Optimization and Control: Examples Sheet 2
LQG Models

1. [SoLuTION] This question is meant to give practice in deriving the Riccati equation.
So we start with the dynamic programming equation and make the hypothesis that
Fy_1(x) = Us_12?%, which is true for s = 0, ITy = 1. Then

Fi(z) = Inuin [Qu2 + Fo_1(Az + Bu)| = Inuin [Qu2 + (Az + Bu)QHs,l]
, ABIL,_; \? (ABII,_)?
= B?TI,_ S AT, - g2
e | @+ B (“ Q+B2Hs_1x) P AT - e,

= QAsz—l(Q+ans—l)_lx27

where the optimal control is u = —ABII,_1(Q + B?Ils_;) 'z. This establishes the
form of F' and we have
I = A7 + B?/QA%

This is a recurrence whose general solution is of the form II;! = a + bA™?* where
a = B/Q(A? — 1) is the particular solution, and the boundary condition Il = 1 gives
b. The solution is as stated.

If A< 1thenIly — 0and Iy — A. If A > 1 then IIy — Q(A? —1)/B? and
r, — 1/A.

2. [SOLUTION] Suppose the cost with s attempts to go is Fs(z) = Il;2%, where [Ty = 1.
Then the optimality equation is

Fy(z) = inf[EF,_i(z—u+e)]=inf [[l,_1E(x —u+e€)®] = M,y inf [(z — u)? + o]
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where the optimal u is u = z/(1 + ). The minimal cost is II;2?, where
M, =T, —2— )= (2 .
1+« 1+«

3. [SoLuTION] The open loop control minimizes

h h
Zuf—i-Dxi :Zuf+D(xo+uo+-~-+uh,1)2.

t=0 t=0

Hence to be stationary with respect to u; we require us + D(xg +ug+ - +up—1) =0,
implying u; is constant, say u; = wu, and so u + D(zg + hu) = 0, and hence u; =
—Dzy/(1+ hD).

In the closed loop case, let Fy(x) be the minimal cost with time s to go in the
deterministic case. Then Fy(z) = Dz? and if Fs(x) = 752 + 5 then one finds from
the usual Riccati equation that

T = 1+ = __D
14 m S'H_ s 7Ts_l—i-sD7

Ts4+1 =
SO
D3
1+hD’
Also, vs4+1 = s + vms. If open-loop control is used, then the control cost is unaffected
by noise but xj, is changed to zp, + Zf;l €; giving an extra terminal cost of

h 2
DE <Z 6,5) = hDw.

t=1

F(,To,()) = Fh(wo) =

If closed-loop control is used then the additional cost due to noise is

h ' Dy
Zmrs :Z 55D < hDwv.

s=1 s=1

4. [SOLUTION] Suppose the cost function is of the form Fy(z) = I x?. This holds at
termination, with ITy(z) = 0. The DP equation is

Fy(z) = inf[2”+u”+ EF,_1(az + &u)]
= 1f[x + u® + I,_1 E(az + £u)?]
= inf [2° + v + II,_1 (a®2® + 2abuz + (b° + 0%)u?)]

ball,_ 2
— inf | (14 (B + o), ol
inf | (1+ (" + %) 1)(u+1+(b2+0—2)ﬂsl

(abxIls_1)?
14 (b2 + 024

+(1+ HslaQ)xQ}

Hence
a2H571 (1 + 0’2H571)

II, =1 )
* 14+ (02 4+ 02,

and the optimal control is

abll,_1xg
14+ (b2 +02);_

Usg = —

This is not certainty-equivalence control because it depends on o2.
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5. [SoLuTION]| It is required to show that
F(z,t) = ¢(d" Ap_y - - Agay, t)
for some ¢. This is true for ¢t = h. Assume true for ¢t + 1. Then
F(x,t) = igf [c(u,t) + F(Arxe + b(u, t),t + 1)]
= inf [c(u,t) + ¢(dT Apoy - Ay +d T Apoy - Apgab(u, t), ¢+ 1)]
which is of the required form with

$(&, 1) = inf [e(u,t) + G(€ +d" Apor - Apsab(u, t),t +1)] .

6. [SoLuTiON] The entire problem can be re-written in terms of the variable z; =
x¢ + (T — t)vy, i.e., the value x;, would take if no further control were applied. In terms
of s =T —t the plant equation becomes

ziv1 =2z + (s — Dug + (s — 1)g

with cost function ZtT;Ol uf + Poz%. Let us hypothesise that Fs_1(z) = 22,4 + Ys—1,
which is true at s = 1, since Fy(2) = 22I15. Then

Fi(2) = 12f[u + EFy(z+ (s — Lu+ (s — 1)e)]
= 12f[u +E[z+4(s—Du+ (s —1)e? Hs_l—l—%_l}
= 12f[ 4 [(z+ (s = Du)® + (s — 1)>N] M1 + vs-1]

= inf
u

(s— D1z \°
1+ (S - 1)21_[5_1

(14 (s —1)M,_,) (u +

(s —12L2_, 22

1+ (s — 1),

(s —1)°MZ_,2°

{_ 1+ (s—1)2T, 4
IM,_122

{1 F(s— 1),

+ 1,122 + (s — 1) NI, + 75—1]

+ H5,122 + (5 - 1)2NH571 + '-Ysl:|

+ (5 - 1)2NH571 + '-Ysl:|

Thus
Hs—l

Hs = ’
1+ (s—1)2I,_;
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and the the optimal control is

(S — 1)H5712t o
1+ (S - 1)21_[5_1 -

—(s = DI (¢ + svy).

Ut = —

By taking the reciprocal of the Riccati equation for I, we have

s—1
=I5+ i =T + Ls(s — 1)(2s — 1).

=1

It = O +(s—1)=

7. [SoLuTION] The system can be written

i1 ][] L

0 w?
[B AB] = [wz _2%)3}

Hence

which is of rank 2 and hence the system is controllable.

8. [SoLuTION] For the single stick we have
d & 0 «a ||z -
il =1V 8B o )

(B AB]:[_% _2}

Hence

which is of full rank and so controllable. For n sticks and state variable z =
(&1, 21,82, T2, .., Tn, Tn) we have

Z+

coo o~ O
coofl of
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Thus
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M=[B AB A?B ... AM 2B AM1p]
—a 0 —a* 0 —-a® 0 —at —a” 0 1
0 —a 0 - 0 -o 0 0 —a”
0 0 o> 0 23 0 3a (" Han 0
0 0 0 o 0 23 0 0 (" Han
0 0 0 0 - 0 -3 ("7 h)en 0

= /0 0 0 0 0 - 0 0 ("7 h)en
o 0o o0 o0 0 o0 o ("3 an 0
o 0 0 0 0 0 0 - (=Dran 0
Lo 0o 0o 0 0 O 0 - 0 (-1)"am

It is clear, inductively, that this matrix has rank 2n and so the system is controllable.
Notice that since

Z2on — A2n20 = BU2n71 + ABUQH,Q —+ -+ A2n71B’UJO

there is a control that successive brings the ends of sticks n,nm —1,... to rest at 0. The
control that minimizes Zfzal u? has cost zg (AT)2" (MM )=t A"z,

9. [SoLuTION] The Riccati equation is
=R+ A'HA- (ATTIB+ S)(Q+ B'IIB) ' (B'HA + S).
With A=1,B=1,R=1,Q =2 and S = 0, this gives

2

M—14+1—
R T

= II=2

and v = Kz, with
K = —(Q+B'IB) Y (B'IIA+S)
—(M+2)" M = —1/2.

The expected cost per unit time is tr(NII) = 18.

V=N+A"VA-(L+AVCT )M +C'VC)" (LT +CVAT).
with N =9, L =0, M =4,C =1,
2
44V
13

V=9+V-— = V=12

The optimal control is u; = K&y = —(1/2)&;, where & is the current estimate of z;
yielded by the Kalman filter

Zr41 = A%y + Buy + H(ye1 — Cy),
where H = ((L+ AVCT)(M +CTVC)~! = 3/4. So

- - 3 - 3 1a
Tpp1 =T+ + FWer1 — ) = JYepr + 378+ ug

10. [SoLUTION] Treating t as time to go, the dynamic programming equation is

Fi(xz) = min {xTRI + Fi_1(Az + Bu)}

Assuming, as given, that the optimal u is of the form v = Kz and Fy(z) = z " II;z, we
have
I, = min {R+(A+BK)'II;_1(A+ BK)} .

The system is r-controllable if it is possible, from any initial xg, to choose
ug, - . ., Up—1 SO as to reach any prescribed value x, at time r. Since

2 = ATxog+ A" 'Bug + A" 2Buy + - - + Buy_4

the system is controllable if and only if M, = (B | AB | AP | ... | A""!B) is of rank n.
By the Caley-Hamilton theorem, if M., is of rank n for some r then M,, is also of rank
n. A system that is n-controllable is said to be controllable and this is iff M, is of rank
n.

Now F(x) is clearly monotone increasing in ¢, since as ¢ increases we simply add in
more terms of cost. (It is important for this argument that there be no terminal cost).
If the system is controllable it is possible to arrange that z,, = 0 and so no cost need
be incurred after time n. Thus Fi(z,0) is bounded above uniformily in ¢, by the cost
associated with a policy that arranges x,, = 0. This implies that F;(x) = 2 "II;x tends
to a finite limit.

Taking x as a vector that is 0 in every component except for a 1 in the ith component,
we deduce that the ith diagonal element of II; tends to a limit. Similarly, taking = as a
vector that is 0 in every component except 1 in the ¢th and jth components we deduce
that the (7, j) off-diagonal element of II; also tends to a limit. Call this limiting matrix
II. Taking limits in IT; = f(--- ,II;_1), we have II = f(--- ,II).

Consider

fit = A{ft,1 + B’U,t,1 - H(yt - Oitfl) .

Taking expected values through this, we have that &; is unbiased if Z;_; is unbiased.
Subtracting the plant equation and substituting for y; we have

&y —ap = A(Zp—1 —x4-1) — €1 — HCO(24—1 — T4—1)
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Thus
Vi=E@ —x) (@ —x) =(A+ HC)W, 1(A+ HC)" + N.

By inspection this is V;_y = f(N,AT,CT,V;_1).

We have already proved that the recurrence II; = f(R, A, B,II,_4), Il = 0, has a
finite limit if the system is controllable, i.e., if M, is of rank n. Therefore, simply by
replacing (A, B) by (AT,CT) we can deduce that V;_; = f(N,AT,CT,V;_1), Vo =0,
has a finite limit if the matrix (CT | ATCT | -~ | (AT)"71CT) has rank n. The
transpose of this matrix is

c
CA

OAn—l

This is the matrix that we usually use to check observability. I.e., it is of rank n iff the
(noiseless) system is observable.
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