
Part II. LQG Models

Lectures 7–11 have covered the LQG model and have thereby introduced various con-
cepts, such as regulation, controllability, stabilizability, imperfect state observation,
state estimation and certainty equivalence control. The ideas have been developed in
discrete time, but some analogous results have been stated for continuous time also
and have been used in examples. A good book for this part of the course is Whittle,
Optimization over Time, volume I, Chapters 5, 17 and 18. The notation in lectures is
fully consistent with this book.

As a result of studying this material you should be able to

• explain the meaning of the key terms used in lectures and listed overleaf.

• make use of the standard notation summarised overleaf.

• recall illustrative examples of various problem types (e.g., additive white noise, broom
balancing, pendulum, satellite, dam, etc.)

• know the following results and conditions under which they hold:

− Theorem 7.2 derivation of the LQ regulation optimal control and Riccati equation for
cases with and without process noise; the fact that this can be extended to models with
known disturbances and to tracking.

− Section 7.5 idea of a linear model as linearisation about an equilibrium point.

− Theorems 8.3, 8.4 necessary and sufficient conditions for controllability.

− Sections 9.2, 9.3 necessary and sufficient conditions for stabilizability.

− Lemma 9.1, Theorem 9.2 existence of the infinite horizon limit (but not the proof of 9.2).

− Theorems 10.2, 10.3 necessary and sufficient conditions for observability.

− Theorem 11.2 Kalman filtering.

− Theorem 11.3 certainty equivalence and the separation principle.

• solve problems based on the LQG model that are similar to those in lectures and on
Examples Sheet 2, by use of the dynamic programming equation, the Riccati equa-
tion, conditions for controllability, stabilizability and observability, ideas of Kalman
filtering and certainty equivalence control.

• construct proofs based upon the following ideas:

− Induction, (e.g., the Riccati equation for various problems with and without noise, and
proofs of the Kalman filter and certainty equivalence principle.)

− Linear algebra, (e.g., controllability, stabilizability and observability.)



Key terms in Lectures 7–11

certainty equivalence, 47
controllability, 34
controllable, 34
disturbances, 33
gain matrix, 31
horizon stable, 39
innovation process, 45
innovations, 46
linear least squares estimate, 46
LQG model, 29
observability, 41

observable, 41
r-controllable, 34
r-observable, 41
regulation, 29
Riccati equation, 31
separation principle, 47
stability matrix, 38
stabilizable, 38
tracking, 34
white noise, 31

Notation in Lectures 7–11

xt, ut, yt state, control and observation variables
n,m, r dimensions of xt, ut, yt

[A,B,C] coefficient matrices of xt, ut, yt in LQG plant and observation equations,
xt = Axt−1 + But−1 + εt, yt = Cxt−1 + ηt

R,S,Q matrices in LQG one-step cost, c(x, u) = x>Rx + u>Sx + x>S>u + u>Qu

Πh matrix specifying LQG terminal cost, K(xh) = x>

h Πhxh

Πt matrix in LQG solution, F (x, t) = x>Πtx, and satisfying Riccati recurrence,
Πt = R + A>Πt+1A − (S> + A>Πt+1B)(Q + B>Πt+1B)−1(S + B>Πt+1A)

f operator for backward Riccati recurrence, Πt = fΠt+1

Kt matrix coefficient for optimal feedback control, ut = Ktxt,
Kt = −(Q + B>Πt+1B)−1(S + B>Πt+1A)

Γt gain matrix, Γt = A + BKt, such that xt+1 = Γtxt

αt deterministic disturbances to plant equation, xt = Axt−1 + But−1 + αt

σt coefficient of linear term in solution to LQ regulation with disturbances
x̄t, ūt reference values for LQ tracking problem, c(x, u) = (x − x̄t)

>R(x − x̄t) + · · ·
Mr matrix for r-controllability, Mr = [B AB · · · Ar−1B]
Nr matrix for r-observability, Nr = [C> (CA)> · · · (CAr−1)>]>

εt, ηt plant and observation noise in LQG model

N,L,M covariance matrices of noise, N = E
[

εtε
>
t

]

, L = E
[

εtη
>
t

]

, M = E
[

ηtη
>
t

]

Vxy covariance of variables x and y

Yt, Ut observation and control histories at time t, Yt = (y1, . . . , yt), Ut = (u0, . . . , ut)
Wt history available when choosing ut, Wt = (Yt, Ut−1)
x̂t LLS estimate of xt, also E(xt | Wt) under Gaussian assumptions
∆t estimation error, ∆t = x̂t − xt

Vt variance of x̂t in Kalman filter, E
[

∆t∆
>
t

]

,

Vt = N + AVt−1A
> − (L + AVt−1C

>)(M + CVt−1C
>)−1(L> + CVt−1A

>)
ỹt innovation process of observations, used in Kalman filter, ỹt = yt − Cx̂t−1

Ht innovation coefficient matrix in Kalman filter, x̂t = Ax̂t−1 + But−1 + Ht(yt − Cx̂t−1)
Ht = (L + AVt−1C

>)(M + CVt−1C
>)−1

+ · · · policy independent terms in the minimal cost function, F (x̂, t) = x̂>Πtx̂ + · · ·

Other notation as used in lectures 1–6, e.g., F , h, s, etc.


