(t) + u(t), t ≥ 0,

with x(0) = x. The ranger wishes to return the population to equilibrium in finite time,
whilst achieving the minimal cost function

V (x) = inf
u

∫ T (u)

0
(1 + |u(t)|) dt,

where the infimum is taken over all controls u which return the population to equilibrium in
finite time, and such that −1 ≤ u(s) ≤ 1 ∀s ≥ 0. T (u) denoted the time taken to return the
population to equilibrium using the control u.

(ii) Find the dynamic programming equation, show that it is solved by

V (x) =
{

log |x|+ 2 log 2, |x| ≥ 1,
2 log(1 + |x|), |x| ≤ 1.

,

and find the optimal control in closed-loop form.

(iii) Suppose x(0) > 0. Find functions λ(t) and H(x(t), u(t), λ(t)) such that for the optimal
control u∗(t), corresponding optimal trajectory x∗(t), and for all 0 ≤ t ≤ T (u∗),

H(x∗(t), u∗(t), λ(t)) = 0,

with

H(x∗(t), u(t), λ(t)) ≤ 0,

for all other permissible controls u.

(iv) Hence find the optimal control in closed-loop form.
(v) Verify that the closed-loop and open-loop controls are the same.



Tripos Questions in Optimization and Control 34

95210

Consider an optimality equation

F (x) = max
u
{ r(x, u) + βE[F (x1) | x0 = x, u0 = u)] }, x ∈ X,

where β > 0. Suppose a policy has a value function which satisfies this equation. State
conditions under which this fact implies that the policy is optimal. Give an example to show
that these conditions cannot be arbitrarily relaxed.

Suppose β = 1 and the problem is a stopping problem, with continuation and stopping
actions of u = 0 and u = 1 respectively; r(x, u) = ur(x), r(x) ≥ 0. Under u = 0 the state
evolves according to a Markov process; under u = 1 it evolves to a special absorbing state
from which no further rewards can be obtained.

A function f is said to be excessive if f(x) ≥ E[f(x1) | x0 = x] for all x ∈ X. Show that
if r is excessive then u = 1 is optimal in every state.

Suppose X = {0, 1, 2, 3, 4}. Under the continuation option the state performs one further
step of a symmetric random walk on the integers, except that it becomes trapped in states 0
and 4. Find the solution for find the solution when r(0) = 0, r(1) = 3, r(2) = 2, r(3) = 5,
r(4) = 4.
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State Pontryagin’s maximum principle (PMP) as it applies to the problem of identifying
a control u which minimizes

C =
∫ T

0
c(x, u) dt,

where x and u are functions of t, with x(t) ∈ R2, u(t) ≥ 0, ẋ = a(x, u); x(0) is specified and
T is the first time that x reaches a set S.

The height of the water in a reservoir is to be raised by h through pumping in fresh water.
The added water must also compensate for a linearly increasing rate of water loss. Let x1(t),
x2(t) and u(t) denote respectively the height of the water above its initial level, the rate of
water loss, and the pumping rate at time t. The pumping cost is proportional to the square
of the pumping rate, so the problem is

minimize
∫ T

0

1
2
u(t)2 dt

under the constraints

x1(0) = 0, x1(T ) = h, x2(0) = 0, ẋ1 = u(t)− x2(t), ẋ2 = 1.

Show that the adjoint variables in PMP can be written λ1(t) = A and λ2(t) = At + B for
constants A and B to be determined.

By identifying T = 1 with a constraint on the terminal value of x2 show that the optimal
control under this constraint is u(t) = h + 1/2, 0 ≤ t ≤ 1. Deduce that if the initial value
of x2 is increased by a small amount ε then the optimal cost increases by approximately
(1/2)(h + 1/2)2ε.

Also find the optimal u when T is unconstrained.
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Consider scalar system and cost function,

xt+1 = xt + btut, C =
h−1∑
t=0

u2
t + x2

hΠh.

Show that C is minimized by a control

ut = −(b2
t + · · ·+ b2

h−1 + Π−1
h )−1btxt.

Frogs, labelled 1, . . . , k, play the following game on a line. At time t frog i has position
xi,t, t = 0, 1, . . . . Frog k leaps frog k− 1, traveling in an arc over frog k− 1 and to the point
equally distant on the opposite side. Then frog k − 1 leaps frog k − 2 in the same manner,
and so on. Thus xi,t+1 = 2xi−1,t − xi,t, i = 2, 3, . . . , k. Finally, frog 1, the queen, who can
jump however she likes, jumps by ut, so that x1,t+1 = x1,t + ut.

Define and discuss the concept of controllability, illustrating the key ideas in the context
of the above system when k = 4. You should show that the queen can jump in such a way
as to cause all four frogs to meet at any given point and explain how she could work out the
minimum time and sequence of jumps required to achieve this. Explain how the queen can
do this if the only things she can observe are the initial and subsequent positions of frog 4
and the magnitude and direction of her own jumps.

Suppose the queen desires to minimize a cost comprising jumping effort and her final
squared distance from frog k.

h∑
t=0

u2
t + (x1,h − xk,h)2Πh.

Show that the problem may be reduced to control of a scalar variable zt by a transformation
of the form zt = α>Ah−txt, for appropriately defined A and α. Interpret zt. Explain what
further calculations would be needed to compute the optimal control completely.


