
Optimization and Control

Richard Weber, Lent Term 2016

Contents

Schedules iv

1 Dynamic Programming 1

1.1 Control as optimization over time . 1

1.2 Example: the shortest path problem . 1

1.3 The principle of optimality . 2

1.4 The optimality equation . 2

1.5 Example: optimization of consumption 3

2 Markov Decision Problems 5

2.1 Markov decision processes . 5

2.2 Features of the state-structured case . 6

2.3 Example: exercising a stock option . 6

2.4 Example: secretary problem . 7

3 Dynamic Programming over the Infinite Horizon 9

3.1 Discounted costs . 9

3.2 Example: job scheduling . 9

3.3 The infinite-horizon case . 10

3.4 The optimality equation in the infinite-horizon case 11

3.5 Example: selling an asset . 12

4 Positive Programming 13

4.1 Example: possible lack of an optimal policy. 13

4.2 Characterization of the optimal policy 13

4.3 Example: optimal gambling . 14

4.4 Value iteration . 14

4.5 D case recast as a N or P case . 16

4.6 Example: pharmaceutical trials . 16

i

5 Negative Programming 18

5.1 Example: a partially observed MDP . 18

5.2 Stationary policies . 19

5.3 Characterization of the optimal policy 19

5.4 Optimal stopping over a finite horizon 20

5.5 Example: optimal parking . 21

6 Optimal Stopping Problems 22

6.1 Bruss’s odds algorithm . 22

6.2 Example: stopping a random walk . 22

6.3 Optimal stopping over the infinite horizon 23

6.4 Example: sequential probability ratio test 24

6.5 Example: prospecting . 25

7 Bandit Processes and the Gittins Index 26

7.1 Bandit processes and the multi-armed bandit problem 26

7.2 The two-armed bandit . 27

7.3 Gittins index theorem . 27

7.4 Example: single machine scheduling . 28

7.5 *Proof of the Gittins index theorem* . 28

7.6 Example: Weitzman’s problem . 29

7.7 *Calculation of the Gittins index* . 30

7.8 *Forward induction policies* . 30

8 Average-cost Programming 31

8.1 Average-cost optimality equation . 31

8.2 Example: admission control at a queue 32

8.3 Value iteration bounds . 33

8.4 Policy improvement algorithm . 33

9 Continuous-time Markov Decision Processes 35

9.1 Stochastic scheduling on parallel machines 35

9.2 Controlled Markov jump processes . 37

9.3 Example: admission control at a queue 38

10 LQ Regulation 40

10.1 The LQ regulation problem . 40

10.2 The Riccati recursion . 42

10.3 White noise disturbances . 42

10.4 Example: control of an inertial system 43

ii

11 Controllability 44
11.1 Controllability . 44
11.2 Controllability in continuous-time . 45
11.3 Linearization of nonlinear models . 46
11.4 Example: broom balancing . 46
11.5 Stabilizability . 47
11.6 Example: pendulum . 47

12 Observability 48
12.1 Infinite horizon limits . 48
12.2 Observability . 48
12.3 Observability in continuous-time . 50
12.4 Example: satellite in a plane orbit . 50

13 Imperfect Observation 52
13.1 LQ with imperfect observation . 52
13.2 Certainty equivalence . 52
13.3 The Kalman filter . 54

14 Dynamic Programming in Continuous Time 57
14.1 Example: LQ regulation in continuous time 57
14.2 The Hamilton-Jacobi-Bellman equation 57
14.3 Example: harvesting fish . 58

15 Pontryagin’s Maximum Principle 61
15.1 Heuristic derivation of Pontryagin’s maximum principle 61
15.2 Example: parking a rocket car . 62
15.3 PMP via Lagrangian methods . 64

16 Using Pontryagin’s Maximum Principle 65
16.1 Example: insects as optimizers . 65
16.2 Problems in which time appears explicitly 66
16.3 Example: monopolist . 66
16.4 Example: neoclassical economic growth 67
16.5 Diffusion processes . 68

Index 69

iii

Schedules

Dynamic programming
The principle of optimality. The dynamic programming equation for finite-horizon
problems. Interchange arguments. Markov decision processes in discrete time. Innite-
horizon problems: positive, negative and discounted cases. Value interation. Policy
improvement algorithm. Stopping problems. Average-cost programming. [6]

LQG systems
Linear dynamics, quadratic costs, Gaussian noise. The Riccati recursion. Controlla-
bility. Stabilizability. Infinite-horizon LQ regulation. Observability. Imperfect state
observation and the Kalman filter. Certainty equivalence control. [5]

Continuous-time models
The optimality equation in continuous time. Pontryagin’s maximum principle. Heuris-
tic proof and connection with Lagrangian methods. Transversality conditions. Opti-
mality equations for Markov jump processes and diffusion processes. [5]

Richard Weber, January 2016

iv

1 Dynamic Programming

Dynamic programming and the principle of optimality. Notation for state-structured models.

Optimization of consumption with a bang-bang optimal control.

1.1 Control as optimization over time

Modelling real-life problems is something that humans do all the time. Sometimes
an optimal solution to a model can be found. Other times a near-optimal solution is
adequate, or there is no single criterion by which a solution can be judged. However,
even when an optimal solution is not required it can be useful to follow an optimization
approach. If the ‘optimal’ solution is ridiculous then that can suggest ways in which
the modelling can be refined.

Control theory is concerned with dynamical systems and their optimization over
time. These systems may evolve stochastically and key variables may be unknown
or imperfectly observed. The IB Optimization course concerned static problems in
which nothing was random or hidden. In this course our problems are dynamic, with
stochastic evolution, and even imperfect state observation. These give rise to new types
of optimization problem which require new ways of thinking.

The origins of ‘control theory’ can be traced to the wind vane used to face a wind-
mill’s rotor into the wind, and the centrifugal governor invented by Jame Watt. Such
‘classic control theory’ is largely concerned with the question of stability, and much of
this is outside this course, e.g., Nyquist criterion and dynamic lags. However, control
theory is not merely concerned with the control of mechanisms. It is useful in the study
of a multitude of dynamical systems, in biology, communications, manufacturing, heath
services, finance, and economics.

1.2 Example: the shortest path problem

Consider the ‘stagecoach problem’ in which a traveller wishes to minimize the length
of a journey from town A to town J by first travelling to one of B, C or D and then
onwards to one of E, F or G then onwards to one of H or I and the finally to J. Thus
there are 4 ‘stages’. The arcs are marked with distances between towns.

A

B

C

D

E

F

G

H

I

J

1

1

2

2

3

3
3

33

3

4

4

4

4
4

4

5

6

6

7

Road system for stagecoach problem

1

Solution. Let F (X) be the minimal distance required to reach J from X. Then clearly,
F (J) = 0, F (H) = 3 and F (I) = 4.

F (F) = min[6 + F (H), 3 + F (I)] = 7,

and so on. Recursively, we obtain F (A) = 11 and simultaneously an optimal route, i.e.
A→D→F→I→J (although it is not unique).

Dynamic programming dates from Richard Bellman, who in 1957 wrote the first
book on the subject and gave it its name.

1.3 The principle of optimality

The stagecoach problem illustrates the key idea is that optimization over time can
often be seen as ‘optimization in stages’. We trade off cost incurred at the present
stage against the implication this has for the least total cost that can be incurred from
all future stages. The best action minimizes the sum of these two costs. This is known
as the principle of optimality.

Definition 1.1 (principle of optimality). From any point on an optimal trajectory, the
remaining trajectory is optimal for the problem initiated at that point.

1.4 The optimality equation

The optimality equation in the general case. In a discrete-time model, t takes
integer values, t = 0, 1, Suppose ut is a control variable whose value is to be
chosen at time t. Let Ut−1 = (u0, . . . , ut−1) denote the partial sequence of controls (or
decisions) taken over the first t stages. Suppose the cost up to the time horizon h is

C = G(Uh−1) = G(u0, u1, . . . , uh−1).

Then the principle of optimality is expressed in the following theorem. This can be
viewed as an exercise about putting a simple concept into mathematical notation.

Theorem 1.2 (The principle of optimality). Define the functions

G(Ut−1, t) = inf
ut,ut+1,...,uh−1

G(Uh−1).

Then these obey the recursion

G(Ut−1, t) = inf
ut
G(Ut, t+ 1) t < h,

with terminal evaluation G(Uh−1, h) = G(Uh−1).

The proof is immediate from the definition of G(Ut−1, t), i.e.

G(Ut−1, t) = inf
ut

{
inf

ut+1,...,uh−1

G(u0, . . . , ut−1, ut , ut+1, . . . , uh−1)

}
.

2

The state structured case. The control variable ut is chosen on the basis of knowing
Ut−1 = (u0, . . . , ut−1), (which determines everything else). But a more economical
representation of the past history is often sufficient. For example, we may not need to
know the entire path that has been followed up to time t, but only the place to which
it has taken us. The idea of a state variable x ∈ Rd is that its value at t, denoted xt,
can be found from known quantities and obeys a plant equation (or law of motion)

xt+1 = a(xt, ut, t).

Suppose we wish to minimize a separable cost function of the form

C =

h−1∑
t=0

c(xt, ut, t) + Ch(xh), (1.1)

by choice of controls {u0, . . . , uh−1}. Define the cost from time t onwards as,

Ct =

h−1∑
τ=t

c(xτ , uτ , τ) + Ch(xh), (1.2)

and the minimal cost from time t onwards as an optimization over {ut, . . . , uh−1}
conditional on xt = x,

F (x, t) = inf
ut,...,uh−1

Ct.

Here F (x, t) is the minimal future cost from time t onward, given that the state is x at
time t. By an inductive proof, one can show as in Theorem 1.2 that

F (x, t) = inf
u

[c(x, u, t) + F (a(x, u, t), t+ 1)], t < h, (1.3)

with terminal condition F (x, h) = Ch(x). Here x is a generic value of xt. The mini-
mizing u in (1.3) is the optimal control u(x, t) and values of x0, . . . , xt−1 are irrelevant.
The optimality equation (1.3) is also called the dynamic programming equation
(DP) or Bellman equation.

1.5 Example: optimization of consumption

An investor receives annual income of xt pounds in year t. He consumes ut and adds
xt − ut to his capital, 0 ≤ ut ≤ xt. The capital is invested at interest rate θ × 100%,
and so his income in year t+ 1 increases to

xt+1 = a(xt, ut) = xt + θ(xt − ut). (1.4)

He desires to maximize total consumption over h years,

C =

h−1∑
t=0

c(xt, ut, t) + Ch(xh) =

h−1∑
t=0

ut

In the notation we have been using, c(xt, ut, t) = ut, Ch(xh) = 0. This is termed a
time-homogeneous model because neither costs nor dynamics depend on t.

3

Solution. Since dynamic programming makes its calculations backwards, from the
termination point, it is often advantageous to write things in terms of the ‘time to
go’, s = h − t. Let Fs(x) denote the maximal reward obtainable, starting in state x
when there is time s to go. The dynamic programming equation is

Fs(x) = max
0≤u≤x

[u+ Fs−1(x+ θ(x− u))],

where F0(x) = 0, (since nothing more can be consumed once time h is reached.) Here,
x and u are generic values for xs and us.

We can substitute backwards and soon guess the form of the solution. First,

F1(x) = max
0≤u≤x

[u+ F0(u+ θ(x− u))] = max
0≤u≤x

[u+ 0] = x.

Next,
F2(x) = max

0≤u≤x
[u+ F1(x+ θ(x− u))] = max

0≤u≤x
[u+ x+ θ(x− u)].

Since u+ x+ θ(x− u) linear in u, its maximum occurs at u = 0 or u = x, and so

F2(x) = max[(1 + θ)x, 2x] = max[1 + θ, 2]x = ρ2x.

This motivates the guess Fs−1(x) = ρs−1x. Trying this, we find

Fs(x) = max
0≤u≤x

[u+ ρs−1(x+ θ(x− u))] = max[(1 + θ)ρs−1, 1 + ρs−1]x = ρsx.

Thus our guess is verified and Fs(x) = ρsx, where ρs obeys the recursion implicit in
the above, and i.e. ρs = ρs−1 + max[θρs−1, 1]. This gives

ρs =

{
s s ≤ s∗
(1 + θ)s−s

∗
s∗ s ≥ s∗ ,

where s∗ is the least integer such that (1+θ)s∗ ≥ 1+s∗ ⇐⇒ s∗ ≥ 1/θ, i.e. s∗ = d1/θe.
The optimal strategy is to invest the whole of the income in years 0, . . . , h− s∗− 1, (to
build up capital) and then consume the whole of the income in years h− s∗, . . . , h− 1.

There are several things worth learning from this example.

(i) It is often useful to frame things in terms of time to go, s.

(ii) The dynamic programming equation my look messy. But try working backwards
from F0(x), which is known. A pattern may emerge from which you can guess
the general solution. You can then prove it correct by induction.

(iii) When the dynamics are linear, the optimal control lies at an extreme point of
the set of feasible controls. This form of policy, which either consumes nothing or
consumes everything, is known as bang-bang control.

4

2 Markov Decision Problems

Feedback, open-loop, and closed-loop controls. Markov decision processes and problems. Ex-

ercising a call option. Secretary problem. Some useful tricks.

2.1 Markov decision processes

Let Xt = (x0, . . . , xt) and Ut = (u0, . . . , ut) denote x and u histories at time t. A
Markov decision process is a controlled Markov process defined by assumption (a)
below. When we seek to minimize C, satisfying assumption (b), then we have what is
called a Markov decision problem. For both we use the abbreviation MDP.

(a) Markov dynamics. The stochastic version of the plant equation is

P (xt+1 | Xt, Ut) = P (xt+1 | xt, ut).

(b) Separable (or decomposable) cost function. Cost is given by (1.1).

For the moment we also require the following:

(c) Perfect state observation. The current state is observable. That is, xt is known
when choosing ut. So known fully at time t is Wt = (Xt, Ut−1).

Note that C is determined by Wh, so we might write C = C(Wh).

As previously, the cost from time t onwards is, Ct, given by (1.2). Denote the
minimal expected cost from time t onwards by

F (Wt) = inf
π
Eπ[Ct |Wt],

where π denotes a policy, i.e. a rule for choosing the controls u0, . . . , uh−1.
In general, a policy (or strategy) is a rule for choosing the value of the control

variable under all possible circumstances as a function of the perceived circumstances.

The following theorem is then obvious.

Theorem 2.1. F (Wt) is a function of xt and t alone, say F (xt, t). It obeys the
optimality equation

F (xt, t) = inf
ut
{c(xt, ut, t) + E[F (xt+1, t+ 1) | xt, ut]} , t < h, (2.1)

with terminal condition
F (xh, h) = Ch(xh).

Moreover, a minimizing value of ut in (2.1) (which is also only a function xt and t) is
optimal.

5

Proof. The value of F (Wh) is Ch(xh), so the asserted reduction of F is valid at time
h. Assume it is valid at time t+ 1. The DP equation is then

F (Wt) = inf
ut
{c(xt, ut, t) + E[F (xt+1, t+ 1) | Xt, Ut]}. (2.2)

But, by assumption (a), the right-hand side of (2.2) reduces to the right-hand member
of (2.1). All the assertions then follow.

2.2 Features of the state-structured case

In the state-structured case the DP equation, (1.3) and (2.1), provides the optimal
control in what is called feedback or closed-loop form, with ut = u(xt, t). This
contrasts with open-loop formulation in which {u0, . . . , uh−1} are to be chosen all at
once at time 0. To summarise:

(i) The optimal ut is a function only of xt and t, i.e. ut = u(xt, t).,

(ii) The DP equation expresses the optimal ut in closed-loop form. It is optimal
whatever the past control policy may have been.,

(iii) The DP equation is a backward recursion in time (from which we get the
optimum at h− 1, then h− 2 and so on.) The later policy is decided first.,

‘Life must be lived forward and understood backwards.’ (Kierkegaard)

2.3 Example: exercising a stock option

The owner of a call option has the option to buy a share at fixed ‘striking price’ p. The
option must be exercised by day h. If she exercises the option on day t, buying for p
and then immediately selling at the current price xt, she can make a profit of xt − p.
Suppose the price sequence obeys the equation xt+1 = xt + εt, where the εt are i.i.d.
random variables for which E|ε| <∞. The aim is to exercise the option optimally.

Let Fs(x) be the value function (maximal expected profit) when the share price
is x and there are s days to go. Show that

(i) Fs(x) is non-decreasing in s,

(ii) Fs(x)− x is non-increasing in x, and

(iii) Fs(x) is continuous in x.

Deduce that the optimal policy can be characterised as follows.

There exists a non-decreasing sequence {as} such that an optimal policy is to exercise
the option the first time that x ≥ as, where x is the current price and s is the number
of days to go before expiry of the option.

Solution. The state at time t is, strictly speaking, xt plus a variable to indicate whether
the option has been exercised or not. However, it is only the latter case which is of

6

interest, so x is the effective state variable. As previously, we use time to go, s = h− t.
So letting Fs(x) be the value function (maximal expected profit) with s days to go then

F0(x) = max{x− p, 0},

and so the dynamic programming equation is

Fs(x) = max{x− p,E[Fs−1(x+ ε)]}, s = 1, 2, . . .

Note that the expectation operator comes outside, not inside, Fs−1(·).
It easy to show (i), (ii), (iii) by induction on s. Of course (i) is obvious, since

increasing s means more time over which to exercise the option. However, for a formal
proof

F1(x) = max{x− p,E[F0(x+ ε)]} ≥ max{x− p, 0} = F0(x).

Now suppose, inductively, that Fs−1 ≥ Fs−2. Then

Fs(x) = max{x− p,E[Fs−1(x+ ε)]} ≥ max{x− p,E[Fs−2(x+ ε)]} = Fs−1(x),

whence Fs is non-decreasing in s. Similarly, an inductive proof of (ii) follows from

Fs(x)− x︸ ︷︷ ︸ = max{−p,E[Fs−1(x+ ε)− (x+ ε)︸ ︷︷ ︸] + E(ε)},

since the left hand underbraced term inherits the non-increasing character of the right
hand underbraced term. Since the right underbraced term is non-increasing in x, the
optimal policy can be characterized as stated. Either as is the least x such that Fs(x) =
x− p, or if no such x exists then as =∞. From (i) it follows that as is non-decreasing
in s. Since Fs−1(x) > x− p =⇒ Fs(x) > x− p.

2.4 Example: secretary problem

Suppose we are to interview h candidates for a secretarial job. After seeing each
candidate we must either hire or permanently reject her. Candidates are seen in random
order and can be ranked against those seen previously. The aim is to maximize the
probability of choosing the best candidate.

Solution. Let Wt be the history of observations up to time t, i.e. after we have in-
terviewed the t th candidate. All that matters are the value of t and whether the t th
candidate is better than all her predecessors. Let xt = 1 if this is true and xt = 0 if it
is not. In the case xt = 1, the probability she is the best of all h candidates is

P (best of h | best of first t) =
P (best of h)

P (best of first t)
=

1/h

1/t
=
t

h
.

Now the fact that the tth candidate is the best of the t candidates seen so far places
no restriction on the relative ranks of the first t− 1 candidates; thus xt = 1 and Wt−1

are statistically independent and we have

P (xt = 1 |Wt−1) =
P (Wt−1 | xt = 1)

P (Wt−1)
P (xt = 1) = P (xt = 1) =

1

t
.

7

Let F (t − 1) be the probability that under an optimal policy we select the best
candidate, given that we have passed over the first t − 1 candidates. Dynamic
programming gives

F (t− 1) =
t− 1

t
F (t) +

1

t
max

(
t

h
, F (t)

)
= max

(
t− 1

t
F (t) +

1

h
, F (t)

)
The first term deals with what happens when the tth candidate is not the best so far;
we should certainly pass over her. The second term deals with what happens when she
is the best so far. Now we have a choice: either accept her (and she will turn out to be
best with probability t/h), or pass over her.

These imply F (t − 1) ≥ F (t) for all t ≤ h. Therefore, since t/h and F (t) are
respectively increasing and non-increasing in t, it must be that for small t we have
F (t) > t/h and for large t we have F (t) ≤ t/h. Let t0 be the smallest t such that
F (t) ≤ t/h. Then

F (t− 1) =

F (t0), t < t0,

t− 1

t
F (t) +

1

h
, t ≥ t0.

Solving the second of these backwards from the point t = h, F (h) = 0, we obtain

F (t− 1)

t− 1
=

1

h(t− 1)
+
F (t)

t
= · · · = 1

h(t− 1)
+

1

ht
+ · · ·+ 1

h(h− 1)
,

whence

F (t− 1) =
t− 1

h

h−1∑
τ=t−1

1

τ
, t ≥ t0.

Now t0 is the smallest integer satisfying F (t0) ≤ t0/h, or equilvalently

h−1∑
τ=t0

1

τ
≤ 1.

For large h the sum on the left above is about log(h/t0), so log(h/t0) ≈ 1 and we
find t0 ≈ h/e. Thus the optimal policy is to interview ≈ h/e candidates, but without
selecting any of these, and then select the first candidate thereafter who is the best of
all those seen so far. The probability of success is F (0) = F (t0) ∼ t0/h ∼ 1/e = 0.3679.
It is surprising that the probability of success is so large for arbitrarily large h.

There are a couple things to learn from this example.

(i) It is often useful to try to establish the fact that terms over which a maximum is
being taken are monotone in opposite directions, as we did with t/h and F (t).

(ii) A typical approach is to first determine the form of the solution, then find the
optimal cost (reward) function by backward recursion from the terminal point,
where its value is known.

8

3 Dynamic Programming over the Infinite Horizon

Discounting. Interchange arguments. Discounted, negative and positive cases of dynamic

programming. Validity of the optimality equation over the infinite horizon. Selling an asset.

3.1 Discounted costs

For a discount factor, β ∈ (0, 1], the discounted-cost criterion is defined as

C =

h−1∑
t=0

βtc(xt, ut, t) + βhCh(xh). (3.1)

This simplifies things mathematically, particularly when we want to consider an
infinite horizon. If costs are uniformly bounded, say |c(x, u)| < B, and discounting is
strict (β < 1) then the infinite horizon cost is bounded by B/(1 − β). In finance, if
there is an interest rate of r% per unit time, then a unit amount of money at time t is
worth ρ = 1+r/100 at time t+1. Equivalently, a unit amount at time t+1 has present
value β = 1/ρ. The function, F (x, t), which expresses the minimal present value at
time t of expected-cost from time t up to h is

F (x, t) = inf
π
Eπ

[
h−1∑
τ=t

βτ−tc(xτ , uτ , τ) + βh−tCh(xh)

∣∣∣∣∣ xt = x

]
. (3.2)

where Eπ denotes expectation over the future path of the process under policy π. The
DP equation is now

F (x, t) = inf
u

[c(x, u, t) + βEF (xt+1, t+ 1) | xt = x, ut = u] , t < h, (3.3)

where F (x, h) = Ch(x).

3.2 Example: job scheduling

A collection of n jobs is to be processed in arbitrary order by a single machine. Job i
has processing time pi and when it completes a reward ri is obtained. Find the order
of processing that maximizes the sum of the discounted rewards.

Solution. Here we take ‘time-to-go k’ as the point at which the n− k th job has just
been completed and there remains a set of k uncompleted jobs, say Sk. The dynamic
programming equation is

Fk(Sk) = max
i∈Sk

[riβ
pi + βpiFk−1(Sk − {i})].

Obviously F0(∅) = 0. Applying the method of dynamic programming we first find
F1({i}) = riβ

pi . Then, working backwards, we find

F2({i, j}) = max[riβ
pi + βpi+pjrj , rjβ

pj + βpj+piri].

There will be 2n equations to evaluate, but with perseverance we can determine
Fn({1, 2, . . . , n}). However, there is a simpler way.

9

An interchange argument

Suppose jobs are processed in the order i1, . . . , ik, i, j, ik+3, . . . , in. Compare the reward
that is obtained if the order of jobs i and j is reversed: i1, . . . , ik, j, i, ik+3, . . . , in. The
rewards under the two schedules are respectively

R1 + βT+piri + βT+pi+pjrj +R2 and R1 + βT+pjrj + βT+pj+piri +R2,

where T = pi1 + · · ·+ pik , and R1 and R2 are respectively the sum of the rewards due
to the jobs coming before and after jobs i, j; these are the same under both schedules.
The reward of the first schedule is greater if riβ

pi/(1− βpi) > rjβ
pj/(1− βpj). Hence

a schedule can be optimal only if the jobs are taken in decreasing order of the indices
riβ

pi/(1− βpi). This type of reasoning is known as an interchange argument. The
optimal policy we have obtained is an example of an index policy.

Note these points. (i) An interchange argument can be useful when a system evolves
in stages. Although one might use dynamic programming, an interchange argument, —
when it works —, is usually easier. (ii) The decision points need not be equally spaced
in time. Here they are the times at which jobs complete.

3.3 The infinite-horizon case

In the finite-horizon case the value function is obtained simply from (3.3) by the back-
ward recursion from the terminal point. However, when the horizon is infinite there is
no terminal point and so the validity of the optimality equation is no longer obvious.

Consider the time-homogeneous Markov case, in which costs and dynamics do not
depend on t, i.e. c(x, u, t) = c(x, u). Suppose also that there is no terminal cost, i.e.
Ch(x) = 0. Define the s-horizon cost under policy π as

Fs(π, x) = Eπ

[
s−1∑
t=0

βtc(xt, ut)

∣∣∣∣∣ x0 = x

]
.

If we take the infimum with respect to π we have the infimal s-horizon cost

Fs(x) = inf
π
Fs(π, x).

Clearly, this always exists and satisfies the optimality equation

Fs(x) = inf
u
{c(x, u) + βE[Fs−1(x1) | x0 = x, u0 = u]} , (3.4)

with terminal condition F0(x) = 0.
The infinite-horizon cost under policy π is also quite naturally defined as

F (π, x) = lim
s→∞

Fs(π, x). (3.5)

This limit need not exist (e.g. if β = 1, xt+1 = −xt and c(x, u) = x), but it will do so
under any of the following three scenarios.

10

D (discounted programming): 0 < β < 1, and |c(x, u)| < B for all x, u.

N (negative programming): 0 < β ≤ 1, and c(x, u) ≥ 0 for all x, u.

P (positive programming): 0 < β ≤ 1, and c(x, u) ≤ 0 for all x, u.

Notice that the names ‘negative’ and ‘positive’ appear to be the wrong way around
with respect to the sign of c(x, u). The names actually come from equivalent problems
of maximizing rewards, like r(x, u) (= −c(x, u)). Maximizing positive rewards (P) is
the same thing as minimizing negative costs. Maximizing negative rewards (N) is the
same thing as minimizing positive costs. In cases N and P we usually take β = 1.

The existence of the limit (possibly infinite) in (3.5) is assured in cases N and P
by monotone convergence, and in case D because the total cost occurring after the sth
step is bounded by βsB/(1− β).

3.4 The optimality equation in the infinite-horizon case

The infimal infinite-horizon cost is defined as

F (x) = inf
π
F (π, x) = inf

π
lim
s→∞

Fs(π, x). (3.6)

The following theorem justifies the intuitively obvious optimality equation (i.e. (3.7)).
The theorem is obvious, but its proof is not.

Theorem 3.1. Suppose D, N, or P holds. Then F (x) satisfies the optimality equation

F (x) = inf
u
{c(x, u) + βE[F (x1) | x0 = x, u0 = u)]}. (3.7)

Proof. We first prove that ‘≥’ holds in (3.7). Suppose π is a policy, which chooses
u0 = u when x0 = x. Then

Fs(π, x) = c(x, u) + βE[Fs−1(π, x1) | x0 = x, u0 = u]. (3.8)

Either D, N or P is sufficient to allow us to takes limits on both sides of (3.8) and
interchange the order of limit and expectation. In cases N and P this is because of
monotone convergence. Infinity is allowed as a possible limiting value. We obtain

F (π, x) = c(x, u) + βE[F (π, x1) | x0 = x, u0 = u]

≥ c(x, u) + βE[F (x1) | x0 = x, u0 = u]

≥ inf
u
{c(x, u) + βE[F (x1) | x0 = x, u0 = u]}.

Minimizing the left hand side over π gives ‘≥’.
To prove ‘≤’, fix x and consider a policy π that having chosen u0 and reached state

x1 then follows a policy π1 which is suboptimal by less than ε from that point, i.e.
F (π1, x1) ≤ F (x1) + ε. Note that such a policy must exist, by definition of F , although
π1 will depend on x1. We have

11

F (x) ≤ F (π, x)

= c(x, u0) + βE[F (π1, x1) | x0 = x, u0]

≤ c(x, u0) + βE[F (x1) + ε | x0 = x, u0]

≤ c(x, u0) + βE[F (x1) | x0 = x, u0] + βε.

Minimizing the right hand side over u0 and recalling that ε is arbitrary gives ‘≤’.

3.5 Example: selling an asset

Once a day a speculator has an opportunity to sell her rare collection of tulip bulbs,
which she may either accept or reject. The potential sale prices are independently and
identically distributed with probability density function g(x), x ≥ 0. Each day there
is a probability 1 − β that the market for tulip bulbs will collapse, making her bulb
collection completely worthless. Find the policy that maximizes her expected return
and express it as the unique root of an equation. Show that if β > 1/2, g(x) = 2/x3,
x ≥ 1, then she should sell the first time the sale price is at least

√
β/(1− β).

Solution. There are only two states, depending on whether she has sold the collection
or not. Let these be 0 and 1, respectively. The optimality equation is

F (1) =

∫ ∞
y=0

max[y, βF (1)] g(y) dy

= βF (1) +

∫ ∞
y=0

max[y − βF (1), 0] g(y) dy

= βF (1) +

∫ ∞
y=βF (1)

[y − βF (1)] g(y) dy

Hence

(1− β)F (1) =

∫ ∞
y=βF (1)

[y − βF (1)] g(y) dy. (3.9)

That this equation has a unique root, F (1) = F ∗, follows from the fact that left and
right hand sides are increasing and decreasing in F (1), respectively. Thus she should
sell when he can get at least βF ∗. Her maximal reward is F ∗.

Consider the case g(y) = 2/y3, y ≥ 1. The left hand side of (3.9) is less that the
right hand side at F (1) = 1 provided β > 1/2. In this case the root is greater than 1
and we compute it as

(1− β)F (1) = 2/βF (1)− βF (1)/[βF (1)]2,

and thus F ∗ = 1/
√
β(1− β) and βF ∗ =

√
β/(1− β).

If β ≤ 1/2 she should sell at any price.

Notice that discounting arises in this problem because at each stage there is a
probability 1 − β that a ‘catastrophe’ will occur that brings things to a sudden end.
This characterization of a way in which discounting can arise is often quite useful.

12

4 Positive Programming

In the P case, there may be no optimal policy. However, if a policy’s value function satisfies

the optimality equation then it is optimal. Value iteration algorithm. Clinical trials.

4.1 Example: possible lack of an optimal policy.

Positive programming is about maximizing non-negative rewards, r(x, u) ≥ 0, or mini-
mizing non-positive costs, c(x, u) ≤ 0. There may be no optimal policy.

Example 4.1. Suppose states are 0, 1, 2, . . . and in state x we may either move to state
x + 1 and receive no reward, or move to state 0, obtain reward 1 − 1/x, and remain
there ever after, obtaining no further reward. The optimality equation is

F (x) = max
{

1− 1/x, F (x+ 1)
}

x > 0. (4.1)

Clearly F (x) = 1, x > 0. But there is no policy that actually achieves a reward of 1.

4.2 Characterization of the optimal policy

For cases P and D, there is a sufficient condition for a policy to be optimal.

Theorem 4.2. Suppose P or D holds and π is a policy whose value function F (π, x)
satisfies the optimality equation

F (π, x) = sup
u

{
r(x, u) + βE[F (π, x1) | x0 = x, u0 = u]

}
.

Then π is optimal.

Proof. Let π′ be any policy and suppose that in initial state x it takes action u. Since
F (π, x) satisfies the optimality equation,

F (π, x) ≥ r(x, u) + βEπ′ [F (π, x1) | x0 = x, u0 = u].

By repeated substitution of this into itself s times, we find

F (π, x) ≥ Eπ′
[
s−1∑
t=0

βtr(xt, ut)

∣∣∣∣∣ x0 = x

]
+ βsEπ′ [F (π, xs) | x0 = x] (4.2)

where u0, u1, . . . , us−1 are controls determined by π′ as the state evolves through
x0, x1, . . . , xs−1. In case P we can drop the final term on the right hand side of (4.2)
(because it is non-negative) and then let s→∞; in case D we can let s→∞ directly,
observing that this term tends to zero. Either way, we have F (π, x) ≥ F (π′, x).

13

4.3 Example: optimal gambling

A gambler has i pounds and wants to increase this to N . At each stage she can bet
any whole number of pounds not exceeding her capital, say j ≤ i. Either she wins,
with probability p, and now has i+ j pounds, or she loses, with probability q = 1− p,
and has i − j pounds. Take the state space as {0, 1, . . . , N}. The game ends when
the state reaches 0 or N . The only non-zero reward is 1, obtained upon reaching state
N . Suppose p ≥ 1/2. Prove that the timid strategy, of always betting only 1 pound,
maximizes the probability of the gambler attaining N pounds.

Solution. The optimality equation is

F (i) = max
j∈{1,2,...,i}

{
pF (i+ j) + qF (i− j)

}
.

To show that the timid strategy, say π, is optimal we need to find its value function,
say G(i) = F (π, x), and then show that it is a solution to the optimality equation. We
have G(i) = pG(i+ 1) + qG(i− 1), with G(0) = 0, G(N) = 1. This recurrence gives

G(i) =

1− (q/p)i

1− (q/p)N
p > 1/2,

i

N
p = 1/2.

If p = 1/2, then G(i) = i/N clearly satisfies the optimality equation. If p > 1/2 we
must verify that

G(i) =
1− (q/p)i

1− (q/p)N
= max
j∈{1,2,...,i}

{
p

[
1− (q/p)i+j

1− (q/p)N

]
+ q

[
1− (q/p)i−j

1− (q/p)N

] }
.

Let Wj be the expression inside { } on the right hand side. It is simple calculation to
show that Wj+1 < Wj for all j ≥ 1. Hence j = 1 maximizes the right hand side.

4.4 Value iteration

An important and practical method of computing F is successive approximation or
value iteration. Starting with F0(x) = 0, we successively calculate, for s = 1, 2, . . . ,

Fs(x) = inf
u
{c(x, u) + βE[Fs−1(x1) | x0 = x, u0 = u]}. (4.3)

So Fs(x) is the infimal cost over s steps. A nice way to write (4.3) is as Fs = LFs−1

where L is the operator with action

(Lφ)(x) = inf
u
{c(x, u) + βE[φ(x1) | x0 = x, u0 = u]}.

This operator transforms a scalar function of the state x to another scalar function of x.
Note that L is a monotone operator, in the sense that if φ1 ≤ φ2 then Lφ1 ≤ Lφ2.

14

Now let

F∞(x) = lim
s→∞

Fs(x) = lim
s→∞

inf
π
Fs(π, x). (4.4)

This limit exists (by monotone convergence under N or P, or by the fact that under D
the cost incurred after time s is vanishingly small.) Notice that, given any π̄,

F∞(x) = lim
s→∞

inf
π
Fs(π, x) ≤ lim

s→∞
Fs(π̄, x) = F (π̄, x).

Taking the infimum over π̄ gives

F∞(x) ≤ F (x). (4.5)

The following theorem states that Ls(0) = Fs(x)→ F (x) as s→∞.
For case N we need an additional assumption:

F (finite actions): There are only finitely many possible values of u in each state.

Theorem 4.3. Suppose that D, P, or N and F hold. Then lims→∞ Fs(x) = F (x).

Proof. We have (4.5), so must prove ‘≥’.

In case P, c(x, u) ≤ 0, so Fs(x) ≥ F (x). Letting s→∞ proves the result.

In case D, the optimal policy is no more costly than a policy that minimizes the expected
cost over the first s steps and then behaves arbitrarily thereafter, incurring an expected
cost no more than βsB/(1− β). So

F (x) ≤ Fs(x) + βsB/(1− β).

It follows that lims→∞ Fs(x) ≥ F (x).

In case N and F,

F∞(x) = lim
s→∞

min
u
{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]}

= min
u
{c(x, u) + lim

s→∞
E[Fs−1(x1) | x0 = x, u0 = u]}

= min
u
{c(x, u) + E[F∞(x1) | x0 = x, u0 = u]}, (4.6)

where the first equality is because the minimum is over a finite number of terms and
the second equality is by Lebesgue monotone convergence, noting that Fs(x) increases
in s. Let π be the policy that chooses the minimizing action on the right hand side of
(4.6). Then by substitution of (4.6) into itself, and the fact that N implies F∞ ≥ 0,

F∞(x) = Eπ

[
s−1∑
t=0

c(xt, ut) + F∞(xs)

∣∣∣∣∣ x0 = x

]
≥ Eπ

[
s−1∑
t=0

c(xt, ut)

∣∣∣∣∣ x0 = x

]
.

Letting s→∞ gives F∞(x) ≥ F (π, x) ≥ F (x).

15

4.5 D case recast as a N or P case

A D case can always be recast as a P or N case. To see this, recall that in the D case,
|c(x, u)| < B. Imagine subtracting B > 0 from every cost. This reduces the infinite-
horizon cost under any policy by exactly B/(1− β). That is, in a problem with costs,
c̃(x, u) = c(x, u)−B,

F̃ (π, x) = F (π, x)− B

1− β
.

So any optimal policy is unchanged. All costs are now negative, so we now have a P
case. Similarly, adding B to every cost reduces a D case to an N case.

This means that any result we might prove under conditions for the N or P case
will also hold for the D case.

4.6 Example: pharmaceutical trials

A doctor has two drugs available to treat a disease. One is well-established drug and is
known to work for a given patient with probability p, independently of its success for
other patients. The new drug is untested and has an unknown probability of success θ,
which the doctor believes to be uniformly distributed over [0, 1]. He treats one patient
per day and must choose which drug to use. Suppose he has observed s successes and f
failures with the new drug. Let F (s, f) be the maximal expected-discounted number of
future patients who are successfully treated if he chooses between the drugs optimally
from this point onwards. For example, if he uses only the established drug, the expected-
discounted number of patients successfully treated is p + βp + β2p + · · · = p/(1 − β).
The posterior distribution of θ is

f(θ | s, f) =
(s+ f + 1)!

s!f !
θs(1− θ)f , 0 ≤ θ ≤ 1,

and the posterior mean is θ̄(s, f) = (s+ 1)/(s+ f + 2). The optimality equation is

F (s, f) = max

[
p

1− β
,

s+ 1

s+ f + 2
(1 + βF (s+ 1, f)) +

f + 1

s+ f + 2
βF (s, f + 1)

]
.

Notice that after the first time that the doctor decides is not optimal to use the new
drug it cannot be optimal for him to return to using it later, since his indformation
about that drug cannot have changed while not using it.

It is not possible to give a closed-form expression for F , but we can can approximate
F using value iteration, finding F ≈ Ln(0) for large n. An alternative, is the following.

If s+f is very large, say 300, then θ̄(s, f) = (s+1)/(s+f+2) is a good approximation
to θ. Thus we can take F (s, f) ≈ (1− β)−1 max[p, θ̄(s, f)], s+ f = 300 and then work
backwards. For β = 0.95, one obtains the following table.

16

s 0 1 2 3 4 5f
0 .7614 .8381 .8736 .8948 .9092 .9197
1 .5601 .6810 .7443 .7845 .8128 .8340
2 .4334 .5621 .6392 .6903 .7281 .7568
3 .3477 .4753 .5556 .6133 .6563 .6899
4 .2877 .4094 .4898 .5493 .5957 .6326

These numbers are the greatest values of p (the known success probability of the
well-established drug) for which it is worth continuing with at least one more trial of
the new drug. For example, suppose p = 0.6 and 6 trials with the new drug have given
s = f = 3. Then since p = 0.6 < 0.6133 we should treat the next patient with the new
drug. At this point the probability that the new drug will successfully treat the next
patient is 0.5 and so the doctor will actually be treating that patient with the drug
that is least likely to be successful!

Here we see a tension between exploitation and exploration. A myopic policy
seeks only to maximize immediate reward. However, an optimal policy takes account of
the possibility of gaining information that could lead to greater rewards being obtained
later on. Notice that it is worth using the new drug at least once if p < 0.7614, even
though at its first use the new drug will only be successful with probability 0.5. Of
course as the discount factor β tends to 0 the optimal policy will looks more and more
like the myopic policy.

The above is an example of a two-armed bandit problem and a foretaste for
Lecture 7 in which we will learn about the multi-armed bandit problem and how
to optimally conduct trials amongst several alternative drugs.

17

5 Negative Programming

Special theory of minimizing non-negative costs. The action that extremizes the right hand

side of the optimality equation is optimal. Stopping problems and OSLA rule.

5.1 Example: a partially observed MDP

Example 5.1. A hidden object moves between two location according to a Markov
chain with probability transition matrix P = (pij). A search in location i costs ci,
and if the object is there it is found with probability αi. The aim is to minimize the
expected cost of finding the object.

This is example of a partially observable Markov decision process (POMDP).
The decision-maker cannot directly observe the underlying state, but he must maintain
a probability distribution over the set of possible states, based on his observations, and
the underlying MDP. This distribution is updated by the usual Bayesian calculations.

Solution. Let xi be the probability that the object is in location i (where x1 +x2 = 1).
Value iteration of the dynamic programming equation is via

Fs(x1) = min

{
c1 + (1− α1x1)Fs−1

(
(1− α1)x1p11 + x2p21

1− α1x1

)
,

c2 + (1− α2x2)Fs−1

(
(1− α2)x2p21 + x1p11

1− α2x2

)}
.

The arguments of Fs−1(·) are the posterior probabilities that the object in location 1,
given that we have search location 1 (or 2) and not found it.

Now F0(x1) = 0, F1(x1) = min{c1, c2}, F2(x) is the minimum of two linear functions
of x1. If Fs−1 is the minimum of some collection of linear functions of x1 it follows that
the same can be said of Fs. Thus, by induction, Fs is a concave function of x1.

Since Fs → F in the N and F case, we can deduce that the infinite horizon return
function, F , is also a concave function. Notice that in the optimality equation for F
(obtained by letting s → ∞ in the equation above), the left hand term within the
min{·, ·} varies from c1 + F (p21) to c1 + (1 − α1)F (p11) as x1 goes from 0 to 1. The
right hand term varies from c2 + (1− α2)F (p21) to c2 + F (p11) as x1 goes from 0 to 1.

Consider the special case of α1 = 1 and c1 = c2 = c. Then the left hand term is the
linear function c + (1 − x1)F (p21). This means we have the picture below, where the
blue and red curves corresponds to the left and right hand terms, and intersect exactly
once since the red curve is concave.

Thus the optimal policy can be characterized as “search location 1 iff the probability
that the object is in location 1 exceeds a threshold x∗1”.

18

0 1x1x∗
1

c+ F (p21)

c

c+ (1− α2)F (p21)

c+ F (p11)

The value of x∗1 depends on the parameters, αi and pij . It is believed the answer is
of this form for all values of the parameters, but this is still an unproved conjecture.

5.2 Stationary policies

A Markov policy is a policy that specifies the control at time t to be a function of just
the current state and time, say ut = ft(xt). We write π = (f0, f1, . . .) to denote such
a policy. If the policy does not depend on time and is non-randomizing in its choice of
control action then it is said to be a deterministic stationary Markov policy, and
we write π = (f, f, . . .) = f∞.

For such a policy we compute its value function from

F (π, x) = c(x, f(x)) + E[F (π, x1) | x0 = x, u0 = f(x)]

or F = L(f)F , where L(f) is the operator having action

L(f)φ(x) = c(x, f(x)) + E[φ(x1) | x0 = x, u0 = f(x)].

5.3 Characterization of the optimal policy

Negative programming is about maximizing non-positive rewards, r(x, u) ≤ 0, or min-
imizing non-negative costs, c(x, u) ≥ 0. The following theorem gives a necessary and
sufficient condition for a stationary policy to be optimal: namely, it must choose the
optimal u on the right hand side of the optimality equation. Note that in this theorem
we are requiring that the infimum over u is attained as a minimum over u (as would
be the case if we make the finite actions assumptions, F).

Theorem 5.2. Suppose D or N holds. Suppose π = f∞ is the stationary Markov policy
such that

f(x) = arg min
u

[
c(x, u) + βE[F (x1) | x0 = x, u0 = u]

]
.

Then F (π, x) = F (x), and π is optimal.

(i.e. u = f(x) is the value of u which minimizes the r.h.s. of the DP equation.)

19

Proof. By substituting the optimality equation into itself and using the fact that π
specifies the minimizing control at each stage,

F (x) = Eπ

[
s−1∑
t=0

βtc(xt, ut)

∣∣∣∣∣x0 = x

]
+ βsEπ [F (xs)|x0 = x] . (5.1)

In case N we can drop the final term on the right hand side of (5.1) (because it is
non-negative) and then let s→∞; in case D we can let s→∞ directly, observing that
this term tends to zero. Either way, we have F (x) ≥ F (π, x).

A corollary is that if assumption F holds then an optimal policy exists. However,
neither Theorem 5.2 or this corollary are true for positive programming. In Example 4.1
there is no optimal policy; the policy that chooses the maximizing action on the right
hand side of the optimality equations moves from x to x+1 and hence has zero reward.

5.4 Optimal stopping over a finite horizon

One way that the total-expected cost can be finite is if it is possible to enter a state
from which no further costs are incurred. Suppose u has just two possible values:
u = 0 (stop), and u = 1 (continue). Suppose there is a termination state, say 0. It is
entered upon choosing the stopping action, and once entered the system stays in that
state and no further cost is incurred thereafter. Let c(x, 0) = k(x) (stopping cost) and
c(x, 1) = c(x) (continuation cost). This defines a stopping problem.

Suppose that Fs(x) denotes the minimum total cost when we are constrained to stop
within the next s steps. This gives a finite-horizon problem with optimality equation

Fs(x) = min{k(x), c(x) + E[Fs−1(x1) | x0 = x, u0 = 1]} , (5.2)

with F0(x) = k(x), c(0) = 0.
Consider the set of states in which it is at least as good to stop now as to continue

one more step and then stop:

S = {x : k(x) ≤ c(x) + E[k(x1) | x0 = x, u0 = 1)]}.

Clearly, it cannot be optimal to stop if x 6∈ S, since in that case it would be strictly
better to continue one more step and then stop. If S is closed then the following
theorem gives us the form of the optimal policies for all finite-horizons.

Theorem 5.3. Suppose S is closed (so that once the state enters S it remains in S.)
Then an optimal policy for all finite horizons is: stop if and only if x ∈ S.

Proof. The proof is by induction. If the horizon is s = 1, then obviously it is optimal
to stop only if x ∈ S. Suppose the theorem is true for a horizon of s− 1. As above, if
x 6∈ S then it is better to continue for more one step and stop rather than stop in state
x. If x ∈ S, then the fact that S is closed implies x1 ∈ S and so Fs−1(x1) = k(x1). But
then (5.2) gives Fs(x) = k(x). So we should stop if s ∈ S.

The optimal policy is known as a one-step look-ahead rule (OSLA rule).

20

5.5 Example: optimal parking

A driver is looking for a parking space on the way to his destination. Each parking
space is free with probability p independently of whether other parking spaces are free
or not. The driver cannot observe whether a parking space is free until he reaches it.
If he parks s spaces from the destination, he incurs cost s, s = 0, 1, If he passes
the destination without having parked then the cost is D.

Show that an optimal policy is to park in the first free space that is no further than
s∗ from the destination, where s∗ is the greatest integer s such that (Dp+ 1)qs ≥ 1.

Solution. When the driver is s spaces from the destination it only matters whether
the space is available (x = 1) or full (x = 0). The optimality equation gives

Fs(0) = qFs−1(0) + pFs−1(1),

Fs(1) = min

{
s, (take available space)

qFs−1(0) + pFs−1(1), (ignore available space)

where F0(0) = D, F0(1) = 0.
Now we solve the problem using the idea of a OSLA rule. It is better to stop now

(at a distance s from the destination) than to go on and take the next available space
if s is in the stopping set

S = {s : s ≤ k(s− 1)}

where k(s− 1) is the expected cost if we take the first available space that is s− 1 or
closer. Now

k(s) = ps+ qk(s− 1),

with k(0) = qD. The general solution is of the form k(s) = −q/p + s + cqs. So after
substituting and using the boundary condition at s = 0, we have

k(s) = −q
p

+ s+

(
D +

1

p

)
qs+1, s = 0, 1,

So
S = {s : (Dp+ 1)qs ≥ 1}.

This set is closed (since s decreases) and so by Theorem 5.3 this stopping set describes
the optimal policy.

We might let D be the expected distance that that the driver must walk if he takes
the first available space at the destination or further down the road. In this case,
D = 1 + qD, so D = 1/p and s∗ is the greatest integer such that 2qs ≥ 1.

21

6 Optimal Stopping Problems

More on stopping problems. Bruss’s odds algorithm. Sequential probability ratio test.

Prospecting.

6.1 Bruss’s odds algorithm

A doctor, using a special treatment, codes 1 for a successful treatment, 0 otherwise. He
treats a sequence of n patients and wants to minimize any suffering, while achieving
a success with every patient for whom that is possible. Stopping on the last 1 would
achieve this objective, so he wishes to maximize the probability of this.

Solution. Suppose Xk is the code of the kth patient. Assume X1, . . . , Xn are inde-
pendent with pk = P (Xk = 1). Let qk = 1− pk and rk = pk/qk. The doctor wishes to
stop when some Xs = 1 and maximize the probability that Xs+1 = · · · = Xn = 0.

Consider the stopping set of a OSLA-rule.

S = {i : qi+1 · · · qn > (pi+1qi+2qi+3 · · · qn) + (qi+1pi+2qi+3 · · · qn)

+ · · ·+ (qi+1qi+2qi+3 · · · pn)}
= {i : 1 > ri+1 + ri+2 + · · ·+ rn}
= {s∗, s∗ + 1, . . . , n},

where s∗ is the greatest integer for which rs∗ + · · ·+ rn ≥ 1. Clearly S is closed, so the
OSLA-rule is optimal. The optimal stopping rule is Bruss’s odds algorithm: stop
the first time that Xs = 1 and s ≥ s∗, informally, ‘sum the odds to one and stop’.

The probability of successful stopping on the last 1 is (qs∗ · · · qn)(rs∗ + · · ·+ rn). By
solving an optimization problem, we see that this is always ≥ 1/e = 0.368, provided
r1 + · · ·+ rn ≥ 1.

We can use the odds algorithm to re-solve the secretary problem. Code 1 when a
candidate is better than all who have been seen previously. Our aim is to stop on the
last candidate coded 1. We have argued previously that X1, . . . , Xh are independent
and P (Xt = 1) = 1/t. So ri = (1/t)/(1 − 1/t) = 1/(t − 1). The algorithm tells us to
ignore the first s∗ − 1 candidates and the hire the first who is better than all we have
seen previously, where s∗ is the greatest integer s for which

1

s− 1
+

1

s
+ · · ·+ 1

h− 1
≥ 1

(
≡ the least s for which

1

s
+ · · ·+ 1

h− 1
≤ 1

)
.

6.2 Example: stopping a random walk

Suppose the state space is {0, . . . , N}. In state xt we may stop and take positive reward
r(xt), or we may continue, in which case xt+1 is obtained by a step of a symmetric
random walk. However, in states 0 and N we must stop. We wish to maximize Er(xT).

22

Solution. This is an example in which a OSLA rule is not optimal. The dynamic
programming equation is

F (x) = max
{
r(x), 1

2F (x− 1) + 1
2F (x+ 1)

}
, 0 < x < N,

with F (0) = r(0), F (N) = r(N). We see that

(i) F (x) ≥ 1
2F (x− 1) + 1

2F (x+ 1), so F (x) is concave.

(ii) Also F (x) ≥ r(x).

A function with properties (i) and (ii) is called a concave majorant of r. In fact, F
can be characterized as the smallest concave majorant of r. For suppose that G is any
other concave majorant of r. Starting with F0(x) = 0, we have G ≥ F0. So we can
prove by induction that

Fs(x) = max
{
r(x), 1

2Fs−1(x− 1) + 1
2Fs−1(x− 1)

}
≤ max

{
r(x), 1

2G(x− 1) + 1
2G(x+ 1)

}
≤ max {r(x), G(x)}
= G(x).

Theorem 4.3 for case P tells us that Fs(x)→ F (x) as s→∞. Hence F ≤ G.

The optimal rule is to stop iff F (x) = r(x).

6.3 Optimal stopping over the infinite horizon

Consider now a general stopping problem over the infinite-horizon with k(x), c(x) as
previously, and with the aim of minimizing expected total cost. Let Fs(x) be the infimal
cost given that we are required to stop by the sth step. Let F (x) be the infimal cost
when all that is required is that we stop eventually. Since less cost can be incurred if
we are allowed more time in which to stop, we have

Fs(x) ≥ Fs+1(x) ≥ F (x).

Thus by monotone convergence Fs(x) tends to a limit, say F∞(x), and F∞(x) ≥ F (x).

Example 6.1. Consider the problem of stopping a symmetric random walk on the
integers, where c(x) = 0, k(x) = exp(−x). Inductively, we find that Fs(x) = exp(−x).
This is because e−x is a convex function. However, since the random walk is recurrent,
we may wait until reaching as large an integer as we like before stopping; hence F (x) =
0. Thus Fs(x) 6→ F (x). We see two things:

(i) It is possible that F∞ > F .

(ii) Theorem 4.2 does not hold for negative programming. The policy of stopping
immediately, say π, has F (π, x) = e−x, and this satisfies the optimality equation

F (x) = min
{
e−x, 1

2F (x− 1) + 1
2F (x+ 1)

}
.

But π is not optimal.

23

Remark. The above example does not contradict Theorem 4.3, which said F∞ = F ,
because for that theorem we assumed F0(x) = k(x) = 0 and Fs(x) was the infimal cost
possible over s steps, and thus Fs ≤ Fs+1 (in the N case). Example 6.1 differs because
k(x) > 0 and Fs(x) is the infimal cost amongst the set of policies that are required to
stop within s steps. Now Fs(x) ≥ Fs+1(x).

The following lemma gives conditions under which the infimal finite-horizon cost
does converge to the infimal infinite-horizon cost.

Lemma 6.2. Suppose all costs are bounded as follows.

(a) K = sup
x
k(x) <∞ (b) C = inf

x
c(x) > 0. (6.1)

Then Fs(x)→ F (x) as s→∞.

Proof. By Theorem 5.2 an optimal policy exists for the infinite horizon problem. Sup-
pose π is optimal and stops at the random time τ . Clearly (s + 1)CP (τ > s) < K,
otherwise it would be optimal to stop immediately. In the s-horizon problem we could
follow π, but stop at time s if τ > s. This implies

F (x) ≤ Fs(x) ≤ F (x) +KP (τ > s) ≤ F (x) +
K2

(s+ 1)C
.

By letting s→∞, we have F∞(x) = F (x).

Theorem 6.3. Suppose S is closed and (6.1) holds. Then an optimal policy for the
infinite horizon is: stop if and only if x ∈ S.

Proof. As usual, it is not optimal to stop if x 6∈ S. If x ∈ S, then by Theorem 5.3,

Fs(x) = k(x), x ∈ S.
Lemma 6.2 gives F (x) = lims→∞ Fs(x) = k(x), and so it is optimal to stop.

6.4 Example: sequential probability ratio test

From i.i.d. observations drawn from a distribution with density f , a statistician wishes
to decide between two hypotheses, H0 : f = f0 and H1 : f = f1 Ex ante he believes the
probability that Hi is true is pi, where p0 + p1 = 1. Suppose that he has the sample
x = (x1, . . . , xn). The posterior probabilities are in the likelihood ratio

`n =
P (f = f1 | x1, . . . , xn)

P (f = f0 | x1, . . . , xn)
=
f1(x1) · · · f1(xn)

f0(x1) · · · f0(xn)

p1

p0
=
f1(xn)

f0(xn)
`n−1.

Suppose it costs γ to make an observation. Stopping and declaring Hi true results in
a cost ci if wrong. This leads to the optimality equation for minimizing expected cost

F (`) = min

{
c0

`

1 + `
, c1

1

1 + `
,

γ +
`

1 + `

∫
F (`f1(y)/f0(y))f1(y)dy +

1

1 + `

∫
F (`f1(y)/f0(y))f0(y)dy

}

24

Taking H(`) = (1 + `)F (`), the optimality equation can be rewritten as

H(`) = min

{
c0`, c1, (1 + `)γ +

∫
H(`f1(y)/f0(y))f0(y)dy

}
.

This is a similar to Example 5.1 about searching for a hidden object. The state is `n.
We can stop (in two ways) or continue by paying for another observation, in which case
the state makes a random jump to `n+1 = `nf1(x)/f0(x), where x is an observation
from f0. We can show that H(·) is concave in `, and that therefore the optimal policy
can be described by two numbers, a∗0 ≤ a∗1: If `n ≤ a∗0, stop and declare H0 true; If
`n ≥ a∗1, stop and declare H1 true; otherwise take another observation.

6.5 Example: prospecting

We are considering mining in location i where the return will be Ri per day. We do
not know Ri, but believe it is distributed U [0, i]. The first day of mining incurs a
prospecting cost of ci, after which we will know Ri. What is the greatest daily g that
we would be prepared to pay to mine in location i? Call this Gi. Assume we may
abandon mining whenever we like.

Gi = sup

[
g : 0 ≤ −ci − g + E[Ri] +

β

1− β
Emax {0, Ri − g}

]
For β = 0.9, i = 1, and c1 = 1 this gives G1 = 0.5232.

Now suppose that there is also a second location we might prospect, i = 2. We
think its reward, R2, is ex ante distributed U [0, 2]. For c2 = 3 this gives G2 = 0.8705.

Suppose the true cost of mining in either location is g = 0.5 per day. Since G2 >
G1 > g we might conjecture the following is optimal.

• Prospect location 2 and learn R2.

If R2 > G1 = 0.5232 stop and mine in location 2 ever after.

• Otherwise

– Prospect location 1. Now having learned both R1, R2, we mine in the best
location if max{R1, R2} > g = 0.5.

– Otherwise abandon mining.

This is a conjecture. That it is optimal follows from the Gittins index theorem.
Notice that also,

Gi = sup

[
g :

g

1− β
≤ −ci + E[Ri] +

β

1− β
Emax {g,Ri}

]
.

So we may also interpret Gi, as the greatest daily return of an existing mine for which
we would be willing to prospect in the new mine i, with the option to switch back to
the old mine if Ri turns out to be less than Gi.

25

7 Bandit Processes and the Gittins Index

Bandit processes. The multi-armed bandit problem. Gittins index theorem.

7.1 Bandit processes and the multi-armed bandit problem

A bandit process is a special type of Markov decision process in which there are just
two possible actions: u = 0 (freeze) or u = 1 (continue). The control u = 0 produces
no reward and the state does not change (hence the term ‘freeze’). Under u = 1 there
is reward r(xt) and the state changes, to xt+1, according to the Markov dynamics
P (xt+1 | xt, ut = 1).

A simple family of alternative bandit processes (SFABP) is a collection of n
such bandit processes.

Given a SFABP, the multi-armed bandit problem (MABP) is to maximize the
expected total discounted reward obtained over an infinite number of steps. At each
step, t = 0, 1, . . . , exactly one of the bandit processes is to be continued. The others
are frozen.

Let x(t) = (x1(t), . . . , xn(t)) be the states of the n bandits. Let it denote the bandit
process that is continued at time t under some policy π. In the language of Markov
decision problems, we wish to find the value function:

F (x) = sup
π
E

[∞∑
t=0

rit(xit(t))β
t

∣∣∣∣∣ x(0) = x

]
,

where the supremum is taken over all policies π that are realizable (or non-anticipatory),
in the sense that it depends only on the problem data and x(t), not on any information
which only becomes known only after time t.

This provide a very rich modelling framework. With it we can model questions like:

• Which of n drugs should we give to the next patient?

• Which of n jobs should we work on next?

• When of n oil fields should we explore next?

We have an infinite-horizon discounted-reward Markov decision problem. It has a
deterministic stationary Markov optimal policy. The optimality equation is

F (x) = max
i:i∈{1,...,n}

ri(x) + β
∑
y∈Ei

Pi(xi, y)F (x1, . . . , xi−1, y, xi+1, . . . , xn)

 . (7.1)

26

7.2 The two-armed bandit

Consider a MABP with just two bandits. Bandit B1 always pays λ, and bandit B2 is
of general type. The optimality equation, when B2 is in its state x, is

F (x) = max

{
λ

1− β
, r(x) + β

∑
y

P (x, y)F (y)

}

= max

{
λ

1− β
, sup
τ>0

E

[
τ−1∑
t=0

βtr(x(t)) + βτ
λ

1− β

∣∣∣ x(0) = x

]}
.

The left hand choice within max{·, ·} corresponds to continuing B1. The right hand
choice corresponds to continuing B2 for at least one step and then switching to B1 a
some later step, τ . Notice that once we switch to B1 we will never wish switch back to
B2 because information remains the same as when we first switched from B2 to B1.

We are to choose the stopping time τ optimally. Because the two terms within
the max{·, ·} are both increasing in λ, and are linear and convex, respectively, there is
a unique λ, say λ∗, for which they are equal.

λ∗ = sup

{
λ :

λ

1− β
≤ sup

τ>0
E

[
τ−1∑
t=0

βtr(x(t)) + βτ
λ

1− β

∣∣∣ x(0) = x

]}
. (7.2)

Of course this λ depends on x(0). We denote its value as G(x). After a little algebra,
we have the definition

G(x) = sup
τ>0

E
[∑τ−1

t=0 β
tr(x(t)

∣∣∣ x(0) = x
]

E
[∑τ−1

t=0 β
t
∣∣∣ x(0) = x

] . (7.3)

G(x) is called the Gittins index (of state x), named after its originator, John Gittins.
The definition above is by a calibration, the idea being that we find a B1 paying a
constant reward λ, such that we are indifferent as to which bandit to continue next.

In can be easily shown that τ = min{t : Gi(xi(t)) ≤ Gi(xi(0)), τ > 0}, that is, τ is
the first time B2 is in a state where its Gittins index is no greater than it was initially.

In (7.3) we see that the Gittins index is the maximal possible quotient of ‘expected
total discounted reward over τ steps’, divided by ‘expected total discounted time over
τ steps’, where τ is at least 1 step. The Gittins index can be computed for all states
of Bi as a function only of the data ri(·) and Pi(· , ·). That is, it can be computed
without knowing anything about the other bandit processes.

7.3 Gittins index theorem

Remarkably, the problem posed by a SFABP (or a MABP) can be solved by the index
policy which uses these Gittins indices.

27

Theorem 7.1 (Gittins Index Theorem). The problem posed by a SFABP, as setup
above, is solved by always continuing the process having the greatest Gittins index.

The Index Theorem is due to Gittins and Jones, who obtained it in 1970, and
presented it in 1972. The solution is surprising and beautiful. Peter Whittle describes
a colleague of high repute, asking another colleague ‘What would you say if you were
told that the multi-armed bandit problem had been solved?’ The reply was ‘Sir, the
multi-armed bandit problem is not of such a nature that it can be solved ’.

7.4 Example: single machine scheduling

Recall §3.2 in which n jobs are to be processed successively on one machine. Job i has
a known processing times ti, assumed to be a positive integer. On completion of job i
a positive reward ri is obtained. We used an interchange argument to show that the
discounted sum of rewards is maximized by processing jobs in decreasing order of the
index riβ

ti/(1− βti).
Now we do this using Gittins index. The optimal stopping time on the right hand

side of (7.3) is τ = ti, the numerator is riβ
ti and the denominator is 1+β+· · ·+βti−1 =

(1− βti)/(1− β). Thus, Gi = riβ
ti(1− β)/(1− βti). Note that Gi → ri/ti as β → 1.

7.5 *Proof of the Gittins index theorem*

Proof of Theorem 7.1. Consider a problem in which only a single bandit process Bi is
present. Let us define the fair charge, γi(xi), as the maximum amount that a gambler
would be willing to pay per step in order to be permitted to continue Bi for at least
one more step, and then stop continuing it whenever he likes thereafter. This is

γi(xi) = sup

{
λ : 0 ≤ sup

τ>0
E

[
τ−1∑
t=0

βt
(
ri(xi(t))− λ

) ∣∣∣xi(0) = xi

]}
. (7.4)

Notice that (7.2) and (7.4) are equivalent and so γi(xi) = Gi(xi). Notice also that the
time τ will be the first time that Gi(xi(τ)) < Gi(xi(0)).

We next define the prevailing charge for Bi at time t as gi(t) = mins≤t γi(xi(s)).
So gi(t) actually depends on xi(0), . . . , xi(t) (which we omit from its argument for
convenience). Note that gi(t) is a nonincreasing function of t and its value depends
only on the states through which bandit i evolves. The proof of the Index Theorem is
completed by verifying the following facts, each of which is almost obvious.

(i) Suppose that in the problem with n bandit processes, B1, . . . , Bn, the agent not
only collects rewards, but also pays the prevailing charge of whichever bandit
he continues at each step. Then he cannot do better than just break even (i.e.
expected value of rewards minus prevailing charges is 0).

This is because he could only make a strictly positive profit (in expected value) if
this were to happens for at least one bandit. Yet the prevailing charge has been
defined in such a way that he can only just break even.

28

(ii) If he always continues the bandit of greatest prevailing charge then he will inter-
leave the n nonincreasing sequences of prevailing charges into a single nonincreas-
ing sequence of prevailing charges and so maximize their discounted sum.

(iii) Using this strategy he also just breaks even; so this strategy, (of always continuing
the bandit with the greatest gi(xi)), must also maximize the expected discounted
sum of the rewards can be obtained from this SFABP.

7.6 Example: Weitzman’s problem

‘Pandora’ has n boxes, each of which contains an unknown prize. Ex ante the prize in
box i has a value with probability distribution function Fi. She can learn the value of
the prize by opening box i, which costs her ci to do. At any stage she may stop and
take as her reward the maximum of the prizes she has found. She wishes to maximize
the expected value of the prize she takes, minus the costs of opening boxes.

Solution. This problem is similar to ‘prospecting’ problem in §6.5. It can be modelled
in terms of a SFABP. Box i is associated with a bandit process Bi, which starts in
state 0. The first time it is continued there is a cost ci, and the state becomes xi,
chosen by the distribution Fi. At all subsequent times that it is continued the reward
is r(xi) = (1 − β)xi, and the state remains xi. Suppose we wish to maximize the
expected value of

−
τ∑
t=1

βt−1cit + max{r(xi1), . . . , r(xiτ)}
∞∑
t=τ

βt

= −
τ∑
t=1

βt−1cit + βτ max{xi1 , . . . , xiτ }.

The Gittins index of an opened box is r(xi)/(1−β) = xi. The index of an unopened
box i is the solution to

Gi
1− β

= −ci +
β

1− β
Emax{r(xi), Gi}.

Pandora’s optimal strategy is thus: Open boxes in decreasing order of Gi until first
reaching a point that a revealed prize is greater than all Gi of unopened boxes.

The undiscounted case In the limit as β → 1 this objective corresponds to that of
Weitzman’s problem, namely,

−
τ∑
t=1

cit + max{xi1 , . . . , xiτ }.

By setting gi = G/(1− β), and letting β → 1, we get an index that is the solution
of gi = −ci + Emax{xi, gi}.

For example, if Fi is a two point distribution with xi = 0 or xi = ri, with probabil-
ities 1− pi and pi, then gi = −ci + (1− pi)gi + piri =⇒ gi = ri − ci/pi.

29

7.7 *Calculation of the Gittins index*

How can we compute the Gittins index value for each possible state of a bandit process
Bi? The input is the data of ri(·) and Pi(·, ·). If the state space of Bi is finite, say
Ei = {1, . . . , ki}, then the Gittins indices can be computed in an iterative fashion. First
we find the state of greatest index, say 1 such that 1 = arg maxj ri(j). Having found
this state we can next find the state of second-greatest index. If this is state j, then
Gi(j) is computed in (7.3) by taking τ to be the first time that the state is not 1. This
means that the second-best state is the state j which maximizes

E[ri(j) + βri(1) + · · ·+ βτ−1ri(1)]

E[1 + β + · · ·+ βτ−1]
,

where τ is the time at which, having started at xi(0) = j, we have xi(τ) 6= 1. One
can continue in this manner, successively finding states and their Gittins indices, in
decreasing order of their indices. If Bi moves on a finite state space of size ki then its
Gittins indices (one for each of the ki states) can be computed in time O(k3

i).
If the state space of a bandit process is infinite, as in the case of the Bernoulli

bandit, there may be no finite calculation by which to determine the Gittins indices for
all states. In this circumstance, we can approximate the Gittins index using something
like the value iteration algorithm. Essentially, one solves a problem of maximizing right
hand side of (7.3), subject to τ ≤ N , where N is large.

7.8 *Forward induction policies*

If we put τ = 1 on the right hand side of (7.3) then it evaluates to Eri(xi(t)). If
we use this as an index for choosing between projects, we have a myopic policy or
one-step-look-ahead policy. The Gittins index policy generalizes the idea of a one-
step-look-ahead policy, since it looks-ahead by some optimal time τ , so as to maximize,
on the right hand side of (7.3), a measure of the rate at which reward can be accrued.
This defines a so-called forward induction policy.

30

8 Average-cost Programming

The average-cost optimality equation. Policy improvement algorithm.

8.1 Average-cost optimality equation

Suppose that for a stationary Markov policy π, the following limit exists:

λ(π, x) = lim
t→∞

1

t
Eπ

[
t−1∑
τ=0

c(xτ , uτ)

∣∣∣∣∣ x0 = x

]
.

Plausibly, there is a well-defined optimal average-cost, λ(x) = infπ λ(π, x), and we
expect λ(x) = λ should not depend on x. A reasonable guess is that

Fs(x) = sλ+ φ(x) + ε(s, x),

where ε(s, x)→ 0 as s→∞. Here φ(x) + ε(s, x) reflects a transient that is due to the
initial state. Suppose that in each state the action space is finite. From the optimality
equation for the finite horizon problem we have

Fs(x) = min
u
{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]}. (8.1)

So by substituting Fs(x) ∼ sλ+ φ(x) into (8.1), we obtain

sλ+ φ(x) ∼ min
u
{c(x, u) + E[(s− 1)λ+ φ(x1) | x0 = x, u0 = u]}

which suggests that the average-cost optimality equation should be:

λ+ φ(x) = min
u
{c(x, u) + E[φ(x1) | x0 = x, u0 = u]}. (8.2)

Theorem 8.1. Suppose there exists a constant λ and bounded function φ satisfying
(8.2). Let π be the policy which in each state x chooses u to minimize the right hand
side. Then λ is the minimal average-cost and π is the optimal stationary policy.

The proof follows by application of the following two lemmas.

Lemma 8.2. Suppose the exists a constant λ and bounded function φ such that

λ+ φ(x) ≤ c(x, u) + E[φ(x1) | x0 = x, u0 = u] for all x, u. (8.3)

Then λ ≤ infπ λ(π, x).

Proof. Let π be any policy. By repeated substitution of (8.3) into itself,

φ(x) ≤ −tλ+ Eπ

[
t−1∑
τ=0

c(xτ , uτ)

∣∣∣∣∣ x0 = x

]
+ Eπ[φ(xt) | x0 = x]. (8.4)

Divide by t, let t→∞, and take the infimum over π.

31

Lemma 8.3. Suppose the exists a constant λ and bounded function φ such that for
each x there exists some u = f(x) such that

λ+ φ(x) ≥ c(x, u) + E[φ(x1) | x0 = x, u0 = f(x)]. (8.5)

Let π = f∞. Then λ ≥ λ(π, x) ≥ infπ λ(π, x).

Proof. Repeated substitution of (8.5) into itself gives (8.4) but with the inequality
reversed. Divide by t and let t→∞. This gives λ ≥ λ(π, x) ≥ infπ λ(π, x).

So an optimal average-cost policy can be found by looking for a bounded solution
to (8.2). Notice that if φ is a solution of (8.2) then so is φ+(a constant), because the (a
constant) will cancel from both sides of (8.2). Thus φ is undetermined up to an additive
constant. In searching for a solution to (8.2) we can therefore pick any state, say x̄,
and arbitrarily take φ(x̄) = 0. We can do this in whatever way is most convenient. The
function φ is called the relative value function.

8.2 Example: admission control at a queue

Each day a consultant is has the opportunity to take on a new job. The jobs are
independently distributed over n possible types and on a given day the offered type is i
with probability ai, i = 1, . . . , n. A job of type i pays Ri upon completion. Once he has
accepted a job he may accept no other job until the job is complete. The probability a
job of type i takes k days is (1− pi)k−1pi, k = 1, 2, Which jobs should he accept?

Solution. Let 0 and i denote the states in which he is free to accept a job, and in
which he is engaged upon a job of type i, respectively. Then (8.2) is

λ+ φ(0) =

n∑
i=1

ai max[φ(0), φ(i)],

λ+ φ(i) = (1− pi)φ(i) + pi[Ri + φ(0)], i = 1, . . . , n.

Taking φ(0) = 0, these have solution φ(i) = Ri − λ/pi, and hence

λ =

n∑
i=1

ai max[0, Ri − λ/pi].

The left hand side increases in λ and the right hand side decreases in λ. Equality holds
for some λ∗, which is the maximal average-reward. The optimal policy is: accept only
jobs for which piRi ≥ λ∗.

32

8.3 Value iteration bounds

For the rest of this lecture we suppose the state space is finite and there are only finitely
many actions in each state.

Theorem 8.4. Define

ms = min
x
{Fs(x)− Fs−1(x)}, Ms = max

x
{Fs(x)− Fs−1(x)}. (8.6)

Then ms ≤ λ ≤Ms, where λ is the minimal average-cost.

Proof. For any x, u,

Fs−1(x) +ms ≤ Fs−1(x) + [Fs(x)− Fs−1(x)] = Fs(x)

=⇒ Fs−1(x) +ms ≤ c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u].

Now apply Lemma 8.2 with φ = Fs−1, λ = ms.
Similarly, for each x there is a u = fs(x), such that

Fs−1(x) +Ms ≥ Fs−1(x) + [Fs(x)− Fs−1(x)] = Fs(x)

=⇒ Fs−1(x) +Ms ≥ c(x, u) + E[Fs−1(x1) | x0 = x, u0 = fs(x)].

Now apply Lemma 8.3 with φ = Fs−1, λ = Ms.

This justifies a value iteration algorithm: Calculate Fs until Ms−ms ≤ εms. At
this point the stationary policy f∞s has average-cost that is within ε×100% of optimal.

8.4 Policy improvement algorithm

In the average-cost case a policy improvement algorithm is be based on the follow-
ing observations. Suppose that for a policy π0 = f∞, we have that λ, φ solve

λ+ φ(x) = c(x, f(x0)) + E[φ(x1) | x0 = x, u0 = f(x0)].

Then λ is the average-cost of policy π0.
Now suppose there exists a policy π1 = f∞1 such that for each x,

λ+ φ(x) ≥ c(x, f1(x0)) + E[φ(x1) | x0 = x, u0 = f1(x0)], (8.7)

and with strict inequality for some x (so f1 6= f). Then by Lemma 8.3, λ(π1) ≤ λ.
If every stationary policy induces an irreducible Markov chain then λ(π1) < λ. To

see this, either inspect the proofs of Lemmas 8.2 and 8.3. Or let γ be the invariant
distribution under π1. Multiply (8.7) by γ(x) and sum on x to give

λ+
∑
x

φ(x)γ(x) >
∑
x

c(x, f(x))γ(x) +
∑
x,y

φ(y)Pπ1
(x, y)γ(x)

=⇒ λ >
∑
x

c(x, f(x))γ(x) = λ(π1).

If there is no such π1 then π satisfies (8.2) and so π is optimal. This justifies the
following policy improvement algorithm.

33

(0) Choose an arbitrary stationary policy π0. Set s = 1.

(1) For stationary policy πs−1 = f∞s−1 determine φ, λ to solve

λ+ φ(x) = c(x, fs−1(x)) + E[φ(x1) | x0 = x, u0 = fs−1(x)].

This gives a set of linear equations, and so is intrinsically easier to solve than (8.2).
The average-cost of πs−1 is λ.

(2) Now determine the policy πs = f∞s from

fs(x) = arg min
u
{c(x, u) + E[φ(x1) | x0 = x, u0 = u]},

taking fs(x) = fs−1(x) whenever this is possible. If πs = πs−1 then we have a solution
to (8.2) and so πs−1 is optimal. is a new policy. Assume it induces a irreducible Markov
chain. Then πs has an average cost greater than λ, so it is better than πs−1. We now
return to step (1) with s := s+ 1.

If state and action spaces are finite then there are only a finite number of possible
stationary policies and so the policy improvement algorithm must find an optimal
stationary policy in finitely many iterations. By contrast, the value iteration algorithm
only obtains increasingly accurate approximations of the minimal average cost.

Example 8.5. Consider again the example of §8.2. Let us start with a policy π0 which
accept only jobs of type 1. The average-cost of this policy can be found by solving

λ+ φ(0) = a1φ(1) +

n∑
i=2

aiφ(0),

λ+ φ(i) = (1− pi)φ(i) + pi[Ri + φ(0)], i = 1, . . . , n.

The solution is λ = a1p1R1/(a1 + p1), φ(0) = 0, φ(1) = p1R1/(a1 + p1), and φ(i) =
Ri − λ/pi, i ≥ 2. The first use of step (1) of the policy improvement algorithm will
create a new policy π1, which improves on π0, by accepting jobs for which φ(i) =
max{φ(0), φ(i)}, i.e. for which φ(i) = Ri − λ/pi > 0 = φ(0).

If there are no such i then π0 is optimal. So we may conclude that π0 is optimal if
and only if piRi ≤ a1p1R1/(a1 + p1) for all i ≥ 2.

Policy improvement in the discounted-cost case.

In the case of strict discounting the policy improvement algorithm is similar:

(0) Choose an arbitrary stationary policy π0. Set s = 1.

(1) For stationary policy πs−1 = f∞s−1 determine G to solve

G(x) = c(x, fs−1(x)) + βE[G(x1) | x0 = x, u0 = fs−1(x)].

(2) Now determine the policy πs = f∞s from

fs(x) = arg min
u
{c(x, u) + βE[G(x1) | x0 = x, u0 = u]},

taking fs(x) = fs−1(x) whenever this is possible. Stop if fs = fs−1. Otherwise return
to step (1) with s := s+ 1.

34

9 Continuous-time Markov Decision Processes

Control problems in a continuous-time stochastic setting. Markov jump processes when the

state space is discrete. Uniformization.

9.1 Stochastic scheduling on parallel machines

A collection of n jobs is to be processed on a single machine. They have processing
times X1, . . . , Xn, which are ex ante distributed as independent exponential random
variables, Xi ∼ E(λi) and EXi = 1/λi, where λ1, . . . , λn are known.

If jobs are processed in order 1, 2, . . . , n, they finish in expected time 1/λ1 + · · · +
1/λn. So the order of processing does not matter.

But now suppose there are m (2 ≤ m < n) identical machines working in parallel.
Let Ci be the completion time of job i.

• maxi Ci is called the makespan (the time when all jobs are complete).

•
∑
i Ci is called the flow time (sum of completion times).

Suppose we wish to minimize the expected makespan. We can find the optimal
order of processing by stochastic dynamic programming. But now we are in continuous
time, t ≥ 0. So we need the important facts:

(i) min(Xi, Xj) ∼ E(λi + λj); (ii) P (Xi < Xj | min(Xi, Xj) = t) = λi/(λi + λj).

Suppose m = 2. The optimality equations are

F ({i}) =
1

λi

F ({i, j}) =
1

λi + λj
[1 + λiF ({j}) + λjF ({i})]

F (S) = min
i,j∈S

1

λi + λj
[1 + λiF (Si) + λjF (Sj)],

where S is a set of uncompleted jobs, and we use the abbreviated notation Si = S \{i}.
It is helpful to rewrite the optimality equation. Let Λ =

∑
i λi. Then

F (S) = min
i,j∈S

1

Λ

1 + λiF (Si) + λjF (Sj) +
∑
k 6=i,j

λkF (S)

= min
ui∈[0,1],i∈S,∑

i ui≤2

1

Λ

[
1 + ΛF (S) +

∑
i

uiλi(F (Si)− F (S))

]

This is helpful, because in all equations there is now the same divisor, Λ. An event
occurs after a time that is exponentially distributed with parameter Λ, but with proba-
bility λk/Λ this is a ‘dummy event’ if k 6= i, j. This trick is known as uniformization.
Having set this up we might also then say let Λ = 1.

35

We see that it is optimal to start by processing the two jobs in S for which δi(S) :=
λi(F (Si)− F (S)) is least.

The policy of always processing the m jobs of smallest [largest] λi is called the
Lowest [Highest] Hazard Rate first policy, and denoted LHR [HHR].

Theorem 9.1.
(a) Expected makespan is minimized by LHR.

(b) Expected flow time is minimized by HHR.

(c) E[C(n−m+1)] (expected time there is first an idle machine) is minimized by LHR.

Proof. (*starred*) We prove only (a), and for ease assume m = 2 and λ1 < · · · < λn.
We would like to prove that for all i, j ∈ S ⊆ {1, . . . , n},

i < j ⇐⇒ δi(S) < δj(S) (except possibly if both i and j

are the jobs that would be processed by the optimal policy).
(9.1)

Truth of (9.1) would imply that jobs should be started in the order 1, 2, . . . , n.

Let π be LHR. Take an induction hypothesis that (9.1) is true and that F (S) =
F (π, S) when S is a strict subset of {1, . . . , n}. Now consider S = {1, . . . , n}. We
examine F (π, S), and δi(π, S), under π. Let Sk denote S \ {k}. For i ≥ 3,

F (π, S) =
1

λ1 + λ2
[1 + λ1F (S1) + λ2F (S2)]

F (π, Si) =
1

λ1 + λ2
[1 + λ1F (S1i) + λ2F (S2i)]

=⇒ δi(π, S) =
1

λ1 + λ2
[λ1δi(S

1) + λ2δi(S
2)], i ≥ 3. (9.2)

Suppose 3 ≤ i < j. The inductive hypotheses that δi(S
1) ≤ δj(S1) and δi(S

2) ≤ δj(S2)
imply δi(π, S) ≤ δj(π, S).

Similarly, we can compute δ1(π, S).

F (π, S) =
1

λ1 + λ2 + λ3
[1 + λ1F (S1) + λ2F (S2) + λ3F (π, S)]

F (π, S1) =
1

λ1 + λ2 + λ3
[1 + λ1F (S1) + λ2F (S12) + λ3F (S13)]

=⇒ δ1(π, S) =
1

λ1 + λ2 + λ3
[λ2δ1(S2) + λ3δ1(π, S) + λ1δ3(S1)]

=
1

λ1 + λ2
[λ1δ3(S1) + λ2δ1(S2)]. (9.3)

Using (9.2), (9.3) and using our inductive hypothesis, we deduce δ1(π, S) ≤ δi(π, S). A
similar calculation may be done for δ2(π, S).

36

This completes a step of an inductive proof by showing that (9.1) is true for S,
and that F (S) = F (π, S). We only need to check the base of the induction. This is
provided by the simple calculation

δ1({1, 2}) = λ1(F ({2})− F ({1, 2})) = λ1

[
1

λ2
− 1

λ1 + λ2

(
1 +

λ1

λ2
+
λ2

λ1

)]
= − λ2

λ1 + λ2
≤ δ2({1, 2}).

The proof of (b) is very similar, except that the inequality in (9.1) should be reversed.
The base of the induction comes from δ1({1, 2}) = −1.

The proof of (c) is also similar. The base of the induction is provided by δ1({1, 2}) =
λ1(0 − 1/(λ1 + λ2)). Since we are seeking to maximize EC(n−m+1) we should process
jobs for which δi is greatest, i.e., least λi. The problem in (c) is known as the Lady’s
nylon stocking problem. We think of a lady (having m = 2 legs) who starts with n
stockings, wears two at a time, each of which may fail, and she wishes to maximize the
expected time until she has only one good stocking left to wear.

9.2 Controlled Markov jump processes

The above example illustrates the idea of a controlled Markov jump process. It
evolves in continuous time, and in a discrete state space. In general:

• The state is i. We choose some control, say u (u ∈ A(i), a set of available
controls).

• After a time that is exponentially distributed with parameter qi(u) =
∑
j 6=i qij(u),

(i.e. having mean 1/qi(u)), the state jumps.

• Until the jump occurs cost accrues at rate c(i, u).

• The jump is to state j (6= i) with probability qij(u)/qi(u).

The infinite-horizon optimality equation is

F (i) = min
u∈A(i)

 1

qi(u)

c(i, u) +
∑
j

qij(u)F (j)

 .

Suppose qi(u) ≤ B for all i, u and use the uniformization trick,

F (i) = min
u∈A(i)

 1

B

c(i, u) + (B − qi(u))F (i) +
∑
j

qij(u)F (j)

 .

We now have something that looks exactly like a discrete-time optimality equation

F (i) = min
u∈A(i)

c̄(i, u) +
∑
j

pij(u)F (j)

37

where c̄(i, u) = c(i, u)/B, pij(u) = qij(u)/B, j 6= i, and pii(u) = 1− qi(u)/B.

This is great! It means we can use all the methods and theorems that we have
developed previously for solving discrete-time dynamic programming problems.

We can also introduce discounting by imagining that there is an ‘exponential clock’
of rate α which takes the state to a place where no further cost or reward is obtained.
This leads to an optimality equation of the form

F (i) = min
u

c̄(i, u) + β
∑
j

pij(u)F (j)

 ,

where β = B/(B + α), c̄(i, u) = c(i, u)/(B + α), and pij(u) is as above.

9.3 Example: admission control at a queue

The number of customers waiting in a queue is 0, 1, . . . , N . There is a constant service
rate µ (meaning that the service times of customers are distributed as i.i.d. exponential
random variables with mean 1/µ, and we may control the arrival rate u to any value
in [m,M]. Let c(x, u) = ax − Ru. This comes from a holding cost a per unit time
for each customer in the system (queueing or being served) and reward R is obtained
as each new customer is admitted (and therefore incurring reward at rate Ru when the
arrival rate is u). No customers are admitted if the queue size is N .

Time-average cost optimality. We use the uniformization trick. Arrivals are at
rate M , but this is sum of actual arrivals at rate u, and dummy (or ficticious) arrivals
at rate M − u. Service completions are happening at rate µ, but these are dummy
service completions if x = 0. Assume M + µ = 1 so that some event takes place after
a time that is distributed E(1).

Let γ denote the minimal average-cost. The optimality equation is

φ(x) + γ = inf
u∈[m,M]

{
ax−Ru+ uφ(x+ 1) + µφ(x− 1) + (M − u)φ(x)

}
,

= inf
u∈[m,M]

{
ax+ u[−R+ φ(x+ 1)− φ(x)] + µφ(x− 1) +Mφ(x)

}
, 1 ≤ x < N,

φ(0) + γ = inf
u∈[m,M]

{
−Ru+ uφ(1) + (µ+M − u)φ(0)

}
,

= inf
u∈[m,M]

{
u[−R+ φ(1)− φ(0)] + (µ+M)φ(0)

}
,

φ(N) + γ = aN +Mφ(N) + µφ(N − 1).

Thus u should be chosen to be m or M as −R+φ(x+ 1)−φ(x) is positive or negative.

38

Let us consider what happens under the policy that takes u = M for all x. The
relative costs for this policy, say φ = f , and average cost γ′ are given by

f(0) + γ′ = −RM +Mf(1) + µf(0), (9.4)

f(x) + γ′ = ax−RM +Mf(x+ 1) + µf(x− 1), 1 ≤ x < N (9.5)

f(N) + γ′ = aN +Mf(N) + µf(N − 1). (9.6)

The general solution to the homogeneous part of the recursion in (9.5) is

f(x) = d11x + d2(µ/M)x

and a particular solution is f(x) = Ax2 +Bx, where

A =
1

2(µ−M)
, B =

a

2(µ−M)2
+
γ′ +RM

M − µ
.

We can now solve for γ′ and d2 so that (9.4) and (9.6) are also satisfied. The solution
is not pretty, but if we assume µ > M and take the limit N →∞ the solution becomes

f(x) =
ax(x+ 1)

2(µ−M)
, γ′ =

aM

µ−M
−MR.

Applying the idea of policy improvement, we conclude that a better policy is to take
u = m (i.e. slow arrivals) if −R+ f(x+ 1)− f(x) > 0, i.e. if

R <
(x+ 1)a

µ−M
.

Further iterations of policy improvement would be needed to reach the optimal policy.
At this point the problem becomes one to be solved numerically, not in algebra! How-
ever, this first step of policy improvement already exhibits an interesting property: it
uses u = m at a smaller queue size than would a myopic policy, which might choose to
use u = m when the net benefit obtained from the next customer is negative, i.e.

R <
(x+ 1)a

µ
.

The right hand side is the expected cost this customer will incur while waiting. This
example exhibits the difference between individual optimality (which is myopic) and
social optimality. The socially optimal policy is more reluctant to admit a customer
because, it anticipates further customers are on the way; it takes account of the fact
that if it admits a customer then the customers who are admitted after him will suffer
delay. As expected, the policies are nearly the same if the arrival rate M is small.

Of course we might expect that policy improvement will eventually terminate with
a policy of the form: use u = m iff x ≥ x∗.

39

10 LQ Regulation

Models with linear dynamics and quadratic costs in discrete and continuous time. Riccati

equation, and its validity with additive white noise.

10.1 The LQ regulation problem

A control problem is specified by the dynamics of the process, which quantities are
observable at a given time, and an optimization criterion.

In the LQG model the dynamical and observational equations are linear, the
cost is quadratic, and the noise is Gaussian (jointly normal). The LQG model is
important because it has a complete theory and illuminates key concepts, such as
controllability, observability and the certainty-equivalence principle.

To begin, suppose the state xt is fully observable and there is no noise. The plant
equation of the time-homogeneous [A,B, ·] system has the linear form

xt = Axt−1 +But−1, (10.1)

where xt ∈ Rn, ut ∈ Rm, A is n× n and B is n×m. The cost function is

C =

h−1∑
t=0

c(xt, ut) + Ch(xh), (10.2)

with one-step and terminal costs

c(x, u) = x>Rx+ u>Sx+ x>S>u+ u>Qu =

(
x
u

)>(
R S>

S Q

)(
x
u

)
, (10.3)

Ch(x) = x>Πhx. (10.4)

All quadratic forms are non-negative definite (� 0), and Q is positive definite (� 0).
There is no loss of generality in assuming that R, Q and Πh are symmetric. This is a
model for regulation of (x, u) to the point (0, 0) (i.e. steering to a critical value).

To solve the optimality equation we shall need the following lemma.

Lemma 10.1. Suppose x, u are vectors. Consider a quadratic form(
x
u

)>(
Πxx Πxu

Πux Πuu

)(
x
u

)
which is symmetric, with Πuu > 0, i.e. positive definite. Then the minimum with respect
to u is achieved at

u = −Π−1
uuΠuxx,

and is equal to
x>
[
Πxx −ΠxuΠ−1

uuΠux

]
x.

40

Proof. Consider the identity, obtained by ‘completing the square’,(
x
u

)>(
Πxx Πxu

Πux Πuu

)(
x
u

)
=
(
u+ Π−1

uuΠuxx
)>

Πuu

(
u+ Π−1

uuΠuxx
)

+ x>
(

Πxx −ΠxuΠ−1
uuΠux

)
x. (10.5)

An alternative proof is to suppose the quadratic form is minimized at u. Then(
x

u+ h

)>(
Πxx Πxu

Πux Πuu

)(
x

u+ h

)

= x>Πxxx+ 2x>Πxuu+ 2h>Πuxx+ 2h>Πuuu︸ ︷︷ ︸+u>Πuuu+ h>Πuuh.

To be stationary at u, the underbraced linear term in h> must be zero, so

u = −Π−1
uuΠuxx,

and the optimal value is x>
[
Πxx −ΠxuΠ−1

uuΠux

]
x.

Theorem 10.2. Assuming (10.1)–(10.4), the value function has the quadratic form

F (x, t) = x>Πtx, t ≤ h, (10.6)

and the optimal control has the linear form

ut = Ktxt, t < h.

The time-dependent matrix Πt satisfies the Riccati equation

Πt = fΠt+1, t < h, (10.7)

where Πh has the value given in (10.4), and f is an operator having the action

fΠ = R+A>ΠA− (S> +A>ΠB)(Q+B>ΠB)−1(S +B>ΠA). (10.8)

The m× n matrix Kt is given by

Kt = −(Q+B>Πt+1B)−1(S +B>Πt+1A), t < h. (10.9)

Proof. Assertion (10.6) is true at time h. Assume it is true at time t+ 1. Then

F (x, t) = inf
u

[
c(x, u) + (Ax+Bu)>Πt+1(Ax+Bu)

]
= inf

u

[(
x
u

)>(
R+A>Πt+1A S> +A>Πt+1B
S +B>Πt+1A Q+B>Πt+1B

)(
x
u

)]
.

Lemma 10.1 shows the minimizer is u = Ktx, and gives the form of f .

41

10.2 The Riccati recursion

The backward recursion (10.7)–(10.8) is called the Riccati equation.

(i) Since the optimal control is linear in the state, say u = Kx, an equivalent expression
for the Riccati equation is

fΠ = inf
K

[
R+K>S + S>K +K>QK + (A+BK)>Π(A+BK)

]
,

where ‘inf’ is taken in positive-definite sense.

(ii) The optimally controlled process obeys xt+1 = Γtxt, with gain matrix defined as

Γt = A+BKt = A−B(Q+B>Πt+1B)−1(S +B>Πt+1A).

(iii) S can be normalized to zero by setting u∗ = u + Q−1Sx, A∗ = A − BQ−1S,
R∗ = R− S>Q−1S. So A∗x+Bu∗ = Ax+Bu and c(x, u) = x>Rx+ u∗>Qu∗.

(iv) Similar results hold if xt+1 = Atxt +Btut +αt, where {αt} is a known sequence of
disturbances, and the aim is to track a sequence of values (x̄t, ūt), t ≥ 0, with cost

c(x, u, t) =

(
x− x̄t
u− ūt

)>(
Rt S>t
St Qt

)(
x− x̄t
u− ūt

)
.

10.3 White noise disturbances

Suppose the plant equation (10.1) is now

xt+1 = Axt +But + εt,

where εt ∈ Rn is vector white noise, defined by the properties Eε = 0, Eεtε
>
t = N

and Eεtε
>
s = 0, t 6= s. The dynamic programming equation is then

F (x, t) = inf
u

{
c(x, u) + Eε[F (Ax+Bu+ ε, t+ 1)]

}
,

with F (x, h) = x>Πhx. Try a solution F (x, t) = x>Πtx + γt. This holds for t = h.
Suppose it is true for t+ 1, then

F (x, t) = inf
u

{
c(x, u) + E(Ax+Bu+ ε)>Πt+1(Ax+Bu+ ε) + γt+1

}
= inf

u

{
c(x, u) + (Ax+Bu)>Πt+1(Ax+Bu)

+ 2Eε>Πt+1(Ax+Bu)
}

+ E
[
ε>Πt+1ε

]
+ γt+1

= inf
u

{
c(x, u) + (Ax+Bu)>Πt+1(Ax+Bu)

}
+ tr(NΠt+1) + γt+1,

where tr(A) means the trace of matrix A. Here we use the fact that

E
[
ε>Πε

]
= E

∑
ij

εiΠijεj

 = E

∑
ij

εjεiΠij

 =
∑
ij

NjiΠij = tr(NΠ).

42

Thus (i) Πt follows the same Riccati equation as in the noiseless case, (ii) optimal
control is ut = Ktxt, and (iii)

F (x, t) = x>Πtx+ γt = x>Πtx+

h∑
j=t+1

tr(NΠj).

The final term can be viewed as the cost of correcting future noise. In the infinite
horizon limit of Πt → Π as t→∞, we incur an average cost per unit time of tr(NΠ),
and a transient cost of x>Πx that is due to correcting the initial x.

10.4 Example: control of an inertial system

Consider a system, with state (xt, vt) ∈ R2, being position and velocity,(
xt+1

vt+1

)
=

(
1 1
0 1

)(
xt
vt

)
+

(
0
1

)
ut +

(
0
εt

)
,

with {ut} being controls making changes in velocity, and {εt} being independent dis-
turbances, with means 0 and variances N . This is as §10.3 with n = 2, m = 1.

Suppose we wish to minimize the expected value of∑h−1
t=0 u

2
t + Π0x

2
h, which equals

∑h−1
t=0 u

2
t + Π0z

2
h,

when re-write the problem in terms of the scalar variable zt = xt + (h − t)vt. This is
the expected value of xh if no further control are applied. In terms of s = h− t,

zs−1 = zs + (s− 1)ut + (s− 1)εt.

Try Fs−1(z) = z2Πs−1 + γs−1, which is true at s = 1, since F0(z) = z2Π0. Then

Fs(z) = inf
u

[
u2 + EFs−1(z + (s− 1)u+ (s− 1)ε)

]
= inf

u

[
u2 + E [z + (s− 1)u+ (s− 1)ε]

2
Πs−1 + γs−1

]
= inf

u

[
u2 +

[
(z + (s− 1)u)2 + (s− 1)2N

]
Πs−1 + γs−1

]
.

After some algebra, we obtain the Riccati equation

Πs =
Πs−1

1 + (s− 1)2Πs−1
,

and optimal control

ut = − (s− 1)Πs−1zt
1 + (s− 1)2Πs−1

= −(s− 1)Πs(xt + svt).

By taking the reciprocal of the Riccati equation for Πs, we have

Π−1
s = Π−1

s−1 + (s− 1)2 = · · · = Π−1
0 +

s−1∑
i=1

i2 = Π−1
0 + 1

6s(s− 1)(2s− 1).

43

11 Controllability

Controllability in discrete and continuous time. Linearization of nonlinear models. Stabiliz-

ability.

11.1 Controllability

Consider the discrete-time system [A,B, ·], with dynamical equation

xt = Axt−1 +But−1, (11.1)

The system is said to be r-controllable if from any x0 it can be brought to any xr by
choice of controls u0, u1, . . . , ur−1. It is controllable if it is r-controllable for some r.

Example 11.1. The following system with n = 2, m = 1 is not 1-controllable, as

x1 −Ax0 = Bu0 =

(
1
0

)
u0.

But it is 2-controllable, if and only if a21 6= 0, as

x2 −A2x0 = Bu1 +ABu0 =

(
1 a11

0 a21

)(
u1

u0

)
.

By substituting (11.1) into itself, we find more generally

∆ = xr −Arx0 = Bur−1 +ABur−2 + · · ·+Ar−1Bu0. (11.2)

So the system is r-controllable iff columns of [B AB A2B · · · Ar−1B] span Rn.

To simply state conditions for controllability we use the following theorem.

Theorem 11.2. (The Cayley-Hamilton theorem) Any n × n matrix A satisfies
its own characteristic equation. So

∑n
j=0 ajA

n−j = 0, where

det(λI −A) =

n∑
j=0

ajλ
n−j .

The implication is that I, A,A2, . . . , An−1 contains a basis for Ar, r = 0, 1, We
can now characterize controllability.

Theorem 11.3. (i) The system [A,B, ·] is r-controllable iff the matrix

Mr =
[
B AB A2B · · · Ar−1B

]
has rank n, (ii) equivalently, iff the n× n matrix

MrM
>
r =

r−1∑
j=0

Aj(BB>)(A>)j

44

is nonsingular, or, equivalently, positive definite.
(iii) If the system is r-controllable then it is s-controllable for s ≥ min(n, r).

(iv) A control transferring x0 to xr with minimal cost
∑r−1
t=0 u

>
t ut is

ut = B>(A>)r−t−1(MrM
>
r)−1(xr −Arx0), t = 0, . . . , r − 1.

Proof. (i) The system (11.2) has a solution for arbitrary ∆ iff Mr has rank n.

(ii) That is, iff there does not exist nonzero w such that w>Mr = 0. Equivalently, iff
there does not exist nonzero w such that (M>r w)>M>r w = w>MrM

>
r w = 0.

(iii) The rank of Mr is non-decreasing in r, so if the system is r-controllable, it is
(r + 1)-controllable. By the Cayley-Hamilton theorem, the rank is constant for r ≥ n.

(iv) Consider the Lagrangian

r−1∑
t=0

u>t ut + λ>
(

∆−
r−1∑
t=0

Ar−t−1But

)
,

giving ut = 1
2B
>(A>)r−t−1λ. We can determine λ from (11.2).

11.2 Controllability in continuous-time

In continuous-time we take ẋ = Ax+Bu and cost

C =

∫ h

0

(
x
u

)>(
R S>

S Q

)(
x
u

)
dt+ (x>Πx)h.

We can obtain the continuous-time solution from the discrete time solution by moving
forward in time in increments of δ. Make the following replacements.

xt+1 → xt+δ, A→ I +Aδ, B → Bδ, R, S, Q→ Rδ, Sδ, Qδ.

Then as before, F (x, t) = x>Πx, where Π (= Π(t)) obeys the Riccati equation

∂Π

∂t
+R+A>Π + ΠA− (S> + ΠB)Q−1(S +B>Π) = 0.

We find u(t) = K(t)x(t), where K(t) = −Q−1(S + B>Π), and ẋ = Γ(t)x. These are
slightly simpler than in discrete time.

Theorem 11.4. (i) The n dimensional system [A,B, ·] is controllable iff the matrix
Mn has rank n, or (ii) equivalently, iff

G(t) =

∫ t

0

eAsBB>eA
>s ds,

is positive definite for all t > 0. (iii) If the system is controllable then a control that

achieves the transfer from x(0) to x(t) with minimal control cost
∫ t

0
u>s usds is

u(s) = B>eA
>(t−s)G(t)−1(x(t)− eAtx(0)).

Note that there is now no notion of r-controllability. However, G(t) ↓ 0 as t ↓ 0, so
the transfer becomes more difficult and costly as t ↓ 0.

45

11.3 Linearization of nonlinear models

Linear models are important because they arise naturally via the linearization of non-
linear models. Consider a continuous time state-structured nonlinear model:

ẋ = a(x, u).

Suppose x, u are perturbed from an equilibrium (x̄, ū) where a(x̄, ū) = 0. Let x′ = x− x̄
and u′ = u− ū. The linearized version is

ẋ′ = ẋ = a(x̄+ x′, ū+ u′) = Ax′ +Bu, where Aij =
∂ai
∂xj

∣∣∣∣
(x̄,ū)

, Bij =
∂ai
∂uj

∣∣∣∣
(x̄,ū)

.

If (x̄, ū) is to be a stable equilibrium point then we must be able to choose a control
that can bring the system back to (x̄, ū) from any nearby starting point.

11.4 Example: broom balancing

Consider the problem of balancing a broom in an upright position on your hand. By
Newton’s laws, the system obeys m(ü cos θ + Lθ̈) = mg sin θ.

mg

Lθ̈
xx

θ
uu

L

ü cos θ

mg sin θ

Figure 1: Force diagram for broom balancing

For small θ we have cos θ ∼ 1 and θ ∼ sin θ = (x− u)/L. So with α = g/L

ẍ = α(x− u) =⇒ d

dt

(
x
ẋ

)
=

(
0 1
α 0

)(
x
ẋ

)
+

(
0
−α

)
u.

Since [
B AB

]
=

[
0 −α
−α 0

]
,

the system is controllable if θ is initially small.

46

11.5 Stabilizability

Suppose we apply the stationary closed-loop control u = Kx so that ẋ = Ax + Bu =
(A+BK)x. So with gain matrix Γ = A+BK,

ẋ = Γx, xt = eΓtx0, where eΓt =

∞∑
j=0

(Γt)j/j!

Similarly, in discrete-time, we have can take the stationary control, ut = Kxt, so
that xt = Axt−1 +But−1 = (A+BK)xt−1. Now xt = Γtx0.

Γ is called a stability matrix if xt → 0 as t→∞.

In the continuous-time this happens iff all eigenvalues have negative real part.

In the discrete-time time it happens if all eigenvalues of lie strictly inside the unit
disc in the complex plane, |z| = 1.

The [A,B] system is said to stabilizable if there exists a K such that A + BK is
a stability matrix.

Note that ut = Kxt is linear and Markov. In seeking controls such that xt → 0 it
is sufficient to consider only controls of this type since, as we see in the next lecture,
such controls arise as optimal controls for the infinite-horizon LQ regulation problem.

11.6 Example: pendulum

Consider a pendulum of length L, unit mass bob and angle θ to the vertical. Suppose
we wish to stabilise θ to zero by application of a force u. Then

θ̈ = −(g/L) sin θ + u.

We change the state variable to x = (θ, θ̇) and write

d

dt

(
θ

θ̇

)
=

(
θ̇

−(g/L) sin θ + u

)
∼
(

0 1
−g/L 0

)(
θ

θ̇

)
+

(
0
1

)
u.

Suppose we try to stabilise with a control that is a linear function of only θ (not θ̇), so
u = Kx = (−κ, 0)x = −κθ. Then

Γ = A+BK =

(
0 1
−g/L 0

)
+

(
0
1

)(
−κ 0

)
=

(
0 1

−g/L− κ 0

)
.

The eigenvalues of Γ are ±
√
−g/L− κ. So either −g/L−κ > 0 and one eigenvalue has

a positive real part, in which case there is instability, or −g/L−K < 0 and eigenvalues
are purely imaginary, meaning oscillations. So successful stabilization as a function of
only θ is impossible. The control must be a function of θ̇ as well, (as would come out
of solution to the LQ regulation problem.)

47

12 Observability

LQ regulation problem over the infinite horizon. Observability.

12.1 Infinite horizon limits

Let Fs(x) denote the minimal finite-horizon cost with s steps to go. With no time to
go, F0(x) = x>Π0x. Assume S = 0.

Lemma 12.1. Suppose Π0 = 0, R � 0, Q � 0 and [A,B, ·] is controllable or stabiliz-
able. Then {Πs} has a finite limit Π.

Proof. Costs are non-negative, so Fs(x) is non-decreasing in s. Now Fs(x) = x>Πsx.
Thus x>Πsx is non-decreasing in s for every x. To show that x>Πsx is bounded we
use one of two arguments.

If the system is controllable then x>Πsx is bounded because there is a policy which,
for any x0 = x, will bring the state to zero in at most n steps and at finite cost and
can then hold it at zero with zero cost thereafter.

If the system is stabilizable then there is a K such that Γ = A+ BK is a stability
matrix. Using ut = Kxt, we have xt = Γtx and ut = KΓtx, so

Fs(x) ≤
∞∑
t=0

(x>t Rxt + u>t Qut) = x>
[∞∑
t=0

(Γ>)t(R+K>QK)Γt

]
x <∞.

Hence in either case we have an upper bound and so x>Πsx tends to a limit for
every x. By considering x = ej , the vector with a unit in the jth place and zeros
elsewhere, we conclude that the jth element on the diagonal of Πs converges. Then
taking x = ej + ek it follows that the off diagonal elements of Πs also converge.

Both value iteration and policy improvement are effective ways to compute the
solution to an infinite-horizon LQ regulation problem.

12.2 Observability

The discrete-time system [A,B,C] has (11.1), plus the observation equation

yt = Cxt−1. (12.1)

The value of yt ∈ Rp is observed, but xt is not. C is p× n.

This system is said to be r-observable if x0 can be inferred from knowledge of the
observations y1, . . . , yr and relevant control values u0, . . . , ur−2, for any x0. A system
is observable if r-observable for some r.

48

From (11.1) and (12.1) we can determine yt in terms of x0 and subsequent controls:

xt = Atx0 +

t−1∑
s=0

AsBut−s−1,

yt = Cxt−1 = C

[
At−1x0 +

t−2∑
s=0

AsBut−s−2

]
.

Thus, if we define the ‘reduced observation’

ỹt = yt − C

[
t−2∑
s=0

AsBut−s−2

]
,

then x0 is to be determined from the system of equations

ỹt = CAt−1x0, 1 ≤ t ≤ r. (12.2)

By hypothesis, these equations are mutually consistent, and so have a solution; the
question is whether this solution is unique.

Theorem 12.2. (i) The system [A, · , C] is r-observable iff the matrix

Nr =

C
CA
CA2

...
CAr−1

has rank n, or (ii) equivalently, iff the n× n matrix

N>r Nr =

r−1∑
j=0

(A>)jC>CAj

is nonsingular. (iii) If the system is r-observable then it is s-observable for s ≥
min(n, r), and (iv) the determination of x0 can be expressed

x0 = (N>r Nr)
−1

r∑
j=1

(A>)j−1C>ỹj . (12.3)

Proof. If the system has a solution for x0 (which is so by hypothesis) then this solution
must is unique iff the matrix Nr has rank n, whence assertion (i). Assertion (iii) follows
from (i). The equivalence of conditions (i) and (ii) is just as in the case of controllability.

If we define the deviation ηt = ỹt − CAt−1x0 then the equations amount to ηt = 0,
1 ≤ t ≤ r. If these equations were not consistent we could still define a ‘least-squares’

49

solution to them by minimizing any positive-definite quadratic form in these deviations
with respect to x0. In particular, we could minimize

∑r−1
t=0 η

>
t ηt. This minimization

gives (12.3). If equations (12.2) indeed have a solution (i.e. are mutually consistent,
as we suppose) and this is unique then expression (12.3) must equal this solution; the
actual value of x0. The criterion for uniqueness of the least-squares solution is that
N>r Nr should be nonsingular, which is also condition (ii).

We have again found it helpful to bring in an optimization criterion in proving (iv);
this time, not so much to construct one definite solution out of many, but to construct
a ‘best-fit’ solution where an exact solution might not have existed.

12.3 Observability in continuous-time

Theorem 12.3. (i) The n-dimensional continuous-time system [A, · , C] is observable
iff the matrix Nn has rank n, or (ii) equivalently, iff

H(t) =

∫ t

0

eA
>sC>CeAs ds

is positive definite for all t > 0. (iii) If the system is observable then the determination
of x(0) can be written

x(0) = H(t)−1

∫ t

0

eA
>sC>ỹ(s) ds,

where

ỹ(t) = y(t)−
∫ t

0

CeA(t−s)Bu(s) ds.

12.4 Example: satellite in a plane orbit

A satellite of unit mass in a planar orbit has polar coordinates (r, θ) obeying

r̈ = rθ̇2 − c

r2
+ ur, θ̈ = −2ṙθ̇

r
+

1

r
uθ,

where ur and uθ are the radial and tangential components thrust. If ur = uθ = 0 then
there is an equilibrium orbit as a circle of radius r = ρ, θ̇ = ω =

√
c/ρ3 and ṙ = θ̈ = 0.

Consider a perturbation of this orbit and measure the deviations from the orbit by

x1 = r − ρ, x2 = ṙ, x3 = θ − ωt, x4 = θ̇ − ω.

Then, after some algebra,

ẋ ∼

0 1 0 0

3ω2 0 0 2ωρ
0 0 0 1
0 −2ω/ρ 0 0

x+

0 0
1 0
0 0
0 1/ρ

(uruθ
)

= Ax+Bu.

50

Controllability. It is easy to check that M2 =
[
B AB

]
has rank 4 and so the

system is controllable.

Suppose ur = 0 (radial thrust fails). Then

B =

0
0
0

1/ρ

 M4 =
[
B AB A2B A3B

]
=

0 0 2ω 0
0 2ω 0 −2ω3

0 1/ρ 0 −4ω2/ρ
1/ρ 0 −4ω2/ρ 0

 .
which is of rank 4, so the system is still controllable, by tangential braking or thrust.

But if uθ = 0 (tangential thrust fails). Then

B =

0
1
0
0

 M4 =
[
B AB A2B A3B

]
=

0 1 0 −ω2

1 0 −ω2 0
0 0 −2ω/ρ 0
0 −2ω/ρ 0 2ω3/ρ

 .
Since (2ωρ, 0, 0, ρ2)M4 = 0, this is singular and has only rank 3. In fact, the uncontrol-
lable component is the angular momentum, 2ωρδr + ρ2δθ̇ = δ(r2θ̇)|r=ρ,θ̇=ω.

Observability. By taking C =
[
0 0 1 0

]
we see that the system is observable on

the basis of angle measurements alone, but not observable for C̃ =
[
1 0 0 0

]
, i.e.

on the basis of radius movements alone.

N4 =

0 0 1 0
0 0 0 1
0 −2ω 0 0
−6ω3 0 0 −4ω2

 Ñ4 =

1 0 0 0
0 1 0 0

3ω2 0 0 2ω
0 −ω2 0 0

 .

51

13 Imperfect Observation

LQ model with imperfect observation. Certainty equivalence. Kalman filter.

13.1 LQ with imperfect observation

With imperfect observation, process noise εt and observation noise ηt,

xt = Axt−1 +But−1 + εt, (13.1)

yt = Cxt−1 + ηt. (13.2)

We do not observe xt, but only the p-vector yt = Cxt−1 + ηt. Typically p < n. In this
[A,B,C] system A is n× n, B is n×m, and C is p× n. Assume white noise with

E

(
ε
η

)
=

(
0
0

)
, cov

(
ε
η

)
= E

(
ε
η

)(
ε
η

)>
=

(
N L
L> M

)
.

A prior distribution for x0 is also given. Let Wt = (Yt, Ut−1) = (y1, . . . , yt, u0, . . . , ut−1)
denote the observed history up to time t. Of course we assume that t, A, B, C, N , L,
M are given. Wt denotes what might be different if the process were rerun.

In the LQG model the noise is Gaussian and x0 ∼ N(x̂0, V0), with x̂0 and V0 known.

13.2 Certainty equivalence

We begin without any Gaussian assumptions on x0 or (ε, η). Both xt and yt can be
written as a linear functions of the unknown noise and the known values of u0, . . . , ut−1.

xt = Atx0 +At−1Bu0 + · · ·+But−1 +At−1ε1 + · · ·+Aεt−1 + εt

yt = C
(
At−1x0 +At−2Bu0 + · · ·+But−2

+At−2ε1 + · · ·+Aεt−2 + εt−1

)
+ ηt.

(13.3)

Let x̃0, x̃1, . . . and ỹ1, ỹ2, . . . be the trajectory obtained taking u0 = · · · = ut−1 = 0.
Let x̂t = E[xt |Wt]. Then

∆t = xt − E[xt |Wt]

= Atx0 +At−1ε1 + · · ·+Aεt−1 + εt − E[Atx0 +At−1ε1 + · · ·+Aεt−1 + εt |Wt]

= x̃t − E[x̃t |Wt]

= x̃t − E[x̃t | W̃t].

The final line follows because y1, . . . , yt and ỹ1, . . . , ỹt only differ by known constants,
and thus Wt and W̃t provide the same information. From this we see an important fact:
that ∆t does not depend on u0, . . . , ut−1. Another useful fact is that for any M � 0,

E[x>t Mxt |Wt] = x̂>t Mx̂t + E[∆>t M∆t |Wt]. (13.4)

52

Theorem 13.1. The optimal value function for the LQ problem with (13.1), (13.2)
and cost (10.2) is

F (Wt) = E
[
x>t Πtxt |Wt

]
+

h−1∑
τ=t

E
[
∆>τ Π̃τ∆τ |Wt

]
+ γt.

The optimal control is ut = Ktx̂t. Quantities Kt, Πt, γt are as in the full information
case of Theorem 10.2 and Section 10.3, and Π̃t = R+A>Πt+1A−Πt, with Π̃t � 0.

Proof. This is true for t = h since F (Wh) = E[x>h Πhxh | Wh]. Assume this is true for
t+ 1. To show it is true for t, we apply a step of dynamic programming

F (Wt) = min
u
E

[
x>t Rxt + u>Qu+ E[x>t+1Πt+1xt+1 |Wt+1]

+

h−1∑
τ=t+1

E
[
∆>τ Π̃τ∆τ |Wt+1

]
+ γt+1

∣∣∣∣∣Wt

] (13.5)

= min
u

[
E[x>t Rxt |Wt] + u>Qu

+ E[(Axt +But + εt+1)>Πt+1(Axt +But + εt+1) |Wt]

]

+

h−1∑
τ=t+1

E
[
∆>τ Π̃τ∆τ |Wt

]
+ γt+1

(13.6)

= min
u

[
x̂>t Rx̂t + u>Qu+ (Ax̂t +But)

>Πt+1(Ax̂t +But)

]
+ E[∆>t R∆t |Wt] + E[∆>t A

>Πt+1A∆t |Wt]

+

h−1∑
τ=t+1

E
[
∆>τ Π̃τ∆τ |Wt

]
+ tr(Πt+1N) + γt+1

(13.7)

= x̂tΠtx̂t + E[∆>t (R+A>Πt+1A)∆t |Wt]

+

h−1∑
τ=t+1

E
[
∆>τ Π̃τ∆τ |Wt

]
+ tr(Πt+1N) + γt+1

(13.8)

= E[xtΠtxt |Wt] + E[∆>t (R+A>Πt+1A−Πt)∆t |Wt]

+

h−1∑
τ=t+1

E
[
∆>τ Π̃τ∆τ |Wt

]
+ tr(Πt+1N) + γt+1.

(13.9)

Throughout the above we use that ∆t is unaffected by the choice of control. Equation
(13.6) follows from (13.5) using the tower property of conditional expectation, and

53

(13.7) is from using (13.4). In (13.7) we are faced with the same optimization problem
as Theorem 10.2. Equation (13.9) follows from (13.8) by another application of (13.4).

So Π̃t = R + A>Πt+1A − Πt. Moreover, the optimal control is ut = Ktx̂t, and
we find Πt = fΠt+1 and γt = tr(Πt+1N) + γt+1, identically as in the case of full
information.

It is important to grasp the remarkable fact that this theorem asserts: the optimal
control ut is exactly the same as it would be if all unknowns were known and took
values equal to their conditional means based upon observations up to time t. This
is the idea known as certainty equivalence. As we have seen the distribution of
the estimation error x̂t − xt does not depend on Ut−1. The fact that the problems of
optimal estimation and optimal control can be decoupled in this way is known as the
separation principle.

Remark. The term E[∆>τ Π̃τ∆τ | Wt] which appears in (13.9) is policy-independent
but in general may depend on y1, . . . , yt. However, we shall shortly see that under
Gaussian assumptions it is just tr(Π̃τVτ). So in the Gaussian case we can read (13.8)
as saying that F (Wt) = x̂>t Πtx̂t + · · · , where + · · · denotes terms that completely
independent of policy and also Yt.

13.3 The Kalman filter

Under Gaussian assumptions on the noise we can find a nice calculation of E[xt |Wt].

From (13.3) we see that Observe that both xt and yt can be written as a linear func-
tions of the unknown noise and the known values of u0, . . . , ut−1. Thus the distribution
of xt conditional on Wt = (Yt, Ut−1) must be normal, with some mean x̂t and covariance
matrix Vt. Moreover, Vt does not depend on either Yt or Ut−1 = (u0, . . . , ut−1).

Lemma 13.2. Suppose x and y are jointly normal with zero means and covariance
matrix

cov

[
x
y

]
=

[
Vxx Vxy
Vyx Vyy

]
.

Then the distribution of x conditional on y is Gaussian, with

E(x | y) = VxyV
−1
yy y, (13.10)

and

cov(x | y) = Vxx − VxyV −1
yy Vyx. (13.11)

Proof. Both y and x− VxyV −1
yy y are linear functions of x and y and therefore they are

Gaussian. From E
[
(x− VxyV −1

yy y)y>
]

= 0 it follows that they are uncorrelated and
this implies they are independent. Hence the distribution of x− VxyV −1

yy y conditional
on y is identical with its unconditional distribution, and this is Gaussian with zero
mean and the covariance matrix given by (13.11)

54

The estimate of x in terms of y defined as x̂ = Hy = VxyV
−1
yy y is known as the

linear least squares estimate of x in terms of y. Even without the assumption that
x and y are jointly normal, this linear function of y has a smaller covariance matrix
than any other unbiased estimate for x that is a linear function of y. In the Gaussian
case, it is also the maximum likelihood estimator.

The following theorem describes recursive updating relations for x̂t and Vt.

Theorem 13.3. Suppose that conditional on W0, the initial state x0 is distributed
N(x̂0, V0) and the state and observations obey the recursions of the LQG model (13.1)–
(13.2). Then conditional on Wt, the current state is distributed N(x̂t, Vt). The condi-
tional mean and variance obey the updating recursions

x̂t = Ax̂t−1 +But−1 +Ht(yt − Cx̂t−1), (13.12)

where the time-dependent matrix Vt satisfies a Riccati equation

Vt = gVt−1, t < h,

where V0 is given, and g is the operator having the action

gV = N +AV A> − (L+AV C>)(M + CV C>)−1(L> + CV A>). (13.13)

The p×m matrix Ht is given by

Ht = (L+AVt−1C
>)(M + CVt−1C

>)−1. (13.14)

The updating of x̂t in (13.12) is known as the Kalman filter. The estimate of xt
is a combination of a prediction, Ax̂t−1 +But−1, and observed error in predicting yt.

Compare (13.13) to the similar Riccati equation in Theorem 10.2. Notice that
(13.13) computes Vt forward in time (Vt = gVt−1), whereas (10.8) computes Πt back-
ward in time (Πt = fΠt+1).

Proof. The proof is by induction on t. Consider the moment when ut−1 has been chosen
but yt has not yet observed. The distribution of (xt, yt) conditional on (Wt−1, ut−1) is
jointly normal with means

E(xt |Wt−1, ut−1) = Ax̂t−1 +But−1,

E(yt |Wt−1, ut−1) = Cx̂t−1.

Let ∆t−1 = xt−1 − x̂t−1, which by an inductive hypothesis is N(0, Vt−1). Consider the
innovations

ξt = xt − E(xt |Wt−1, ut−1) = xt − (Ax̂t−1 +But−1) = εt +A∆t−1,

ζt = yt − E(yt |Wt−1, ut−1) = yt − Cx̂t−1 = ηt + C∆t−1.

Conditional on (Wt−1, ut−1), these quantities are normally distributed with zero means
and covariance matrix

cov

[
εt +A∆t−1

ηt + C∆t−1

]
=

[
N +AVt−1A

> L+AVt−1C
>

L> + CVt−1A
> M + CVt−1C

>

]
=

[
Vξξ Vξζ
Vζξ Vζζ

]
.

55

Thus it follows from Lemma 13.2 that the distribution of ξt conditional on knowing
(Wt−1, ut−1, ζt), (which is equivalent to knowing Wt = (Yt, Ut−1)), is normal with mean
VξζV

−1
ζζ ζt and covariance matrix Vξξ − VξζV −1

ζζ Vζξ. These give (13.12)–(13.14).

Remark. The Kalman filter (13.12) can also be derived without making the assump-
tions of Gaussian noise. Instead we might restrict ourselves to estimators which are
unbiased and linear functions of the observables. Suppose we have such an estimator of
xt−1 which is a linear function of Wt−1, say x̂t−1, and is of minimum variance amongst
all such estimators. We say it is a best linear unbiased estimator (BLUE). Once we
know ut−1, then the BLUE of xt becomes Ax̂t−1 +But−1. And then once we also know
yt we can construct a BLUE of xt having even smaller variance. This will be the linear
function of Wt = (Wt−1, ut−1, yt) which is unbiased and of minimum variance. We can
write it in the form (13.12) and then chose Ht so x̂t has minimum variance. From
(13.1), (13.2) and (13.12) we can obtain

∆t = xt − x̂t = A∆t−1 + εt +Ht(−ηt − C∆t−1).

Minimizing E∆t∆
>
t with respect to Ht, in the positive definite sense (as in 10.2 (i)),

will give Vt = gVt−1, for g defined in (13.13) and Ht as in (13.14).

56

14 Dynamic Programming in Continuous Time

The HJB equation for dynamic programming in continuous time.

14.1 Example: LQ regulation in continuous time

Suppose ẋ = u, 0 ≤ t ≤ T . The cost is to be minimized is
∫ T

0
u2dt+Dx(T)2.

Method 1. By dynamic programming, for small δ,

F (x, t) = inf
u

[
u2δ + F (x+ uδ, t+ δ)

]
with F (x, T) = Dx2. This gives

0 = inf
u

[
u2 + uFx(x, t) + Ft(x, t)

]
.

So u = −(1/2)Fx(x, t) and hence (1/4)F 2
x = Ft. Can we guess a solution to this?

Perhaps by analogy with our known discrete time solution F (x, t) = Π(t)x2. In fact,

F (x, t) =
Dx2

1 + (T − t)D
, and so u(0) = − 1

2Fx = − D

1 + TD
x(0).

Method 2. Suppose we use a Lagrange multiplier λ(t) for the constraint ẋ = u at
time t, and then consider maximization of the Lagrangian

L = −Dx(T)2 +

∫ T

0

[
−u2 − λ(ẋ− u)

]
dt

which using integration by parts gives

= −Dx(T)2 − λ(T)x(T) + λ(0)x(0) +

∫ T

0

[
−u2 + λ̇x+ λu)

]
dt.

Stationarity with respect to small changes in x(t), u(t) and x(T) requires λ̇ = 0,
u = (1/2)λ and 2Dx(T) + λ(T) = 0, respectively. Hence u is constant,

x(T) = x(0) + uT = x(0) + (1/2)λT = x(0)− TDx(T).

From this we get x(T) = x(0)/(1 + TD) and u(t) = −Dx(0)/(1 + TD).

14.2 The Hamilton-Jacobi-Bellman equation

In continuous time the plant equation is,

ẋ = a(x, u, t).

57

Consider a discounted cost of

C =

∫ h

0

e−αtc(x, u, t) dt+ e−αhC(x(h), h).

The discount factor over δ is e−αδ = 1− αδ + o(δ). So the optimality equation is,

F (x, t) = inf
u

[c(x, u, t)δ + (1− αδ)F (x+ a(x, u, t)δ, t+ δ) + o(δ)] .

By considering the term of order δ in the Taylor series expansion we obtain,

inf
u

[
c(x, u, t)− αF +

∂F

∂t
+
∂F

∂x
a(x, u, t)

]
= 0, t < h, (14.1)

with F (x, h) = C(x, h). In the undiscounted case, α = 0.

Equation (14.1) is called the Hamilton-Jacobi-Bellman equation (HJB). Its
heuristic derivation we have given above is justified by the following theorem. It can be
viewed as the equivalent, in continuous time, of the backwards induction that we use
in discrete time to verify that a policy is optimal because it satisfies the the dynamic
programming equation.

Theorem 14.1. Suppose a policy π, using a control u, has a value function F which
satisfies the HJB equation (14.1) for all values of x and t. Then π is optimal.

Proof. Consider any other policy, using control v, say. Then along the trajectory defined
by ẋ = a(x, v, t) we have

− d

dt
e−αtF (x, t) = e−αt

[
c(x, v, t)−

(
c(x, v, t)− αF +

∂F

∂t
+
∂F

∂x
a(x, v, t)

)]
≤ e−αtc(x, v, t).

The inequality is because the term round brackets is non-negative. Integrating this
inequality along the v path, from x(0) to x(h), gives

F (x(0), 0)− e−αhC(x(h), h) ≤
∫ h

t=0

e−αtc(x, v, t) dt.

Thus the v path incurs a cost of at least F (x(0), 0), and hence π is optimal.

14.3 Example: harvesting fish

A fish population of size x obeys the plant equation,

ẋ = a(x, u) =

{
a(x)− u x > 0,
a(x) x = 0.

The function a(x) reflects the facts that the population can grow when it is small, but
is subject to environmental limitations when it is large. It is desired to maximize the

discounted total harvest
∫ T

0
ue−αt dt, subject to 0 ≤ u ≤ umax.

58

Solution. The DP equation (with discounting) is

sup
u

[
u− αF +

∂F

∂t
+
∂F

∂x
[a(x)− u]

]
= 0, t < T.

Since u occurs linearly we again have a bang-bang optimal control, of the form

u =

 0
undetermined

umax

 for Fx

>=
<

 1.

Suppose F (x, t)→ F (x) as T →∞, and ∂F/∂t→ 0. Then

sup
u

[
u− αF +

∂F

∂x
[a(x)− u]

]
= 0. (14.2)

Let us make a guess that F (x) is concave, and then deduce that

u =

 0
undetermined, but effectively a(x̄)

umax

 for x

<=
>

 x̄. (14.3)

Clearly, x̄ is the operating point. We suppose

ẋ =

{
a(x) > 0, x < x̄
a(x)− umax < 0, x > x̄.

We say that there is chattering about the point x̄, in the sense that u will switch
between its maximum and minimum values either side of x̄, effectively taking the value
a(x̄) at x̄. To determine x̄ we note that

F (x̄) =

∫ ∞
0

e−αta(x̄)dt = a(x̄)/α. (14.4)

So from (14.2) and (14.4) we have

Fx(x) =
αF (x)− u(x)

a(x)− u(x)
→ 1 as x↗ x̄ or x↘ x̄. (14.5)

For F to be concave, Fxx must be negative if it exists. So we must have

Fxx =
αFx

a(x)− u
−
(
αF − u
a(x)− u

)(
a′(x)

a(x)− u

)

=

(
αF − u
a(x)− u

)(
α− a′(x)

a(x)− u

)

' α− a′(x)

a(x)− u(x)

59

where the last line follows because (14.5) holds in a neighbourhood of x̄. It is required
that Fxx be negative. But the denominator changes sign at x̄, so the numerator must
do so also, and therefore we must have a′(x̄) = α. We now have the complete solution.
The control in (14.3) has a value function F which satisfies the HJB equation.

 xx̄

a(x)

umax

α = a′(x̄)

u = a(x̄)

Figure 2: Growth rate a(x) subject to environment pressures

Notice that we sacrifice long term yield for immediate return. If the initial popula-
tion is greater than x̄ then the optimal policy is to fish at rate umax until we reach x̄
and then fish at rate u = a(x̄). As α↗ a′(0), x̄↘ 0. If α ≥ a′(0) then it is optimal to
wipe out the entire fish stock.

Finally, it would be good to verify that F (x) is concave, as we conjectured from the
start. The argument is as follows. Suppose x > x̄. Then

F (x) =

∫ T

0

umaxe
−αtdt+

∫ ∞
T

a(x̄)e−αtdt

= a(x̄)/α+ (umax − a(x̄))
(
1− e−αT

)
/α

where T = T (x) is the time taken for the fish population to decline from x to x̄, when
ẋ = a(x)− umax. Now

T (x) = δ + T (x+ (a(x)− umax)δ) =⇒ 0 = 1 + (a(x)− umax)T ′(x)

=⇒ T ′(x) = 1/(umax − a(x))

So F ′′(x) has the same sign as that of

d2

dx2

(
1− e−αT

)
= −αe

−αT (α− a′(x))

(umax − a(x))2
,

which is negative, as required, since α = a′(x̄) ≥ a′(x), when x > x̄. The case x < x̄ is
similar.

60

15 Pontryagin’s Maximum Principle

Pontryagin’s maximum principle. Transversality conditions. Parking a rocket car.

15.1 Heuristic derivation of Pontryagin’s maximum principle

Pontryagin’s maximum principle (PMP) states a necessary condition that must
hold on an optimal trajectory. It is a calculation for a fixed initial value of the state,
x(0). Thus, when PMP is useful, it finds an open-loop prescription of the optimal
control. PMP can be used as both a computational and analytic technique (and in
the second case can solve the problem for general initial value.)

We begin by considering a problem with plant equation ẋ = a(x, u) and instanta-
neous cost c(x, u), both independent of t. The trajectory is to be controlled until it
reaches some stopping set S, where there is a terminal cost K(x). As in (14.1) the
value function F (x) obeys the dynamic programming equation (without discounting)

inf
u∈U

[
c(x, u) +

∂F

∂x
a(x, u)

]
= 0, x 6∈ S, (15.1)

with terminal condition
F (x) = K(x), x ∈ S. (15.2)

Define the adjoint variable
λ = −Fx. (15.3)

This is column n-vector is a function of time as the state moves along the optimal
trajectory. The proof that Fx exists in the required sense is actually a tricky technical
matter. We also define the Hamiltonian

H(x, u, λ) = λ>a(x, u)− c(x, u), (15.4)

a scalar, defined at each point of the path as a function of the current x, u and λ.

Theorem 15.1. (PMP) Suppose u(t) and x(t) represent the optimal control and state
trajectory. Then there exists an adjoint trajectory λ(t) such that

ẋ = Hλ, [= a(x, u)] (15.5)

λ̇ = −Hx, [= −λ>ax + cx] (15.6)

and for all t, 0 ≤ t ≤ T , and all feasible controls v,

H(x(t), v, λ(t)) ≤ H(x(t), u(t), λ(t)) = 0. (15.7)

Moreover, if x(T) is unconstrained then at x = x(T) we must have

(λ(T) +Kx)>σ = 0 (15.8)

for all σ such that x + εσ is within o(ε) of the termination point of a possible optimal
trajectory for all sufficiently small positive ε.

61

‘Proof.’ Our heuristic proof is based upon the DP equation; this is the most direct
and enlightening way to derive conclusions that may be expected to hold in general.

Assertion (15.5) is immediate, and (15.7) follows from the fact that the minimizing
value of u in (15.1) is optimal. Assuming u is the optimal control we have from (15.1)
in incremental form as

F (x, t) = c(x, u)δ + F (x+ a(x, u)δ, t+ δ) + o(δ).

Now use the chain rule to differentiate with respect to xi and this yields

d

dxi
F (x, t) = δ

d

dxi
c(x, u) +

∑
j

∂

∂xj
F (x+ a(x, u)δ, t+ δ)

d

dxi
(xj + aj(x, u)δ)

=⇒ −λi(t) = δ
dc

dxi
− λi(t+ δ)− δ

∑
j

λj(t+ δ)
daj
dxi

+ o(δ)

=⇒ d

dt
λi(t) =

dc

dxi
−
∑
j

λj(t)
daj
dxi

which is (15.6).

Now suppose that x is a point at which the optimal trajectory first enters S. Then
x ∈ S and so F (x) = K(x). Suppose x+ εσ + o(ε) ∈ S. Then

0 = F (x+ εσ + o(ε))−K(x+ εσ + o(ε))

= F (x)−K(x) + (Fx(x)−Kx(x))>σε+ o(ε)

Together with F (x) = K(x) this gives (Fx − Kx)>σ = 0. Since λ = −Fx we get
(λ+Kx)>σ = 0.

Notice that (15.5) and (15.6) each give n equations. Condition (15.7) gives m further
equations (since it requires stationarity with respect to variation of the m components
of u.) So in principle these equations, if nonsingular, are sufficient to determine the
2n+m functions u(t), x(t) and λ(t).

Requirements of (15.8) are known as transversality conditions.

15.2 Example: parking a rocket car

A rocket car has engines at both ends. Initial position and velocity are x1(0) and x2(0).

0 x1

x2

Figure 3: Optimal trajectories for parking problem

62

By firing the rockets (causing acceleration of u in the forward or reverse direction) we
wish to park the car in minimum time, i.e. minimize T such that x1(T) = x2(T) = 0.
The dynamics are ẋ1 = x2 and ẋ2 = u, where u is constrained by |u| ≤ 1.

Let F (x) be minimum time that is required to park the rocket car. Then

F (x1, x2) = min
−1≤u≤1

{
δ + F (x1 + x2δ, x2 + uδ)

}
.

By making a Taylor expansion and then letting δ → 0 we find the HJB equation:

0 = min
−1≤u≤1

{
1 +

∂F

∂x1
x2 +

∂F

∂x2
u

}
(15.9)

with boundary condition F (0, 0) = 0. We can see that the optimal control will be a
bang-bang control with u = − sign(∂F∂x2

) and so F satisfies

0 = 1 +
∂F

∂x1
x2 −

∣∣∣∣ ∂F∂x2

∣∣∣∣ .
Now let us tackle the same problem using PMP. We wish to minimize

C =

∫ T

0

1 dt

where T is the first time at which x = (0, 0). For dynamics if ẋ1 = x2, ẋ2 = u, |u| ≤ 1,
the Hamiltonian is

H = λ1x2 + λ2u− 1,

which is maximized by u = sign(λ2). The adjoint variables satisfy λ̇i = −∂H/∂xi, so

λ̇1 = 0, λ̇2 = −λ1. (15.10)

Suppose at termination λ1(T) = α, λ2(T) = β. Then in terms of time to go we can
compute

λ1(s) = α, λ2(s) = β + αs.

These reveal the form of the solution: there is at most one change of sign of λ2 on the
optimal path; u is maximal in one direction and then possibly maximal in the other.

From (15.1) or (15.9) we see that the maximized value of H must be 0. So at
termination (when x2 = 0), we conclude that we must have |β| = 1. We now consider
the case β = 1. The case β = −1 is similar.

If β = 1, α ≥ 0 then λ2 = 1 + αs ≥ 0 for all s ≥ 0 and

u = 1, x2 = −s, x1 = s2/2.

In this case the optimal trajectory lies on the parabola x1 = x2
2/2, x1 ≥ 0, x2 ≤ 0. This

is half of the switching locus x1 = ±x2
2/2 (shown dotted in Figure 4).

63

a
b

x1

x2

u = 1

u = −1
switching locus

Figure 4: Optimal trajectories for parking a rocket car. Notice that the trajectories
starting from two nearby points, a and b, are qualitatively different.

If β = 1, α < 0 then u = −1 or u = 1 as the time to go is greater or less than
s0 = 1/|α|. In this case,

u = −1, x2 = (s− 2s0), x1 = 2s0s− 1
2s

2 − s2
0, s ≥ s0,

u = 1, x2 = −s, x1 = 1
2s

2, s ≤ s0.

The control rule expressed as a function of s is open-loop, but in terms of (x1, x2) and
the switching locus, it is closed-loop.

15.3 PMP via Lagrangian methods

Associate a Lagrange multiplier λ(t) with the constraint ẋ = a(x, u) and maximize

L = −K(x(T)) +

∫ T

0

[
−c− λ>(ẋ− a)

]
dt

over (x, u, λ) paths having the property that x(t) first enters the set S at time T .
Integrate λ>ẋ by parts to obtain

L = −K(x(T))− λ(T)>x(T) + λ(0)>x(0) +

∫ T

0

[
λ̇>x+ λ>a− c

]
dt.

Now think about varying both x(t) and u(t), but without regard to the constraint
ẋ = a(x, u). The quantity within the integral must be stationary with respect to
x = x(t) and hence λ̇+ λ>ax − cx = 0 =⇒ λ̇ = −Hx, i.e. (15.6).

If x(T) is unconstrained then the Lagrangian must also be stationary with respect
to small variations in x(T) that are in a direction σ such that x(T) + εσ is in the
stopping set (or within o(ε) of it), and this gives (Kx(x(T)) + λ(T))>σ = 0, i.e. the
transversality conditions.

64

16 Using Pontryagin’s Maximum Principle

Problems with explicit time. Examples with Pontryagin’s maximum principle.

16.1 Example: insects as optimizers

A colony of insects consists of workers and queens, of numbers w(t) and q(t) at time t.
If a time-dependent proportion u(t) of the colony’s effort is put into producing workers,
(0 ≤ u(t) ≤ 1, then w, q obey the equations

ẇ = auw − bw, q̇ = c(1− u)w,

where a, b, c are constants, with a > b. The function u is to be chosen to maximize the
number of queens at the end of the season. Show that the optimal policy is to produce
only workers up to some moment, and produce only queens thereafter.

Solution. In this problem the Hamiltonian is

H = λ1(auw − bw) + λ2c(1− u)w

and K(w, q) = −q. The adjoint equations and transversality conditions give

−λ̇1 = Hw = λ1(au− b) + λ2c(1− u)

−λ̇2 = Hq = 0
,

λ1(T) = −Kw = 0
λ2(T) = −Kq = 1

,

and hennce λ2(t) = 1 for all t. Since H is maximized by u,

u =
0
1

if ∆(t) := λ1a− c
<
>

0.

Since ∆(T) = −c, we must have u(T) = 0. If t is a little less than T , λ1 is small and
u = 0 so the equation for λ1 is

λ̇1 = λ1b− c. (16.1)

As long as λ1 is small, λ̇1 < 0. Therefore as the remaining time s increases, λ1(s)
increases, until such point that ∆(t) = λ1a−c ≥ 0. The optimal control becomes u = 1
and then λ̇1 = −λ1(a − b) < 0, which implies that λ1(s) continues to increase as s
increases, right back to the start. So there is no further switch in u.

The point at which the single switch occurs is found by integrating (16.1) from t to
T , to give λ1(t) = (c/b)(1− e−(T−t)b) and so the switch occurs where λ1a− c = 0, i.e.
(a/b)(1− e−(T−t)b) = 1, or

tswitch = T + (1/b) log(1− b/a).

Experimental evidence suggests that social insects do closely follow this policy and
adopt a switch time that is nearly optimal for their natural environment.

65

16.2 Problems in which time appears explicitly

Thus far, c(·), a(·) and K(·) have been function of (x, u), but not t. Sometimes we
wish to solve problems in t appears, such as when ẋ = a(x, u, t). We can cope with this
generalization by the simple mechanism of introducing a new variable that equates to
time. Let x0 = t, with ẋ0 = a0 = 1.

Having been augmented by this variable, the Hamiltonian gains a term and becomes

H̃ = λ0a0 +H = λ0a0 +

n∑
i=1

λiai − c

where λ0 = −Ft and a0 = 1. Theorem 15.1 says that H̃ must be maximized to 0.
Equivalently, on the optimal trajectory,

H(x, u, λ) =

n∑
i=1

λiai − c must be maximized to − λ0.

Theorem 15.1 still holds. However, to (15.6) we can now add

λ̇0 = −Ht = ct − λat, (16.2)

and transversality condition

(λ+Kx)>σ + (λ0 +Kt)τ = 0, (16.3)

which must hold at the termination point (x, t) if (x+ εσ, t+ ετ) is within o(ε) of the
termination point of an optimal trajectory for all small enough positive ε.

16.3 Example: monopolist

Miss Prout holds the entire remaining stock of Cambridge elderberry wine for the
vintage year 1959. If she releases it at rate u (in continuous time) she realises a unit
price p(u) = (1− u/2), for 0 ≤ u ≤ 2 and p(u) = 0 for u ≥ 2. She holds an amount x
at time 0 and wishes to release it in a way that maximizes her total discounted return,∫ T

0
e−αtup(u) dt, (where T is unconstrained.)

Solution. Notice that t appears in the cost function. The plant equation is ẋ = −u
and the Hamiltonian is

H(x, u, λ) = e−αtup(u)− λu = e−αtu(1− u/2)− λu.

Note that K = 0. Maximizing with respect to u and using λ̇ = −Hx gives

u = 1− λeαt, λ̇ = 0, t ≥ 0,

so λ is constant. The terminal time is unconstrained so the transversality condition gives
λ0(T) = −Kt|t=T = 0. Therefore, since we require H to be maximized to −λ0(T) = 0
at T , we have u(T) = 0, and hence

λ = e−αT , u = 1− e−α(T−t), t ≤ T,

66

where T is then the time at which all wine has been sold, and so

x(0) =

∫ T

0

u dt = T −
(
1− e−αT

)
/α.

Thus u(0) = 1− e−αT is implicitly a function of x(0), through T .

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

x(t)

u(t)

Figure 5: Trajectories of x(t), u(t), for α = 1.

The optimal value function is

F (x) =

∫ T

0

(u− u2/2)e−αt dt =
1

2

∫ T

0

(
e−αt − eαt−2αT

)
dt =

(
1− e−αT

)2
2α

.

16.4 Example: neoclassical economic growth

Suppose x is the existing capital per worker and u is consumption of capital per worker.
The plant equation is

ẋ = f(x)− γx− u, (16.4)

where f(x) is production per worker (which depends on capital available to the worker),
and −γx represents depreciation of capital. We wish to choose u to maximize∫ T

t=0

e−αtg(u)dt,

where g(u) measures utility and T is prescribed.

67

Solution. This is really the same as the fish harvesting example in §14.3, with a(x) =
f(x)− γx. So let us take

ẋ = a(x)− u. (16.5)

It is convenient to take

H = e−αt [g(u) + λ(a(x)− u)]

so including a discount factor in the definition of u, corresponding to expression of F
in terms of present values. Here λ is a scalar. Then g′(u) = λ (assuming the maximum
is at a stationary point), and

d

dt

(
e−αtλ

)
= −Hx = −e−αtλa′(x) (16.6)

or

λ̇(t) = (α− a′(x))λ(t). (16.7)

From g′(u) = λ we have g′′(u)u̇ = λ̇ and hence from (16.7) we obtain

u̇ =
1

σ(u)
[a′(x)− α], (16.8)

where

σ(u) = −g
′′(u)

g′(u)

is the elasticity of marginal utility. Assuming g is strictly increasing and concave we
have σ > 0. So (x, u) are determined by (16.5) and (16.8). An equilibrium solution at
x̄, ū is determined by

ū = a(x̄) a′(x̄) = α,

These give the balanced growth path; interestingly, it is independent of g.

This provides an example of so-called turnpike theory. For sufficiently large T the
optimal trajectory will move from the initial x(0) to within an arbitrary neighbourhood
of the balanced growth path (the turnpike) and stay there for all but an arbitrarily small
fraction of the time. As the terminal time becomes imminent the trajectory leaves the
neighbourhood of the turnpike and heads for the terminal point x(T) = 0.

16.5 Diffusion processes

How might we introduce noise in a continuous-time plant equation? In the example of
§14.1 we might try to write ẋ = u+ vε, where v is a constant and ε is noise. But how
should we understand ε? A sensible guess (based on what we know about sums of i.i.d.

random variables and the Central Limit Theorem) is that B(t) =
∫ t

0
ε(s) ds should be

distributed as Gaussian with mean 0 and variance t. The random process, B(t), which
fits the bill, is called Brownian motion. But much must be made precise (for which
see the course Stochastic Financial Models).

68

Just as we previously derived the HJB equation before, we now find, after making
a Taylor expansion and using EB(δ) = 0 and EB(δ)2 = δ, that

F (x, t) = inf
u

[
u2δ + E[F (x+ uδ + vB(δ), t+ δ)]

]
=⇒ 0 = inf

u

[
u2 + uFx + 1

2v
2Fxx + Ft

]
= − 1

4F
2
x + 1

2v
2Fxx + Ft,

where F (x, T) = Dx2. The solution to this p.d.e. is

F (x, t) =
Dx2

1 + (T − t)D
+ v2 log(1 + (T − t)D),

which is unsurprising since it agrees with what we found in the discrete case.

69

Index

adjoint variable, 61
average-cost, 31

bandit process, 26
bang-bang control, 4, 59, 63
Bellman equation, 3
BLUE, 56
broom balancing, 46
Brownian motion, 68
Bruss’s odds algorithm, 22

calibration, 27
certainty equivalence, 54
chattering, 59
closed-loop, 6, 61
completion time, 35
concave majorant, 23
control theory, 1
control variable, 2
controllable, 44

decomposable cost, 5
deterministic stationary Markov policy,

19, 26
diffusion processes, 68
discount factor, 9
discounted programming, 11
discounted-cost criterion, 9
discrete-time, 2
dynamic programming equation, 3

exploration and exploitation, 17

fair charge, 28
feedback, 6
finite actions, 15
flow time, 35
forward induction policy, 30

gain matrix, 42, 47
gambling, 14
Gittins index, 27, 28

Hamilton-Jacobi-Bellman equation, 58
Hamiltonian, 61
harvesting fish, 58
holding cost, 38

index policy, 10, 27
individual optimality, 39
innovations, 55
insects as optimizers, 65
interchange argument, 10

job scheduling, 9, 28

Kalman filter, 55

Lady’s nylon stocking problem, 37
linear least squares estimate, 55
LQG model, 40

makespan, 35
Markov decision process, 5
Markov dynamics, 5
Markov jump process, 37
Markov policy, 19
monopolist, 66
monotone operator, 14
multi-armed bandit problem, 17, 26
myopic policy, 17, 30

negative programming, 11

observable, 48
one-step look-ahead rule, 20, 30
open-loop, 6, 61
optimality equation, 3
optimization over time, 1

parking a rocket car, 62
parking problem, 21
partially observable Markov decision pro-

cess, 18
perfect state observation, 5
pharmaceutical trials, 16

70

plant equation, 3
policy, 5
policy improvement algorithm, 33
Pontryagin’s maximum principle, 61
positive programming, 11
prevailing charge, 28
principle of optimality, 2
prospecting, 25, 29

queueing control, 32, 38

r-controllable, 44
r-observable, 48
regulation, 40
relative value function, 32
Riccati equation, 41, 42, 55

satellite in planar orbit, 50
secretary problem, 7, 22
selling an asset, 12
separable cost function, 3
separation principle, 54
shortest path problem, 1
simple family of alternative bandit pro-

cesses, 26
social optimality, 39
stability matrix, 47
stabilizable, 47
state variable, 3
stopping problem, 20
stopping time, 27
successive approximation, 14
switching locus, 63

time horizon, 2
time to go, 4
time-homogeneous, 3, 10
transversality conditions, 62, 64
turnpike theory, 68
two-armed bandit problem, 17

uniformization, 35, 37

value function, 6
value iteration, 14

value iteration algorithm, 33
value iteration bounds, 33

Weitzman’s problem, 29
white noise, 42

71

	Schedules
	Dynamic Programming
	Control as optimization over time
	Example: the shortest path problem
	The principle of optimality
	The optimality equation
	Example: optimization of consumption

	Markov Decision Problems
	Markov decision processes
	Features of the state-structured case
	Example: exercising a stock option
	Example: secretary problem

	Dynamic Programming over the Infinite Horizon
	Discounted costs
	Example: job scheduling
	The infinite-horizon case
	The optimality equation in the infinite-horizon case
	Example: selling an asset

	Positive Programming
	Example: possible lack of an optimal policy.
	Characterization of the optimal policy
	Example: optimal gambling
	Value iteration
	D case recast as a N or P case
	Example: pharmaceutical trials

	Negative Programming
	Example: a partially observed MDP
	Stationary policies
	Characterization of the optimal policy
	Optimal stopping over a finite horizon
	Example: optimal parking

	Optimal Stopping Problems
	Bruss's odds algorithm
	Example: stopping a random walk
	Optimal stopping over the infinite horizon
	Example: sequential probability ratio test
	Example: prospecting

	Bandit Processes and the Gittins Index
	Bandit processes and the multi-armed bandit problem
	The two-armed bandit
	Gittins index theorem
	Example: single machine scheduling
	Proof of the Gittins index theorem
	Example: Weitzman's problem
	Calculation of the Gittins index
	Forward induction policies

	Average-cost Programming
	Average-cost optimality equation
	Example: admission control at a queue
	Value iteration bounds
	Policy improvement algorithm

	Continuous-time Markov Decision Processes
	Stochastic scheduling on parallel machines
	Controlled Markov jump processes
	Example: admission control at a queue

	LQ Regulation
	The LQ regulation problem
	The Riccati recursion
	White noise disturbances
	Example: control of an inertial system

	Controllability
	Controllability
	Controllability in continuous-time
	Linearization of nonlinear models
	Example: broom balancing
	Stabilizability
	Example: pendulum

	Observability
	Infinite horizon limits
	Observability
	Observability in continuous-time
	Example: satellite in a plane orbit

	Imperfect Observation
	LQ with imperfect observation
	Certainty equivalence
	The Kalman filter

	Dynamic Programming in Continuous Time
	Example: LQ regulation in continuous time
	The Hamilton-Jacobi-Bellman equation
	Example: harvesting fish

	Pontryagin's Maximum Principle
	Heuristic derivation of Pontryagin's maximum principle
	Example: parking a rocket car
	PMP via Lagrangian methods

	Using Pontryagin's Maximum Principle
	Example: insects as optimizers
	Problems in which time appears explicitly
	Example: monopolist
	Example: neoclassical economic growth
	Diffusion processes

	Index

