
Part I. Dynamic Programming

The first six lectures have covered deterministic and stochastic dynamic programming
over both finite and infinite horizons. The work has been entirely in discrete time,
and mostly in the state-structured Markov case. (Continuous time problems are ad-
dressed in the third part of the course.) Good books for this part of the course are
Ross, Introduction to Stochastic Dynamic Programming, Chapters I–V, and Bertsimas,
Dynamic Programming and Optimal Control, Volume I, Chapters 1 and 7 and Volume
II, Chapters 1, 3 and 4.

As a result of studying this material you should be able to:

• explain the meaning of the key terms used in lectures and listed overleaf.

• make use of the standard notation summarised overleaf.

• recall illustrative examples of various problem types (e.g., optimal gambling, asset
selling, parking, queueing control, etc.)

• know the following results and conditions under which they hold:

− Theorem 1.1 validity of the finite-horizon optimality equation.

− Theorem 3.1 validity of the infinite-horizon optimality equation in D, P and N cases.

− Theorem 4.1 sufficient condition for a policy to be optimal in D and P cases.

− Section 4.4 efficacity of value iteration.

− Theorem 5.1 sufficient condition for a policy to be optimal in D and N cases.

− Theorems 5.2, 5.4 optimality of one-step-look-ahead rules for stopping problems.

− Theorems 6.1, 6.2 sufficient condition for a policy to be optimal in the average-cost case.

− Section 6.4 efficacity of policy improvement.

• write down optimality equations for dynamic programming problems that are similar
to the examples in lectures and on Examples Sheet 1, and solve for optimal policies
by methods of backward recursion, interchange arguments, applications of Theorems
4.1, 5.1, 6.2, and policy improvement.

• construct proofs based upon the following ideas:

− Definition, (e.g., F (x) ≤ F (π, x)),

− Dominance, (e.g., Ch(xh) = 0 and case N, then Fs(π, x) ≤ Fs+1(π, x) and Fs(x) ≤ F (x)),

− Limits, (e.g., Ch(xh) = 0, then F (π, x) = lims→∞ Fs(π, x) exists, by monotone conver-
gence in cases P, N, and by |Fs(π, x) − Ft(π, x)| ≤ βtB/(1 − β), s ≥ t, in case D),

− Repeated Substitution, of an optimality equation for F (x), or a recursion for F (π, x),
into itself.



Key terms in Lectures 1–6

average-cost, 25
bang-bang control, 8
Bellman equation, 4
closed loop, 4
control variable, 2
decomposable cost, 4
discounted programming, 14
discounted-cost criterion, 13
discrete-time, 2
dynamic programming equa-
tion, 4
feedback, 4
finite actions, 19
interchange argument, 9
Markov decision process, 5

Markov dynamics, 4
Markov policy, 21
Markov stationary policy, 21
myopic policy, 20
negative programming, 14
one-step look-ahead rule, 22
open loop, 4
optimality equation, 4
optimization over time, 1
perfect state observation, 5
plant equation, 3
policy improvement algo-
rithm, 28
policy improvement, 27
policy, 4

positive programming, 14
principle of optimality, 3
state variable, 3
stationary, 21
stopping problem, 22
successive approximation, 18
time horizon, 3
time to go, 7
time-homogeneous, 7, 13
value interation bounds, 27
value iteration algorithm, 27
value iteration, 18

Notation in Lectures 1–6

x state variable (xt denotes its value at time t)
u control variable (ut denotes its value at time t)
t time, (t = 0, 1, . . .)
h horizon (cost is over t = 0, . . . , h)
s time to go, s = h − t, (but also simply used as alternate time variable)
Xt state history (x0, . . . , xt)
Ut−1 control history (u0, . . . , ut−1)
Wt = (Xt, Ut−1) history available at the point ut is chosen
β discount factor
c(xt, ut, t) one step cost
c(xt, ut) time-homogeneous one step cost
r(xt, ut) time-homogeneous one step reward
Ch(xh) terminal cost
D discounted case: |c(x, u)| < B and 0 < β < 1
N negative case: c(x, u) ≥ 0 and 0 ≤ β, usually β = 1
P positive case: c(x, u) ≤ 0 and 0 ≤ β, usually β = 1
π policy
Eπ[· · ·] expectation of [· · ·] when system evolves under policy π

F (π, x, t) cost over t, . . . , h under π, i.e., Eπ[
∑

h−1
s=t βs−tc(xs, us, s) + Ch(xh) | xt = x]

F (x, t) infimal cost over t, . . . , h, i.e., infπ F (π, x, t)
Fs(π, x) cost under π over s remaining steps (time-homogeneous case)
Fs(x) infimal cost over s remaining steps, i.e., infπ F (π, x)
F∞(x) lims→∞ Fs(x) (assuming this exists)

F (π, x) cost under π over infinite horizon, i.e., lims→∞ Eπ[
∑

s−1
t=0 βtc(xt, ut) | x0 = x]

F (x) infimal cost over infinite horizon (n.b., F (x) = F∞(x) if value interation works)
π = (f0, f1, . . .) a Markov policy, i.e., ut = ft(xt)
π = f∞ a stationary Markov policy, i.e., π = (f, f, . . .)


