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1 Dynamic Programming

Dynamic programming and the principle of optimality. Notation for state-structured models.

Feedback, open-loop, and closed-loop controls. Markov decision processes.

1.1 Control as optimization over time

Optimization is a key tool in modelling. Sometimes it is important to solve a problem
optimally. Other times either a near-optimal solution is good enough, or the real
problem does not have a single criterion by which a solution can be judged. However,
even when an optimal solution is not required it can be useful to test one’s thinking
by following an optimization approach. If the ‘optimal’ solution is ridiculous it may
suggest ways in which both modelling and thinking can be refined.

Control theory is concerned with dynamic systems and their optimization over
time. It accounts for the fact that a dynamic system may evolve stochastically and
that key variables may be unknown or imperfectly observed.

The optimization models in the IB course (for linear programming and network
flow models) were static and nothing was either random or hidden. In this course
it is the additional features of dynamic and stochastic evolution, and imperfect state
observation, that give rise to new types of optimization problem and which require new
ways of thinking.

We could spend an entire lecture discussing the importance of control theory and
tracing its development through the windmill, steam governor, and so on. Such ‘classic
control theory’ is largely concerned with the question of stability, and there is much of
this theory which we ignore, e.g., Nyquist criterion and dynamic lags.

1.2 The principle of optimality

A key idea in this course is that optimization over time can often be seen as ‘optimiza-
tion in stages’. We trade off our desire to obtain the least possible cost at the present
stage against the implication this would have for costs at future stages. The best action
minimizes the sum of the cost incurred at the current stage and the least total cost
that can be incurred from all subsequent stages, consequent on this decision. This is
known as the Principle of Optimality.

Definition 1.1 (Principle of Optimality). From any point on an optimal trajectory,
the remaining trajectory is optimal for the problem initiated at that point.

1.3 Example: the shortest path problem

Consider the ‘stagecoach problem’ in which a traveller wishes to minimize the length
of a journey from town A to town J by first travelling to one of B, C or D and then
onwards to one of E, F or G then onwards to one of H or I and the finally to J. Thus
there are 4 ‘stages’. The arcs are marked with distances between towns.
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Solution. Let F (X) be the minimal distance required to reach J from X. Then clearly,
F (J) = 0, F (H) = 3 and F (I) = 4.

F (F) = min[ 6 + F (H), 3 + F (I) ] = 7,

and so on. Recursively, we obtain F (A) = 11 and simultaneously an optimal route, i.e.
A→D→F→I→J (although it is not unique).

The study of dynamic programming dates from Richard Bellman, who wrote the
first book on the subject (1957) and gave it its name. A very large number of problems
can be treated this way.

1.4 The optimality equation

The optimality equation in the general case. In discrete-time t takes integer
values, say t = 0, 1, . . . . Suppose ut is a control variable whose value is to be chosen at
time t. Let Ut−1 = (u0, . . . , ut−1) denote the partial sequence of controls (or decisions)
taken over the first t stages. Suppose the cost up to the time horizon h is given by

C = G(Uh−1) = G(u0, u1, . . . , uh−1).

Then the principle of optimality is expressed in the following theorem.

Theorem 1.2 (The principle of optimality). Define the functions

G(Ut−1, t) = inf
ut,ut+1,...,uh−1

G(Uh−1).

Then these obey the recursion

G(Ut−1, t) = inf
ut

G(Ut, t+ 1) t < h,

with terminal evaluation G(Uh−1, h) = G(Uh−1).

The proof is immediate from the definition of G(Ut−1, t), i.e.

G(Ut−1, t) = inf
ut

{

inf
ut+1,...,uh−1

G(u0, . . . , ut−1, ut , ut+1, . . . , uh−1)

}

.
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The state structured case. The control variable ut is chosen on the basis of knowing
Ut−1 = (u0, . . . , ut−1), (which determines everything else). But a more economical
representation of the past history is often sufficient. For example, we may not need to
know the entire path that has been followed up to time t, but only the place to which
it has taken us. The idea of a state variable x ∈ R

d is that its value at t, denoted xt,
can be found from known quantities and obeys a plant equation (or law of motion)

xt+1 = a(xt, ut, t).

Suppose we wish to minimize a separable cost function of the form

C =

h−1∑

t=0

c(xt, ut, t) +Ch(xh), (1.1)

by choice of controls {u0, . . . , uh−1}. Define the cost from time t onwards as,

Ct =

h−1∑

τ=t

c(xτ , uτ , τ) +Ch(xh), (1.2)

and the minimal cost from time t onwards as an optimization over {ut, . . . , uh−1}
conditional on xt = x,

F (x, t) = inf
ut,...,uh−1

Ct.

Here F (x, t) is the minimal future cost from time t onward, given that the state is x at
time t. Then by an inductive proof, one can show as in Theorem 1.2 that

F (x, t) = inf
u
[c(x, u, t) + F (a(x, u, t), t+ 1)], t < h, (1.3)

with terminal condition F (x, h) = Ch(x). Here x is a generic value of xt. The mini-
mizing u in (1.3) is the optimal control u(x, t) and values of x0, . . . , xt−1 are irrelevant.
The optimality equation (1.3) is also called the dynamic programming equation
(DP) or Bellman equation.

The DP equation defines an optimal control problem in what is called feedback or
closed-loop form, with ut = u(xt, t). This is in contrast to the open-loop formulation
in which {u0, . . . , uh−1} are to be determined all at once at time 0. A policy (or
strategy) is a rule for choosing the value of the control variable under all possible
circumstances as a function of the perceived circumstances. To summarise:

(i) The optimal ut is a function only of xt and t, i.e. ut = u(xt, t).

(ii) The DP equation expresses the optimal ut in closed-loop form. It is optimal
whatever the past control policy may have been.

(iii) The DP equation is a backward recursion in time (from which we get the optimum
at h− 1, then h− 2 and so on.) The later policy is decided first.

‘Life must be lived forward and understood backwards.’ (Kierkegaard)

3



1.5 Markov decision processes

Consider now stochastic evolution. Let Xt = (x0, . . . , xt) and Ut = (u0, . . . , ut) denote
the x and u histories at time t. As above, state structure is characterised by the fact
that the evolution of the process is described by a state variable x, having value xt at
time t. The following assumptions define what is known as a discrete-time Markov
decision process (MDP).

(a) Markov dynamics: (i.e. the stochastic version of the plant equation.)

P (xt+1 | Xt, Ut) = P (xt+1 | xt, ut).

(b) Separable (or decomposable) cost function, (i.e. cost given by (1.1)).

For the moment we also require the following:

(c) Perfect state observation: The current value of the state is observable. That is, xt

is known when choosing ut. So, letting Wt denote the observed history at time t,
we assume Wt = (Xt, Ut−1).

Note that C is determined by Wh, so we might write C = C(Wh).

As in the previous section, the cost from time t onwards is given by (1.2). Denote
the minimal expected cost from time t onwards by

F (Wt) = inf
π

Eπ[Ct | Wt],

where π denotes a policy, i.e. a rule for choosing the controls u0, . . . , uh−1.
The following theorem is then obvious.

Theorem 1.3. F (Wt) is a function of xt and t alone, say F (xt, t). It obeys the
optimality equation

F (xt, t) = inf
ut

{c(xt, ut, t) + E[F (xt+1, t+ 1) | xt, ut]} , t < h, (1.4)

with terminal condition
F (xh, h) = Ch(xh).

Moreover, a minimizing value of ut in (1.4) (which is also only a function xt and t) is
optimal.

Proof. The value of F (Wh) is Ch(xh), so the asserted reduction of F is valid at time
h. Assume it is valid at time t+ 1. The DP equation is then

F (Wt) = inf
ut

{c(xt, ut, t) + E[F (xt+1, t+ 1) | Xt, Ut]}. (1.5)

But, by assumption (a), the right-hand side of (1.5) reduces to the right-hand member
of (1.4). All the assertions then follow.
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2 Examples of Dynamic Programming

Examples of dynamic programming problems and some useful tricks to solve them. The idea

that it can be useful to model things in terms of time to go.

2.1 Example: optimization of consumption

An investor receives annual income of xt pounds in year t. He consumes ut and adds
xt − ut to his capital, 0 ≤ ut ≤ xt. The capital is invested at interest rate θ × 100%,
and so his income in year t+ 1 increases to

xt+1 = a(xt, ut) = xt + θ(xt − ut). (2.1)

He desires to maximize total consumption over h years,

C =

h−1∑

t=0

c(xt, ut, t) +Ch(xh) =

h−1∑

t=0

ut

The plant equation (2.1) specifies a Markov decision process (MDP). When
we add to this the aim of maximizing the performance measure C we have what is
called a Markov decision problem. For both we use the abbreviation MDP. In the
notation we have been using, c(xt, ut, t) = ut, Ch(xh) = 0. This is termed a time-
homogeneous model because neither costs nor dynamics depend on t.

Solution. Since dynamic programming makes its calculations backwards, from the
termination point, it is often advantageous to write things in terms of the ‘time to
go’, s = h − t. Let Fs(x) denote the maximal reward obtainable, starting in state x
when there is time s to go. The dynamic programming equation is

Fs(x) = max
0≤u≤x

[u+ Fs−1(x+ θ(x− u))],

where F0(x) = 0, (since nothing more can be consumed once time h is reached.) Here,
x and u are generic values for xs and us.

We can substitute backwards and soon guess the form of the solution. First,

F1(x) = max
0≤u≤x

[u+ F0(u+ θ(x− u))] = max
0≤u≤x

[u+ 0] = x.

Next,
F2(x) = max

0≤u≤x
[u+ F1(x + θ(x− u))] = max

0≤u≤x
[u+ x+ θ(x− u)].

Since u+ x+ θ(x− u) linear in u, its maximum occurs at u = 0 or u = x, and so

F2(x) = max[(1 + θ)x, 2x] = max[1 + θ, 2]x = ρ2x.

This motivates the guess Fs−1(x) = ρs−1x. Trying this, we find

Fs(x) = max
0≤u≤x

[u+ ρs−1(x+ θ(x − u))] = max[(1 + θ)ρs−1, 1 + ρs−1]x = ρsx.

5



Thus our guess is verified and Fs(x) = ρsx, where ρs obeys the recursion implicit in
the above, and i.e. ρs = ρs−1 +max[θρs−1, 1]. This gives

ρs =

{
s s ≤ s∗

(1 + θ)s−s∗s∗ s ≥ s∗
,

where s∗ is the least integer such that 1+s∗ ≤ (1+θ)s∗ ⇐⇒ s∗ ≥ 1/θ, i.e. s∗ = ⌈1/θ⌉.
The optimal strategy is to invest the whole of the income in years 0, . . . , h− s∗ − 1, (to
build up capital) and then consume the whole of the income in years h− s∗, . . . , h− 1.

There are several things worth learning from this example. (i) It is often useful
to frame things in terms of time to go, s. (ii) Although the form of the dynamic
programming equation can sometimes look messy, try working backwards from F0(x)
(which is known). Often a pattern will emerge from which you can piece together a
solution. (iii) When the dynamics are linear, the optimal control lies at an extreme
point of the set of feasible controls. This form of policy, which either consumes nothing
or consumes everything, is known as bang-bang control.

2.2 Example: exercising a stock option

The owner of a call option has the option to buy a share at fixed ‘striking price’ p.
The option must be exercised by day h. If she exercises the option on day t and then
immediately sells the share at the current price xt, she can make a profit of xt − p.
Suppose the price sequence obeys the equation xt+1 = xt + ǫt, where the ǫt are i.i.d.
random variables for which E|ǫ| < ∞. The aim is to exercise the option optimally.

Let Fs(x) be the value function (maximal expected profit) when the share price is
x and there are s days to go. Show that (i) Fs(x) is non-decreasing in s, (ii) Fs(x)− x
is non-increasing in x and (iii) Fs(x) is continuous in x. Deduce that the optimal policy
can be characterised as follows.

There exists a non-decreasing sequence {as} such that an optimal policy is to exercise
the option the first time that x ≥ as, where x is the current price and s is the number
of days to go before expiry of the option.

Solution. The state variable at time t is, strictly speaking, xt plus a variable which
indicates whether the option has been exercised or not. However, it is only the latter
case which is of interest, so x is the effective state variable. As above, we use time to
go, s = h− t. So if we let Fs(x) be the value function (maximal expected profit) with
s days to go then

F0(x) = max{x− p, 0},
and so the dynamic programming equation is

Fs(x) = max{x− p,E[Fs−1(x+ ǫ)]}, s = 1, 2, . . .

Note that the expectation operator comes outside, not inside, Fs−1(·).

6



It easy to show (i), (ii) and (iii) by induction on s. For example, (i) is obvious, since
increasing s means we have more time over which to exercise the option. However, for
a formal proof

F1(x) = max{x− p,E[F0(x+ ǫ)]} ≥ max{x− p, 0} = F0(x).

Now suppose, inductively, that Fs−1 ≥ Fs−2. Then

Fs(x) = max{x− p,E[Fs−1(x+ ǫ)]} ≥ max{x− p,E[Fs−2(x+ ǫ)]} = Fs−1(x),

whence Fs is non-decreasing in s. Similarly, an inductive proof of (ii) follows from

Fs(x)− x
︸ ︷︷ ︸

= max{−p,E[Fs−1(x+ ǫ)− (x + ǫ)
︸ ︷︷ ︸

] + E(ǫ)},

since the left hand underbraced term inherits the non-increasing character of the right
hand underbraced term. Thus the optimal policy can be characterized as stated. For
from (ii), (iii) and the fact that Fs(x) ≥ x−p it follows that there exists an as such that
Fs(x) is greater that x− p if x < as and equals x− p if x ≥ as. It follows from (i) that
as is non-decreasing in s. The constant as is the smallest x for which Fs(x) = x− p.

2.3 Example: secretary problem

We are to interview h candidates for a job. At the end of each interview we must either
hire or reject the candidate we have just seen, and may not change this decision later.
Candidates are seen in random order and can be ranked against those seen previously.
The aim is to maximize the probability of choosing the candidate of greatest rank.

Solution. Let Wt be the history of observations up to time t, i.e. after we have in-
terviewed the t th candidate. All that matters are the value of t and whether the t th
candidate is better than all her predecessors: let xt = 1 if this is true and xt = 0 if it
is not. In the case xt = 1, the probability she is the best of all h candidates is

P (best of h | best of first t) = P (best of h)

P (best of first t)
=

1/h

1/t
=

t

h
.

Now the fact that the tth candidate is the best of the t candidates seen so far places
no restriction on the relative ranks of the first t− 1 candidates; thus xt = 1 and Wt−1

are statistically independent and we have

P (xt = 1 | Wt−1) =
P (Wt−1 | xt = 1)

P (Wt−1)
P (xt = 1) = P (xt = 1) =

1

t
.

Let F (t − 1) be the probability that under an optimal policy we select the best
candidate, given that we have passed over the first t − 1 candidates. Dynamic
programming gives

7



F (t− 1) =
t− 1

t
F (t) +

1

t
max

(
t

h
, F (t)

)

= max

(
t− 1

t
F (t) +

1

h
, F (t)

)

The first term deals with what happens when the tth candidate is not the best so far;
we should certainly pass over her. The second term deals with what happens when she
is the best so far. Now we have a choice: either accept her (and she will turn out to be
best with probability t/h), or pass over her.

These imply F (t − 1) ≥ F (t) for all t ≤ h. Therefore, since t/h and F (t) are
respectively increasing and non-increasing in t, it must be that for small t we have
F (t) > t/h and for large t we have F (t) ≤ t/h. Let t0 be the smallest t such that
F (t) ≤ t/h. Then

F (t− 1) =







F (t0), t < t0,

t− 1

t
F (t) +

1

h
, t ≥ t0.

Solving the second of these backwards from the point t = h, F (h) = 0, we obtain

F (t− 1)

t− 1
=

1

h(t− 1)
+

F (t)

t
= · · · = 1

h(t− 1)
+

1

ht
+ · · ·+ 1

h(h− 1)
,

whence

F (t− 1) =
t− 1

h

h−1∑

τ=t−1

1

τ
, t ≥ t0.

Since we require F (t0) ≤ t0/h, it must be that t0 is the smallest integer satisfying

h−1∑

τ=t0

1

τ
≤ 1.

For large h the sum on the left above is about log(h/t0), so log(h/t0) ≈ 1 and we
find t0 ≈ h/e. Thus the optimal policy is to interview ≈ h/e candidates, but without
selecting any of these, and then select the first candidate thereafter who is the best of
all those seen so far. The probability of success is F (0) = F (t0) ∼ t0/h ∼ 1/e = 0.3679.
It is surprising that the probability of success is so large for arbitrarily large h.

There are a couple things to learn from this example. (i) It is often useful to try
to establish the fact that terms over which a maximum is being taken are monotone
in opposite directions, as we did with t/h and F (t). (ii) A typical approach is to first
determine the form of the solution, then find the optimal cost (reward) function by
backward recursion from the terminal point, where its value is known.
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3 Dynamic Programming over the Infinite Horizon

Cases of discounted, negative and positive dynamic programming. Validity of the optimality

equation over the infinite horizon.

3.1 Discounted costs

For a discount factor, β ∈ (0, 1], the discounted-cost criterion is defined as

C =

h−1∑

t=0

βtc(xt, ut, t) + βhCh(xh). (3.1)

This simplifies things mathematically, particularly when we want to consider an
infinite horizon. If costs are uniformly bounded, say |c(x, u)| < B, and discounting is
strict (β < 1) then the infinite horizon cost is bounded by B/(1 − β). In finance, if
there is an interest rate of r% per unit time, then a unit amount of money at time t is
worth ρ = 1+r/100 at time t+1. Equivalently, a unit amount at time t+1 has present
value β = 1/ρ. The function, F (x, t), which expresses the minimal present value at
time t of expected-cost from time t up to h is

F (x, t) = inf
π

Eπ

[
h−1∑

τ=t

βτ−tc(xτ , uτ , τ) + βh−tCh(xh)

∣
∣
∣
∣
∣
xt = x

]

. (3.2)

where Eπ denotes expectation over the future path of the process under policy π. The
DP equation is now

F (x, t) = inf
u

[c(x, u, t) + βEF (xt+1, t+ 1)] , t < h, (3.3)

where F (x, h) = Ch(x).

3.2 Example: job scheduling

A collection of n jobs is to be processed in arbitrary order by a single machine. Job i
has processing time pi and when it completes a reward ri is obtained. Find the order
of processing that maximizes the sum of the discounted rewards.

Solution. Here we take ‘time-to-go k’ as the point at which the n− k th job has just
been completed and there remains a set of k uncompleted jobs, say Sk. The dynamic
programming equation is

Fk(Sk) = max
i∈Sk

[riβ
pi + βpiFk−1(Sk − {i})].

Obviously F0(∅) = 0. Applying the method of dynamic programming we first find
F1({i}) = riβ

pi . Then, working backwards, we find

F2({i, j}) = max[riβ
pi + βpi+pjrj , rjβ

pj + βpj+piri].

There will be 2n equations to evaluate, but with perseverance we can determine
Fn({1, 2, . . . , n}). However, there is a simpler way.
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An interchange argument

Suppose jobs are processed in the order i1, . . . , ik, i, j, ik+3, . . . , in. Compare the reward
that is obtained if the order of jobs i and j is reversed: i1, . . . , ik, j, i, ik+3, . . . , in. The
rewards under the two schedules are respectively

R1 + βT+piri + βT+pi+pjrj +R2 and R1 + βT+pj rj + βT+pj+piri +R2,

where T = pi1 + · · ·+ pik , and R1 and R2 are respectively the sum of the rewards due
to the jobs coming before and after jobs i, j; these are the same under both schedules.
The reward of the first schedule is greater if riβ

pi/(1− βpi) > rjβ
pj/(1− βpj ). Hence

a schedule can be optimal only if the jobs are taken in decreasing order of the indices
riβ

pi/(1− βpi). This type of reasoning is known as an interchange argument.

There are a couple points to note. (i) An interchange argument can be useful
for solving a decision problem about a system that evolves in stages. Although such
problems can be solved by dynamic programming, an interchange argument – when it
works – is usually easier. (ii) The decision points need not be equally spaced in time.
Here they are the times at which jobs complete.

3.3 The infinite-horizon case

In the finite-horizon case the value function is obtained simply from (3.3) by the back-
ward recursion from the terminal point. However, when the horizon is infinite there is
no terminal point and so the validity of the optimality equation is no longer obvious.

Consider the time-homogeneous Markov case, in which costs and dynamics do not
depend on t, i.e. c(x, u, t) = c(x, u). Suppose also that there is no terminal cost, i.e.
Ch(x) = 0. Define the s-horizon cost under policy π as

Fs(π, x) = Eπ

[
s−1∑

t=0

βtc(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

,

If we take the infimum with respect to π we have the infimal s-horizon cost

Fs(x) = inf
π

Fs(π, x).

Clearly, this always exists and satisfies the optimality equation

Fs(x) = inf
u

{c(x, u) + βE[Fs−1(x1) | x0 = x, u0 = u]} , (3.4)

with terminal condition F0(x) = 0.
The infinite-horizon cost under policy π is also quite naturally defined as

F (π, x) = lim
s→∞

Fs(π, x). (3.5)

This limit need not exist (e.g. if β = 1, xt+1 = −xt and c(x, u) = x), but it will do so
under any of the following three scenarios.
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D (discounted programming): 0 < β < 1, and |c(x, u)| < B for all x, u.

N (negative programming): 0 < β ≤ 1, and c(x, u) ≥ 0 for all x, u.

P (positive programming): 0 < β ≤ 1, and c(x, u) ≤ 0 for all x, u.

Notice that the names ‘negative’ and ‘positive’ appear to be the wrong way around
with respect to the sign of c(x, u). The names actually come from equivalent problems
of maximizing rewards, like r(x, u) (= −c(x, u)). Maximizing positive rewards (P) is
the same thing as minimizing negative costs. Maximizing negative rewards (N) is the
same thing as minimizing positive costs. In cases N and P we usually take β = 1.

The existence of the limit (possibly infinite) in (3.5) is assured in cases N and P
by monotone convergence, and in case D because the total cost occurring after the sth
step is bounded by βsB/(1− β).

3.4 The optimality equation in the infinite-horizon case

The infimal infinite-horizon cost is defined as

F (x) = inf
π

F (π, x) = inf
π

lim
s→∞

Fs(π, x). (3.6)

The following theorem justifies our writing the optimality equation (i.e. (3.7)).

Theorem 3.1. Suppose D, N, or P holds. Then F (x) satisfies the optimality equation

F (x) = inf
u
{c(x, u) + βE[F (x1) | x0 = x, u0 = u)]}. (3.7)

Proof. We first prove that ‘≥’ holds in (3.7). Suppose π is a policy, which chooses
u0 = u when x0 = x. Then

Fs(π, x) = c(x, u) + βE[Fs−1(π, x1) | x0 = x, u0 = u]. (3.8)

Either D, N or P is sufficient to allow us to takes limits on both sides of (3.8) and
interchange the order of limit and expectation. In cases N and P this is because of
monotone convergence. Infinity is allowed as a possible limiting value. We obtain

F (π, x) = c(x, u) + βE[F (π, x1) | x0 = x, u0 = u]

≥ c(x, u) + βE[F (x1) | x0 = x, u0 = u]

≥ inf
u
{c(x, u) + βE[F (x1) | x0 = x, u0 = u]}.

Minimizing the left hand side over π gives ‘≥’.

To prove ‘≤’, fix x and consider a policy π that having chosen u0 and reached state
x1 then follows a policy π1 which is suboptimal by less than ǫ from that point, i.e.
F (π1, x1) ≤ F (x1)+ ǫ. Note that such a policy must exist, by definition of F , although
π1 will depend on x1. We have
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F (x) ≤ F (π, x)

= c(x, u0) + βE[F (π1, x1) | x0 = x, u0]

≤ c(x, u0) + βE[F (x1) + ǫ | x0 = x, u0]

≤ c(x, u0) + βE[F (x1) | x0 = x, u0] + βǫ.

Minimizing the right hand side over u0 and recalling that ǫ is arbitrary gives ‘≤’.

3.5 Example: selling an asset

A speculator owns a rare collection of tulip bulbs and each day has an opportunity to sell
it, which she may either accept or reject. The potential sale prices are independently
and identically distributed with probability density function g(x), x ≥ 0. Each day
there is a probability 1−β that the market for tulip bulbs will collapse, making her bulb
collection completely worthless. Find the policy that maximizes her expected return
and express it as the unique root of an equation. Show that if β > 1/2, g(x) = 2/x3,
x ≥ 1, then she should sell the first time the sale price is at least

√

β/(1− β).

Solution. There are only two states, depending on whether she has sold the collection
or not. Let these be 0 and 1, respectively. The optimality equation is

F (1) =

∫ ∞

y=0

max[y, βF (1)] g(y) dy

= βF (1) +

∫ ∞

y=0

max[y − βF (1), 0] g(y) dy

= βF (1) +

∫ ∞

y=βF (1)

[y − βF (1)] g(y) dy

Hence

(1− β)F (1) =

∫ ∞

y=βF (1)

[y − βF (1)] g(y) dy. (3.9)

That this equation has a unique root, F (1) = F ∗, follows from the fact that left and
right hand sides are increasing and decreasing in F (1), respectively. Thus she should
sell when he can get at least βF ∗. Her maximal reward is F ∗.

Consider the case g(y) = 2/y3, y ≥ 1. The left hand side of (3.9) is less that the
right hand side at F (1) = 1 provided β > 1/2. In this case the root is greater than 1
and we compute it as

(1− β)F (1) = 2/βF (1)− βF (1)/[βF (1)]2,

and thus F ∗ = 1/
√

β(1− β) and βF ∗ =
√

β/(1− β).

If β ≤ 1/2 she should sell at any price.

Notice that discounting arises in this problem because at each stage there is a
probability 1 − β that a ‘catastrophe’ will occur that brings things to a sudden end.
This characterization of the way that discounting can arise is often quite useful.
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4 Positive Programming

Special theory for maximizing nonnegative rewards. We see that there can be no optimal

policy. However, if a given policy has a value function that satisfies the optimality equation

then that policy is optimal. Value iteration algorithm.

4.1 Example: possible lack of an optimal policy.

Positive programming is about maximizing non-negative rewards, r(x, u) ≥ 0, or mini-
mizing non-positive costs, c(x, u) ≤ 0. The following example shows that there may be
no optimal policy.

Example 4.1. Suppose the possible states are the non-negative integers and in state
x we have a choice of either moving to state x+ 1 and receiving no reward, or moving
to state 0, obtaining reward 1 − 1/x, and then remaining in state 0 thereafter and
obtaining no further reward. The optimality equations is

F (x) = max{1− 1/x, F (x+ 1)} x > 0.

Clearly F (x) = 1, x > 0, but the policy that chooses the maximizing action in the
optimality equation always moves on to state x+1 and hence has zero reward. Clearly,
there is no policy that actually achieves a reward of 1.

4.2 Characterization of the optimal policy

The following theorem provides a necessary and sufficient condition for a policy to be
optimal: namely, its value function must satisfy the optimality equation. This theorem
also holds for the case of strict discounting and bounded costs.

Theorem 4.2. Suppose D or P holds and π is a policy whose value function F (π, x)
satisfies the optimality equation

F (π, x) = sup
u
{r(x, u) + βE[F (π, x1) | x0 = x, u0 = u]}.

Then π is optimal.

Proof. Let π′ be any policy and suppose it takes ut(x) = ft(x). Since F (π, x) satisfies
the optimality equation,

F (π, x) ≥ r(x, f0(x)) + βEπ′ [F (π, x1) | x0 = x, u0 = f0(x)].

By repeated substitution of this into itself, we find

F (π, x) ≥ Eπ′

[
s−1∑

t=0

βtr(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

+ βsEπ′ [F (π, xs) | x0 = x]. (4.1)

In case P we can drop the final term on the right hand side of (4.1) (because it is
non-negative) and then let s → ∞; in case D we can let s → ∞ directly, observing that
this term tends to zero. Either way, we have F (π, x) ≥ F (π′, x).
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4.3 Example: optimal gambling

A gambler has i pounds and wants to increase this to N . At each stage she can bet
any whole number of pounds not exceeding her capital, say j ≤ i. Either she wins,
with probability p, and now has i+ j pounds, or she loses, with probability q = 1− p,
and has i − j pounds. Let the state space be {0, 1, . . . , N}. The game stops upon
reaching state 0 or N . The only non-zero reward is 1, upon reaching state N . Suppose
p ≥ 1/2. Prove that the timid strategy, of always betting only 1 pound, maximizes the
probability of the gambler attaining N pounds.

Solution. The optimality equation is

F (i) = max
j,j≤i

{pF (i+ j) + qF (i− j)}.

To show that the timid strategy, say π, is optimal we need to find its value function,
say G(i) = F (π, x), and then show that it is a solution to the optimality equation. We
have G(i) = pG(i+ 1) + qG(i − 1), with G(0) = 0, G(N) = 1. This recurrence gives

G(i) =







1− (q/p)i

1− (q/p)N
p > 1/2,

i

N
p = 1/2.

If p = 1/2, then G(i) = i/N clearly satisfies the optimality equation. If p > 1/2 we
simply have to verify that

G(i) =
1− (q/p)i

1− (q/p)N
= max

j:j≤i

{

p

[
1− (q/p)i+j

1− (q/p)N

]

+ q

[
1− (q/p)i−j

1− (q/p)N

] }

.

Let Wj be the expression inside { } on the right hand side. It is simple calculation to
show that Wj+1 < Wj for all j ≥ 1. Hence j = 1 maximizes the right hand side.

4.4 Value iteration

An important and practical method of computing F is successive approximation
or value iteration. Starting with F0(x) = 0, we can successively calculate, for s =
1, 2, . . . ,

Fs(x) = inf
u
{c(x, u) + βE[Fs−1(x1) | x0 = x, u0 = u]}.

So Fs(x) is the infimal cost over s steps. Now let

F∞(x) = lim
s→∞

Fs(x) = lim
s→∞

inf
π

Fs(π, x). (4.2)

This exists (by monotone convergence under N or P, or by the fact that under D the
cost incurred after time s is vanishingly small.)

Notice that (4.2) reverses the order of lims→∞ and infπ in (3.6). The following
theorem states that we can interchange the order of these operations and that therefore
Fs(x) → F (x). However, in case N we need an additional assumption:

F (finite actions): There are only finitely many possible values of u in each state.
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Theorem 4.3. Suppose that D or P holds, or N and F hold. Then F∞(x) = F (x).

Proof. First we prove ‘≤’. Given any π̄,

F∞(x) = lim
s→∞

Fs(x) = lim
s→∞

inf
π

Fs(π, x) ≤ lim
s→∞

Fs(π̄, x) = F (π̄, x).

Taking the infimum over π̄ gives F∞(x) ≤ F (x).
Now we prove ‘≥’. In the positive case, c(x, u) ≤ 0, so Fs(x) ≥ F (x). Now let

s → ∞. In the discounted case, with |c(x, u)| < B, imagine subtracting B > 0 from
every cost. This reduces the infinite-horizon cost under any policy by exactly B/(1−β)
and F (x) and F∞(x) also decrease by this amount. All costs are now negative, so the
result we have just proved applies. [Alternatively, note that

Fs(x)− βsB/(1− β) ≤ F (x) ≤ Fs(x) + βsB/(1− β)

(can you see why?) and hence lims→∞ Fs(x) = F (x).]
In the negative case,

F∞(x) = lim
s→∞

min
u

{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]}

= min
u

{c(x, u) + lim
s→∞

E[Fs−1(x1) | x0 = x, u0 = u]}

= min
u

{c(x, u) + E[F∞(x1) | x0 = x, u0 = u]}, (4.3)

where the first equality follows because the minimum is over a finite number of terms
and the second equality follows by Lebesgue monotone convergence (since Fs(x) in-
creases in s). Let π be the policy that chooses the minimizing action on the right hand
side of (4.3). This implies, by substitution of (4.3) into itself, and using the fact that
N implies F∞ ≥ 0,

F∞(x) = Eπ

[
s−1∑

t=0

c(xt, ut) + F∞(xs)

∣
∣
∣
∣
∣
x0 = x

]

≥ Eπ

[
s−1∑

t=0

c(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

.

Letting s → ∞ gives F∞(x) ≥ F (π, x) ≥ F (x).

4.5 Example: pharmaceutical trials

A doctor has two drugs available to treat a disease. One is well-established drug and is
known to work for a given patient with probability p, independently of its success for
other patients. The new drug is untested and has an unknown probability of success θ,
which the doctor believes to be uniformly distributed over [0, 1]. He treats one patient
per day and must choose which drug to use. Suppose he has observed s successes and f
failures with the new drug. Let F (s, f) be the maximal expected-discounted number of
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future patients who are successfully treated if he chooses between the drugs optimally
from this point onwards. For example, if he uses only the established drug, the expected-
discounted number of patients successfully treated is p + βp + β2p + · · · = p/(1 − β).
The posterior distribution of θ is

f(θ | s, f) = (s+ f + 1)!

s!f !
θs(1− θ)f , 0 ≤ θ ≤ 1,

and the posterior mean is θ̄(s, f) = (s+ 1)/(s+ f + 2). The optimality equation is

F (s, f) = max

[
p

1− β
,

s+ 1

s+ f + 2
(1 + βF (s+ 1, f)) +

f + 1

s+ f + 2
βF (s, f + 1)

]

.

Notice that after the first time that the doctor decides is not optimal to use the new
drug it cannot be optimal for him to return to using it later, since his indformation
about that drug cannot have changed while not using it.

It is not possible to give a closed-form expression for F , but we can find an approxi-
mate numerical solution. If s+f is very large, say 300, then θ̄(s, f) = (s+1)/(s+f+2)
is a good approximation to θ. Thus we can take F (s, f) ≈ (1 − β)−1 max[p, θ̄(s, f)],
s+ f = 300 and work backwards. For β = 0.95, one obtains the following table.

s 0 1 2 3 4 5f
0 .7614 .8381 .8736 .8948 .9092 .9197
1 .5601 .6810 .7443 .7845 .8128 .8340
2 .4334 .5621 .6392 .6903 .7281 .7568
3 .3477 .4753 .5556 .6133 .6563 .6899
4 .2877 .4094 .4898 .5493 .5957 .6326

These numbers are the greatest values of p (the known success probability of the
well-established drug) for which it is worth continuing with at least one more trial of
the new drug. For example, suppose p = 0.6 and 6 trials with the new drug have given
s = f = 3. Then since p = 0.6 < 0.6133 we should treat the next patient with the new
drug. At this point the probability that the new drug will successfully treat the next
patient is 0.5 and so the doctor will actually be treating that patient with the drug
that is least likely to cure!

Here we see a tension going on between desires for exploitation and exploration.
A myopic policy seeks only to maximize immediate reward. However, an optimal
policy takes account of the possibility of gaining information that could lead to greater
rewards being obtained later on. Notice that it is worth using the new drug at least
once if p < 0.7614, even though at its first use the new drug will only be successful
with probability 0.5. Of course as the discount factor β tends to 0 the optimal policy
will looks more and more like the myopic policy.
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5 Negative Programming

The special theory of minimizing nonnegative costs. We see that action that extremizes the

right hand side of the optimality equation is optimal. Stopping problems and OSLA rule.

5.1 Example: a partially observed MDP

Example 5.1. A hidden object moves between two location according to a Markov
chain with probability transition matrix P = (pij). A search in location i costs ci,
and if the object is there it is found with probability αi. The aim is to minimize the
expected cost of finding the object.

This is example of a partially observable Markov decision process (POMDP).
The decision-maker cannot directly observe the underlying state, but he must maintain
a probability distribution over the set of possible states, based on his observations, and
the underlying MDP. This distribution is updated by the usual Bayesian calculations.

Solution. Let xi be the probability that the object is in location i (where x1+x2 = 1).
Value iteration of the dynamic programming equation is via

Fs(x1) = min

{

c1 + (1− α1x1)Fs−1

(
(1− α1)x1p11 + x2p21

1− α1x1

)

,

c2 + (1− α2x2)Fs−1

(
(1− α2)x2p21 + x1p11

1− α2x2

)}

.

The arguments of Fs−1(·) are the posterior probabilities that the object in location 1,
given that we have search location 1 (or 2) and not found it.

Now F0(x1) = 0, F1(x1) = min{c1, c2}, F2(x) is the minimum of two linear functions
of x1. If Fs−1 is the minimum of some collection of linear functions of x1 it follows that
the same can be said of Fs. Thus, by induction, Fs is a concave function of x1.

Since Fs → F in the N and F case, we can deduce that the infinite horizon return
function, F , is also a concave function. Notice that in the optimality equation for F
(obtained by letting s → ∞ in the equation above), the left hand term within the
min{·, ·} varies from c1 + F (p21) to c1 + (1 − α1)F (p11) as x1 goes from 0 to 1. The
right hand term varies from c2 + (1− α2)F (p21) to c2 + F (p11) as x1 goes from 0 to 1.

Consider the special case of α1 = 1 and c1 = c2 = c. Then the left hand term is the
linear function c + (1 − x1)F (p21). This means we have the picture below, where the
blue and red curves corresponds to the left and right hand terms, and intersect exactly
once since the red curve is concave.

Thus the optimal policy can be characterized as “search location 1 iff the probability
that the object is in location 1 exceeds a threshold x∗

1”.
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0 1x1x∗

1

c+ F (p21)

c

c+ (1− α2)F (p21)

c+ F (p11)

The value of x∗
1 depends on the parameters, αi and pij . It is believed the answer is

of this form for all values of the parameters, but this is still an unproved conjecture.

5.2 Stationary policies

A Markov policy is a policy that specifies the control at time t to be simply a function
of the state and time. In the proof of Theorem 4.2 we used ut = ft(xt) to specify the
control at time t. This is a convenient notation for a Markov policy, and we can write
π = (f0, f1, . . . ) to denote such a policy. If in addition the policy does not depend on
time and is non-randomizing in its choice of action then it is said to be a deterministic
stationary Markov policy, and we write π = (f, f, . . . ) = f∞.

For such a policy we might write

Ft(π, x) = c(x, f(x)) + E[Ft+1(π, x1) | xt = x, ut = f(x)]

or Ft+1 = L(f)Ft+1, where L(f) is the operator having action

L(f)φ(x) = c(x, f(x)) + E[φ(x1) | x0 = x, u0 = f(x)].

5.3 Characterization of the optimal policy

Negative programming is about maximizing non-positive rewards, r(x, u) ≤ 0, or min-
imizing non-negative costs, c(x, u) ≥ 0. The following theorem gives a necessary and
sufficient condition for a stationary policy to be optimal: namely, it must choose the
optimal u on the right hand side of the optimality equation. Note that in this theorem
we are requiring that the infimum over u is attained as a minimum over u (as would
be the case if we make the finite actions assumptions, F).

Theorem 5.2. Suppose D or N holds. Suppose π = f∞ is the stationary Markov policy
such that

f(x) = argmin
u

[c(x, u) + βE[F (x1) | x0 = x, u0 = u] .

Then F (π, x) = F (x), and π is optimal.

(i.e. u = f(x) is the value of u which minimizes the r.h.s. of the DP equation.)
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Proof. The proof is really the same as the final part of proving Theorem 4.3. By
substituting the optimality equation into itself and using the fact that π specifies the
minimizing control at each stage,

F (x) = Eπ

[
s−1∑

t=0

βtc(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

+ βsEπ [F (xs)|x0 = x] . (5.1)

In case N we can drop the final term on the right hand side of (5.1) (because it is
non-negative) and then let s → ∞; in case D we can let s → ∞ directly, observing that
this term tends to zero. Either way, we have F (x) ≥ F (π, x).

A corollary is that if assumption F holds then an optimal policy exists. Neither
Theorem 5.2 or this corollary are true for positive programming (see Example 4.1).

5.4 Optimal stopping over a finite horizon

One way that the total-expected cost can be finite is if it is possible to enter a state
from which no further costs are incurred. Suppose u has just two possible values: u = 0
(stop), and u = 1 (continue). Suppose there is a termination state, say 0, that is entered
upon choosing the stopping action. Once this state is entered the system stays in that
state and no further cost is incurred thereafter. We let c(x, 0) = k(x) (stopping cost)
and c(x, 1) = c(x) (continuation cost). This defines a stopping problem.

Suppose that Fs(x) denotes the minimum total cost when we are constrained to
stop within the next s steps. The dynamic programming equation is

Fs(x) = min{k(x), c(x) + E[Fs−1(x1) | x0 = x, u0 = 1]} , (5.2)

with F0(x) = k(x), c(0) = 0.
Consider the set of states in which it is at least as good to stop now as to continue

one more step and then stop:

S = {x : k(x) ≤ c(x) + E[k(x1) | x0 = x, u0 = 1)]}.

Clearly, it cannot be optimal to stop if x 6∈ S, since in that case it would be strictly
better to continue one more step and then stop. If S is closed then the following
theorem gives us the form of the optimal policies for all finite-horizons.

Theorem 5.3. Suppose S is closed (so that once the state enters S it remains in S.)
Then an optimal policy for all finite horizons is: stop if and only if x ∈ S.

Proof. The proof is by induction. If the horizon is s = 1, then obviously it is optimal
to stop only if x ∈ S. Suppose the theorem is true for a horizon of s− 1. As above, if
x 6∈ S then it is better to continue for more one step and stop rather than stop in state
x. If x ∈ S, then the fact that S is closed implies x1 ∈ S and so Fs−1(x1) = k(x1). But
then (5.2) gives Fs(x) = k(x). So we should stop if s ∈ S.

The optimal policy is known as a one-step look-ahead rule (OSLA rule).
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5.5 Example: optimal parking

A driver is looking for a parking space on the way to his destination. Each parking
space is free with probability p independently of whether other parking spaces are free
or not. The driver cannot observe whether a parking space is free until he reaches it.
If he parks s spaces from the destination, he incurs cost s, s = 0, 1, . . . . If he passes
the destination without having parked the cost is D. Show that an optimal policy is
to park in the first free space that is no further than s∗ from the destination, where s∗

is the greatest integer s such that (Dp+ 1)qs ≥ 1.

Solution. When the driver is s spaces from the destination it only matters whether
the space is available (x = 1) or full (x = 0). The optimality equation gives

Fs(0) = qFs−1(0) + pFs−1(1),

Fs(1) = min

{

s, (take available space)

qFs−1(0) + pFs−1(1), (ignore available space)

where F0(0) = D, F0(1) = 0.
Now we solve the problem using the idea of a OSLA rule. It is better to stop now

(at a distance s from the destination) than to go on and take the first available space
if s is in the stopping set

S = {s : s ≤ k(s− 1)}
where k(s − 1) is the expected cost if we take the first available space that is s − 1 or
closer. Now

k(s) = ps+ qk(s− 1),

with k(0) = qD. The general solution is of the form k(s) = −q/p+ s + cqs. So after
substituting and using the boundary condition at s = 0, we have

k(s) = − q

p
+ s+

(

D +
1

p

)

qs+1, s = 0, 1, . . . .

So
S = {s : (Dp+ 1)qs ≥ 1}.

This set is closed (since s decreases) and so by Theorem 5.3 this stopping set describes
the optimal policy.

We might let D be the expected distance that that the driver must walk if he takes
the first available space at the destination or further down the road. In this case,
D = 1 + qD, so D = 1/p and s∗ is the greatest integer such that 2qs ≥ 1.
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6 Optimal Stopping Problems

More on stopping problems and their solution.

6.1 Bruss’s odds algorithm

A doctor, using a special treatment, codes 1 for a successful treatment, 0 otherwise. He
treats a sequence of n patients and wants to minimize any suffering, while achieving
a success with every patient for whom that is possible. Stopping on the last 1 would
achieve this objective, so he wishes to maximize the probability of this.

Solution. Suppose Xk is the code of the kth patient. Assume X1, . . . , Xn are indepen-
dent with pk = P (Xk = 1). Let qk = 1−pk and rk = pk/qk. Bruss’s odds algorithm
sums the odds from the sth event to the last event (the nth)

Rs = rs + · · ·+ rn

and finds the greatest s, say s∗, for which Rs ≥ 1. We claim that by stopping the
first time that code 1 occurs amongst patients {s∗, s∗+1, . . . , n}, the doctor maximizes
probability of stopping on the last patient who can be successfully treated.

To prove this claim we just check optimality of a OSLA-rule. The stopping set is

S = {i : qi+1 · · · qn > (pi+1qi+2qi+3 · · · qn) + (qi+1pi+2qi+3 · · · qn)
+ · · ·+ (qi+1qi+2qi+3 · · · pn)}

= {i : 1 > ri+1 + ri+2 + · · ·+ rn}
= {s∗, s∗ + 1, . . . , n}.

Clearly the stopping set is closed, so the OSLA-rule is optimal. The probability of
stopping on the last 1 is (qs∗ · · · qn)(rs∗ + · · ·+ rn) and (by solving a little optimization
problem) this is always ≥ 1/e = 0.368, provided R1 ≥ 1.

We can use the odds algorithm to re-solve the secretary problem. Code 1 when a
candidate is better than all who have been seen previously. Our aim is to stop on the
last candidate coded 1. We proved previously that X1, . . . , Xh are independent and
P (Xt = 1) = 1/t. So ri = (1/t)/(1− 1/t) = 1/(t− 1). The algorithm tells us to ignore
the first s∗ − 1 candidates and the hire the first who is better than all we have seen
previously, where s∗ is the greatest integer s for which

1

s− 1
+

1

s
+ · · ·+ 1

h− 1
≥ 1

(

≡ the least s for which
1

s
+ · · ·+ 1

h− 1
≤ 1

)

.

We can also solve a ‘groups’ version of the secretary problem. Suppose we see
h groups of candidates, of sizes n1, . . . , nh. We wish to stop with the group that
contains the best of all the candidates. Then p1 = 1, p2 = n2/(n1 + n2), . . . , ph =
nh/(n1 + · · · + nh). The odds algorithm tells us to stop if group i contains the best
candidate so far and i ≥ s∗, where s∗ is the greatest integer s such that

ns
∑s−1

i=1 ni

+
ns+1
∑s

i=1 ni
+ · · ·+ nh

∑h−1
i=1 ni

≥ 1.
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6.2 Example: Stopping a random walk

Suppose that xt follows a random walk on {0, . . . , N}. At any time t we may stop the
walk and take a positive reward r(xt). In states 0 and N we must stop. The aim is to
maximize Er(xT ).

Solution. The dynamic programming equation is

F (0) = r(0), F (N) = r(N)

F (x) = max
{
r(x), 1

2F (x − 1) + 1
2F (x+ 1)

}
, 0 < x < N.

We see that

(i) F (x) ≥ 1
2F (x− 1) + 1

2F (x+ 1), so F (x) is concave.

(ii) Also F (x) ≥ r(x).

We say F is a concave majorant of r.

In fact, F can be characterized as the smallest concave majorant of r. For suppose
that G is any other concave majorant of r. Starting with F0 = 0, we have G ≥ F0. So
we can prove by induction that

Fs(x) = max
{
r(x), 1

2Fs−1(x− 1) + 1
2Fs−1(x− 1)

}

≤ max
{
r(x), 1

2G(x− 1) + 1
2G(x + 1)

}

≤ max {r(x), G(x)}
≤ G(x).

Theorem 4.3 tells us that Fs(x) → F (x) as s → ∞. Hence F ≤ G.
A OSLA rule is not optimal here. The optimal rule is to stop iff F (x) = r(x).

6.3 Optimal stopping over the infinite horizon

Consider now a general stopping problem over the infinite-horizon with k(x), c(x) as
previously, and with the aim of minimizing total expected cost. Let Fs(x) be the infimal
cost given that we are required to stop by the sth step. Let F (x) be the infimal cost
when all that is required is that we stop eventually. Since less cost can be incurred if
we are allowed more time in which to stop, we have

Fs(x) ≥ Fs+1(x) ≥ F (x).

Thus by monotone convergence Fs(x) tends to a limit, say F∞(x), and F∞(x) ≥ F (x).

Example 6.1. Consider the problem of stopping a symmetric random walk on the
integers, where c(x) = 0, k(x) = exp(−x). The policy of stopping immediately, say π,
has F (π, x) = exp(−x), and since e−x is a convex function this satisfies the infinite-
horizon optimality equation,

F (x) = min{exp(−x), (1/2)F (x− 1) + (1/2)F (x+ 1)}.
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However, π is not optimal. The random walk is recurrent, so we may wait until reaching
as large an integer as we like before stopping; hence F (x) = 0. Thus we see two things:

(i) It is possible that F∞ > F . This is because Fs(x) = e−x, but F (x) = 0.

(ii) Theorem 4.2 is not true for negative programming. Policy π has F (π, x) = e−x

and this satisfies the optimality equation. Yet π is not optimal.

Remark. In Theorem 4.3 we had F∞ = F , but for that theorem we assumed F0(x) =
k(x) = 0 and Fs(x) was the infimal cost possible over s steps, and thus Fs ≤ Fs+1 (in
the N case). However, Example 6.1 k(x) > 0 and Fs(x) is the infimal cost amongst the
set of policies that are required to stop within s steps. Now Fs(x) ≥ Fs+1(x).

The following lemma gives conditions under which the infimal finite-horizon cost
does converge to the infimal infinite-horizon cost.

Lemma 6.2. Suppose all costs are bounded as follows.

(a) K = sup
x

k(x) < ∞ (b) C = inf
x
c(x) > 0. (6.1)

Then Fs(x) → F (x) as s → ∞.

Proof. Suppose π is an optimal policy for the infinite horizon problem and stops at the
random time τ . It has expected cost of at least (s + 1)CP (τ > s). However, since it
would be possible to stop at time 0 the cost is also no more than K, so

(s+ 1)CP (τ > s) ≤ F (x) ≤ K.

In the s-horizon problem we could follow π, but stop at time s if τ > s. This implies

F (x) ≤ Fs(x) ≤ F (x) +KP (τ > s) ≤ F (x) +
K2

(s+ 1)C
.

By letting s → ∞, we have F∞(x) = F (x).

Note that the problem posed here is identical to one in which we pay K at the start
and receive a terminal reward r(x) = K − k(x).

Theorem 6.3. Suppose S is closed and (6.1) holds. Then an optimal policy for the
infinite horizon is: stop if and only if x ∈ S.

Proof. By Theorem 5.3 we have for all finite s,

Fs(x)
= k(x) x ∈ S,
< k(x) x 6∈ S.

Lemma 6.2 gives F (x) = F∞(x).
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6.4 Sequential Probability Ratio Test

A statistician wishes to decide between two hypotheses, H0 : f = f0 and H1 : f = f1
on the basis of i.i.d. observations drawn from a distribution with density f . Ex ante he
believes the probability that Hi is true is pi (where p0 + p1 = 1). Suppose that he has
the sample x = (x1, . . . , xn). The posterior probabilities are in the likelihood ratio

ℓn(x) =
f1(x1) · · · f1(xn)

f0(x1) · · · f0(xn)

p1
p0

.

Suppose it costs γ to make an observation. Stopping and declaring Hi true results in
a cost ci if wrong. This leads to the optimality equation for minimizing expected cost

F (ℓ) = min

{

c0
ℓ

1 + ℓ
, c1

1

1 + ℓ
,

γ +
ℓ

1 + ℓ

∫

F (ℓf1(y)/f0(y))f1(y)dy +
1

1 + ℓ

∫

F (ℓf1(y)/f0(y))f0(y)dy

}

Taking H(ℓ) = (1 + ℓ)F (ℓ), the optimality equation can be rewritten as

H(ℓ) = min

{

c0ℓ, c1, (1 + ℓ)γ +

∫

H(ℓf1(y)/f0(y))f0(y)dy

}

.

This is a similar problem to the one we solved about searching for a hidden object. The
state is ℓn. We can stop (in two ways) or continue by paying for another observation,
in which case the state makes a random jump to ℓn+1 = ℓnf1(x)/f0(x), where x is an
observation from f0. We can show that H(·) is concave in ℓ, and that therefore the
optimal policy can be described by two numbers, a∗0 ≤ a∗1: If ℓn ≤ a∗0, stop and declare
H0 true; If ℓn ≥ a∗1, stop and declare H1 true; otherwise take another observation.

6.5 Bandit processes

A bandit process is a special type of MDP in which there are just two possible actions:
u = 0 (freeze) or u = 1 (continue). The control u = 0 produces no reward and the state
does not change (hence the term ‘freeze’). Under u = 1 we obtain a reward r(xt) and
the state changes, to xt+1, according to the Markov dynamics P (xt+1 | xt, ut = 1).

A simple family of alternative bandit processes (SFABP) is a collection of n
such bandit processes. At each time t = 0, 1, . . . we must select exactly one bandit to
receive the continuation action, while all others are frozen.

This provide a very rich modelling framework. With it we can model questions like:

• Which of n drugs should we give to the next patient?

• Which of n jobs should we work on next?

• When of n oil fields should we explore next?

24



7 Bandit Processes and the Gittins Index

The multi-armed bandit problem. Gittins index theorem.

7.1 Multi-armed bandit problem

A multi-armed bandit is a slot-machine with multiple arms. The arms differ in the
distributions of rewards that they pay out when pulled. An important special case is
when arm i is a so-called Bernoulli bandit, with parameter pi. We have already met
this as the drug-testing model in §4.5. Such an arm pays £1 with probability pi, and
£0 with probability 1− pi; this happens independently each time the arm is pulled. If
there are n such arms, and a gambler knows the true values of p1, . . . , pn, then obviously
he maximizes his expected reward by always pulling the arm of maximum pi. However,
if he does not know the pi, then he must choose each successive arm on the basis of the
information he has obtained by playing, updated in a Bayesian manner on the basis of
observing the rewards he has obtained on previous pulls. The aim in the multi-armed
bandit problem (MABP) is to maximize the expected total discounted reward.

More generally, we consider a problem of controlling the evolution of n indepen-
dent reward-producing Markov processes decision processes. The action space of each
process contains just two controls, which cause the process to be either ‘continued’ or
‘frozen’. At each instant (in discrete time) exactly one of these so-called bandit pro-
cesses is continued (and reward from it obtained), while all the other bandit processes
are frozen. The continued process can change state; but frozen processes do not change
state. Reward is accrued only from the bandit process that is continued. This creates
what is termed a simple family of alternative bandit processes (SFABP). The
word ‘simple’ means that all the n bandit processes are available at all times.

Let x(t) = (x1(t), . . . , xn(t)) be the states of the n bandits. Let it denote the bandit
process that is continued at time t under some policy π. In the language of Markov
decision problems, we wish to find the value function:

F (x) = sup
π

E

[
∞∑

t=0

rit(xit(t))β
t

∣
∣
∣
∣
∣
x(0) = x

]

,

where the supremum is taken over all policies π that are realizable (or non-anticipatory),
in the sense that it depends only on the problem data and x(t), not on any information
which only becomes known only after time t.

Setup in this way, we have an infinite-horizon discounted-reward Markov decision
problem. It therefore has a deterministic stationary Markov optimal policy. Its dynamic
programming is

F (x) = max
i:i∈{1,...,n}






ri(x) + β

∑

y∈Ei

Pi(xi, y)F (x1, . . . , xi−1, y, xi+1, . . . , xn)






. (7.1)
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7.2 The two-armed bandit

Consider first a problem with one arm B1 which always pays λ, and a second arm of
general type. The optimality equation, when B2 is in its state x, is

F (x) = max

{

λ

1− β
, r(x) + β

∑

y

P (x, y)F (y)

}

= max

{

λ

1− β
, sup

τ>0
E

[
τ−1∑

t=0

βtr(x(t)) + βτ λ

1− β

∣
∣
∣ x(0) = x

]}

.

The left hand choice within max{·, ·} corresponds to continuing B1. The right hand
choice corresponds to continuing B2 for at least one step and then switching to B1 a
some later step, τ . Notice that once we switch to B1 we will never wish switch back to
B2 because things remain the same as when we first switched away from B2.

We are to choose the stopping time τ so as to optimally switch from continuing
B2 to continuing B1. Because the two terms within the max{·, ·} are both increasing
in λ, and are linear and convex, respectively, there is a unique λ, say λ∗, for which they
are equal.

λ∗ = sup

{

λ :
λ

1− β
≤ sup

τ>0
E

[
τ−1∑

t=0

βtr(x(t)) + βτ λ

1− β

∣
∣
∣ x(0) = x

]}

. (7.2)

Of course this λ depends on x(0). We denote its value as G(x). After a little algebra

G(x) = sup
τ>0

E
[
∑τ−1

t=0 βtr(x(t)
∣
∣
∣ x(0) = x

]

E
[
∑τ−1

t=0 βt
∣
∣
∣ x(0) = x

] . (7.3)

G(x) is called the Gittins index (of state x), named after its originator, John Gittins.
The definition above is by a calibration, the idea being that we find a B1 paying a
constant reward λ, such that we are indifferent as to which bandit to continue next.

In can be easily shown that τ = min{t : Gi(xi(t)) ≤ Gi(xi(0)), τ > 0}, that is, τ is
the first time B2 is in a state where its Gittins index is no greater than it was initially.

In (7.3) we see that the Gittins index is the maximal possible quotient of ‘expected
total discounted reward over τ steps’, divided by ‘expected total discounted time over
τ steps’, where τ is at least 1 step. The Gittins index can be computed for all states
of Bi as a function only of the data ri(·) and Pi( · , · ). That is, it can be computed
without knowing anything about the other bandit processes.

7.3 Gittins index theorem

Remarkably, the problem posed by a SFABP (or a MABP) can be solved by using these
Gittins indices.
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Theorem 7.1 (Gittins Index Theorem). The problem posed by a SFABP, as setup
above, is solved by always continuing the process having the greatest Gittins index.

The Index Theorem is due to Gittins and Jones, who had obtained it by 1970, and
presented it in 1972. The solution of the MABP impressed many experts as surpris-
ing and beautiful. Peter Whittle describes a colleague of high repute, asking another
colleague ‘What would you say if you were told that the multi-armed bandit problem
had been solved?’ The reply was ‘Sir, the multi-armed bandit problem is not of such a
nature that it can be solved ’.

Single machine scheduling. Recall the example in §3.2 in which n jobs are to be
processed successively on one machine. Job i has a known processing times ti, assumed
to be a positive integer. On completion of job i a positive reward ri is obtained. We
used an interchange argument to show that the discounted sum of rewards is maximized
by processing jobs in decreasing order of the index riβ

t1/(1− βt1).
Now we do this using Gittins index. The optimal stopping time on the right hand

side of (7.3) is τ = ti, the numerator is riβ
ti and the denominator is 1+β+· · ·+βti−1 =

(1− βti)/(1− β). Thus, Gi = riβ
ti(1− β)/(1− βti). Note that Gi → ri/ti as β → 1.

7.4 Playing golf with many balls

There have been many proofs of the index theorem, all of which are useful in developing
insight. The following proof is perhaps the simplest (due to Weber (1992)). It is fun
to explain it in a special context (invented by Dimitri, Tetali and Winkler, 2003).

A golfer is playing with n balls. They are at positions x1, . . . , xn. If he plays ball
i it will next land at location y with probability P (xi, y). He wishes to minimize the
expected number of shots taken to get one ball in the hole (location 0).

To represent this as a SFABP we set rewards and costs all 0, except that a reward
R is obtained by continuing a bandit that is in state 0. So if some bandit (ball) reaches
state 0, say with the golfer’s tth shot, he will continue to play it there, obtaining reward
(βt + βt+1 + · · · )R. Suppose the golfer pays a ‘green fee’ of R/(1 − β). Then he will
be trying to maximize

− R

1− β
+ (βt + βt+1 + · · · )R = −(1 + β + · · ·+ βt−1)R

which tends to −tR as β → 1, so he’ll want to minimize the expected number of shots
taken to sink a ball. We claim this problem can be solved by a (Gittins) index policy.

Proof. Suppose the golfer is playing with just one ball, which is in location xi. The
golfer faces a cost of 1 for each shot he takes until the ball is sunk. So to motivate him
to play on, we offer him a prize g(xi) which he receives if he plays at least one more
shot and eventually sinks the ball. He is allowed to quit subsequently if the ball lands
in a bad place and the offered prize is no longer sufficiently motivating. But if this ever
happens, we will increase the offered prize, so that it again becomes just advantageous
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for him to keep playing. This defines an nondecreasing sequence of offered prizes for
ball i. Notice that it is defined independently of the other balls.

Now he plays with n balls. For each of them we define an offered prize, as above.
It is a function of its location, just as if he were playing only with that ball.

The key idea is that with these offered prizes the golfer can keep playing until a ball
is sunk, and he will just break even. He is guaranteed to collect the least possible prize
when a ball is finally sunk if he follows the policy of always playing the ball for which
the least prize is on offer. But the prizes were invented to make the game is ‘just fair’,
and so this policy must also minimize the expected number of shots required to sink a
ball in the hole. The prize g(xi) is of course the Gittins index for location xi.

7.5 Example: Weitzman’s problem

‘Pandora’ has n boxes, each of which contains an unknown prize. Ex ante the prize in
box i has a value with probability distribution function Fi. She can learn the value of
the prize by opening box i, which costs her ci to do. At any stage she may stop and
take as her reward the maximum of the prizes she has found. She wishes to maximize
the expected value of the prize she takes, minus the costs of opening boxes.

Solution. This problem can be modelled as a SFABP. Box i is associated with a bandit
process Bi, which starts in state 0. The first time it is ‘continued’ there is a cost ci,
and the state becomes xi, chosen by the distribution Fi. At all subsequent times that
it is continued the reward is r(xi) = (1 − β)xi, and the state remains xi. We wish to
maximize the expected value of

−
τ∑

t=1

βt−1cit +max{r(xi1 ), . . . , r(xiτ )}
∞∑

t=τ

βt

where we open boxes i1, . . . , iτ and then take the best prize thereafter. In the limit as
β → 1 this objective corresponds to that of Weitzman’s problem, namely,

−
τ∑

t=1

cit +max{xi1 , . . . , xiτ }

and so we can find the solution using the Gittins index theorem.
The Gittins index of an opened box is r(xi). The index of an unopened box i is the

solution to
Gi

1− β
= −ci +

β

1− β
Emax{r(xi), Gi}

or, by setting gi = G/(1 − β), and letting β → 1, we get an index that is the solution
of gi = −ci + Emax{xi, gi}.

For example, if Fi is a two point distribution with xi = 0 or xi = ri, with probabil-
ities 1− pi and pi, then gi = −ci + (1− pi)gi + piri =⇒ gi = ri − ci/pi.

Pandora’s optimal strategy is thus: Open boxes in decreasing order of gi until first
reaching a point that a revealed prize is greater than all gi of unopened boxes.
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7.6 *Calculation of the Gittins index*

How can we compute the Gittins index value for each possible state of a bandit process
Bi? The input is the data of ri(·) and Pi(·, ·). If the state space of Bi is finite, say
Ei = {1, . . . , ki}, then the Gittins indices can be computed in an iterative fashion. First
we find the state of greatest index, say 1 such that 1 = argmaxj ri(j). Having found
this state we can next find the state of second-greatest index. If this is state j, then
Gi(j) is computed in (7.3) by taking τ to be the first time that the state is not 1. This
means that the second-best state is the state j which maximizes

E[ri(j) + βri(1) + · · ·+ βτ−1ri(1)]

E[1 + β + · · ·+ βτ−1]
,

where τ is the time at which, having started at xi(0) = j, we have xi(τ) 6= 1. One
can continue in this manner, successively finding states and their Gittins indices, in
decreasing order of their indices. If Bi moves on a finite state space of size ki then its
Gittins indices (one for each of the ki states) can be computed in time O(k3i ).

If the state space of a bandit process is infinite, as in the case of the Bernoulli
bandit, there may be no finite calculation by which to determine the Gittins indices for
all states. In this circumstance, we can approximate the Gittins index using something
like the value iteration algorithm. Essentially, one solves a problem of maximizing right
hand side of (7.3), subject to τ ≤ N , where N is large.

7.7 *Forward induction policies*

If we put τ = 1 on the right hand side of (7.3) then it evaluates to Eri(xi(t)). If
we use this as an index for choosing between projects, we have a myopic policy or
one-step-look-ahead policy. The Gittins index policy generalizes the idea of a one-
step-look-ahead policy, since it looks-ahead by some optimal time τ , so as to maximize,
on the right hand side of (7.3), a measure of the rate at which reward can be accrued.
This defines a so-called forward induction policy.

7.8 *Proof of the Gittins index theorem*

The proof in the §7.4 has all the key ideas. For completeness we give a fuller proof of
the Gittins index theorem.

Proof of Theorem 7.1. We start by considering a problem in which only bandit process
Bi is available. Let us define the fair charge, γi(xi), as the maximum amount that a
gambler would be willing to pay per step in order to be permitted to continue Bi for at
least one more step, and being free to stop continuing it whenever he likes thereafter.
This is

γi(xi) = sup

{

λ : 0 ≤ sup
τ>0

E

[
τ−1∑

t=0

βt
(

ri(xi(t))− λ
) ∣
∣
∣xi(0) = xi

]}

. (7.4)
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Notice that (7.2) and (7.4) are equivalent definitions and so γi(xi) = Gi(xi). Notice
also that the time τ will be the first time that Gi(xi(τ)) < Gi(xi(0)).

We next define the prevailing charge for Bi at time t as gi(t) = mins≤t γi(xi(s)).
So gi(t) actually depends on xi(0), . . . , xi(t) (which we omit from its argument for
convenience). Note that gi(t) is a nonincreasing function of t and its value depends
only on the states through which bandit i evolves. The proof of the Index Theorem is
completed by verifying the following facts, each of which is almost obvious.

(i) Suppose that in the problem with n available bandit processes, B1, . . . , Bn, the
agent not only collects rewards, but also pays the prevailing charge of whatever
bandit that he chooses to continue at each step. Then he cannot do better than
just break even (i.e. expected value of rewards minus prevailing charges is 0).

This is because he could only make a strictly positive profit (in expected value) if
this were to happens for at least one bandit. Yet the prevailing charge has been
defined in such a way that he can only just break even.

(ii) If he always continues the bandit of greatest prevailing charge then he will inter-
leave the n nonincreasing sequences of prevailing charges into a single nonincreas-
ing sequence of prevailing charges and so maximize their discounted sum.

(iii) Using this strategy he also just breaks even; so this strategy, (of always continuing
the bandit with the greatest gi(xi)), must also maximize the expected discounted
sum of the rewards can be obtained from this SFABP.
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8 Average-cost Programming

The average-cost optimality equation. Policy improvement algorithm.

8.1 Average-cost optimality equation

Suppose that for a stationary Markov policy π, the following limit exists:

λ(π, x) = lim
t→∞

1

t
Eπ

[
t−1∑

τ=0

c(xτ , uτ )

∣
∣
∣
∣
∣
x0 = x

]

.

We might expect there to be a well-defined notion of an optimal average-cost, λ(x) =
infπ λ(π, x), and that under appropriate assumptions, λ(x) = λ should not depend on
x. Moreover, a reasonable guess is that

Fs(x) = sλ+ φ(x) + ǫ(s, x),

where ǫ(s, x) → 0 as s → ∞. Here φ(x) + ǫ(s, x) reflects a transient due to the initial
state. Suppose that the state space and action space are finite. From the optimality
equation for the finite horizon problem we have

Fs(x) = min
u

{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]}. (8.1)

So by substituting Fs(x) ∼ sλ+ φ(x) into (8.1), we obtain

sλ+ φ(x) ∼ min
u

{c(x, u) + E[(s− 1)λ+ φ(x1) | x0 = x, u0 = u]}

which suggests that the average-cost optimality equation should be:

λ+ φ(x) = min
u

{c(x, u) + E[φ(x1) | x0 = x, u0 = u]}. (8.2)

Theorem 8.1. Suppose there exists a constant λ and bounded function φ satisfying
(8.2). Let π be the policy which in each state x chooses u to minimize the right hand
side. Then λ is the minimal average-cost and π is the optimal stationary policy.

Proof. Suppose u is chosen by some policy π′. By repeated substitution of (8.2) into
itself we have

φ(x) ≤ −tλ+ Eπ′

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

+ Eπ′ [φ(xt) | x0 = x].

with equality if π′ = π. Divide this by t and let t → ∞. Boundedness of φ ensures that
(1/t)Eπ′ [φ(xt) | x0 = x] → 0. So we obtain

0 ≤ −λ+ lim
t→∞

1

t
Eπ′

[
t−1∑

τ=0

c(xτ , uτ )

∣
∣
∣
∣
∣
x0 = x

]

,

with equality if π′ = π.
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So an average-cost optimal policy can be found by looking for a bounded solution
to (8.2). Notice that if φ is a solution of (8.2) then so is φ+(a constant), because the (a
constant) will cancel from both sides of (8.2). Thus φ is undetermined up to an additive
constant. In searching for a solution to (8.2) we can therefore pick any state, say x̄,
and arbitrarily take φ(x̄) = 0. The function φ is called the relative value function.

8.2 Example: admission control at a queue

Each day a consultant is presented with the opportunity to take on a new job. The
jobs are independently distributed over n possible types and on a given day the offered
type is i with probability ai, i = 1, . . . , n. Jobs of type i pay Ri upon completion.
Once he has accepted a job he may accept no other job until that job is complete. The
probability that a job of type i takes k days is (1− pi)

k−1pi, k = 1, 2, . . . . Which jobs
should the consultant accept?

Solution. Let 0 and i denote the states in which he is free to accept a job, and in
which he is engaged upon a job of type i, respectively. Then (8.2) is

λ+ φ(0) =

n∑

i=1

aimax[φ(0), φ(i)],

λ+ φ(i) = (1− pi)φ(i) + pi[Ri + φ(0)], i = 1, . . . , n.

Taking φ(0) = 0, these have solution φ(i) = Ri − λ/pi, and hence

λ =

n∑

i=1

aimax[0, Ri − λ/pi].

The left hand side is increasing in λ and the right hand side is decreasing λ. Hence
there is a root, say λ∗, and this is the maximal average-reward. The optimal policy
takes the form: accept only jobs for which piRi ≥ λ∗.

8.3 Value iteration bounds

Value iteration in the average-cost case is based upon the idea that Fs(x) − Fs−1(x)
approximates the minimal average-cost for large s. For the rest of this lecture we
suppose the state space is finite.

Theorem 8.2. Define

ms = min
x

{Fs(x) − Fs−1(x)}, Ms = max
x

{Fs(x) − Fs−1(x)}. (8.3)

Then ms ≤ λ ≤ Ms, where λ is the minimal average-cost.
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Proof. Suppose π = f∞ is the average-cost optimal policy over the infinite horizon,
taking u = f(x), with average-cost λ. Then

Fs−1(x) +ms ≤ Fs−1(x) + [Fs(x) − Fs−1(x)]

= Fs(x)

≤ c(x, f(x)) + E[Fs−1(x1) | x0 = x, u0 = f(x)].

We substitute this into itself t− 1 times to get

Fs−1(x) ≤ −mst+ Eπ

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

+ Eπ[Fs−1(xt) | x0 = x].

Divide by t and let t → ∞ to get ms ≤ λ. A bound λs ≤ Ms is found similarly using

Fs−1(x) ≥ −Ms + c(x, u) + E[Fs−1(x1) | x0 = x, u0 = fs(x)].

≥ −Mst+ Eπs

[
t−1∑

τ=0

c(xτ , uτ )

∣
∣
∣
∣
∣
x0 = x

]

+ Eπs
[Fs−1(xt) | x0 = x].

This justifies use of a value iteration algorithm in which we calculate Fs until
Ms −ms ≤ ǫms. At that point the stationary policy f∞

s achieves an average-cost that
is within ǫ× 100% of optimal.

8.4 Policy improvement algorithm

In the average-cost case a policy improvement algorithm is be based on the follow-
ing observations. Suppose that for a policy π = f∞, we have that λ, φ solve

λ+ φ(x) = c(x, f(x0)) + E[φ(x1) | x0 = x, u0 = f(x0)],

and there exists a policy π1 = f∞
1 such that

λ+ φ(x) ≥ c(x, f1(x0)) + E[φ(x1) | x0 = x, u0 = f1(x0)], (8.4)

for all x, and with strict inequality for some x (and thus f1 6= f). Then following the
lines of proof in Theorems 8.1 and 8.2 (repeatedly substituting (8.4) into itself),

λ ≥ lim
t→∞

1

t
Eπ1

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

. (8.5)

So π1 is at least as good as π. If there is no π1 then π satisfies (8.2) and so π is optimal.
This justifies the following policy improvement algorithm
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(0) Choose an arbitrary stationary policy π0. Set s = 1.

(1) For stationary policy πs−1 = f∞
s−1 determine φ, λ to solve

λ+ φ(x) = c(x, fs−1(x)) + E[φ(x1) | x0 = x, u0 = fs−1(x)].

This gives a set of linear equations, and so is intrinsically easier to solve than (8.2).
The average-cost of πs−1 is λ.

(2) Now determine the policy πs = f∞
s from

fs(x) = argmin
u

{c(x, u) + E[φ(x1) | x0 = x, u0 = u]},

taking fs(x) = fs−1(x) whenever this is possible. If πs = πs−1 then we have a solution
to (8.2) and so πs−1 is optimal. Otherwise πs is a new policy. By the calculation in
(8.5) this has an average-cost no more than λ, so πs is at least as good as πs−1, We
now return to step (1) with s := s+ 1.

If both the action and state spaces are finite then there are only a finite number
of possible stationary policies and so the policy improvement algorithm must find an
optimal stationary policy in finitely many iterations. By contrast, the value iteration
algorithm only obtains increasingly accurate approximations of λ∗.

Example 8.3. Consider again the example of §8.2. Let us start with a policy π0 which
accept only jobs of type 1. The average-cost of this policy can be found by solving

λ+ φ(0) = a1φ(1) +

n∑

i=2

aiφ(0),

λ+ φ(i) = (1− pi)φ(i) + pi[Ri + φ(0)], i = 1, . . . , n.

The solution is λ = a1p1R1/(a1 + p1), φ(0) = 0, φ(1) = p1R1/(a1 + p1), and φ(i) =
Ri − λ/pi, i ≥ 2. The first use of step (1) of the policy improvement algorithm will
create a new policy π1, which improves on π0, by accepting jobs for which φ(i) =
max{φ(0), φ(i)}, i.e. for which φ(i) = Ri − λ/pi > 0 = φ(0).

If there are no such i then π0 is optimal. So we may conclude that π0 is optimal if
and only if piRi ≤ a1p1R1/(a1 + p1) for all i ≥ 2.

Policy improvement in the discounted-cost case.

In the case of strict discounting the policy improvement algorithm is similar:

(0) Choose an arbitrary stationary policy π0. Set s = 1.

(1) For stationary policy πs−1 = f∞
s−1 determine G to solve

G(x) = c(x, fs−1(x)) + βE[G(x1) | x0 = x, u0 = fs−1(x)].

(2) Now determine the policy πs = f∞
s from

fs(x) = argmin
u

{c(x, u) + βE[G(x1) | x0 = x, u0 = u]},

taking fs(x) = fs−1(x) whenever this is possible. Stop if fs = fs−1. Otherwise return
to step (1) with s := s+ 1.
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9 Continuous-time Markov Decision Processes

Control problems in a continuous-time stochastic setting. Markov jump processes when the

state space is discrete. Uniformization.

9.1 Stochastic scheduling on parallel machines

A collection of n jobs is to be processed on a single machine. They have processing
times X1, . . . , Xn, which are ex ante distributed as independent exponential random
variables, Xi ∼ E(λi) and EXi = 1/λi, where λ1, . . . , λn are known.

If jobs are processed in order 1, 2, . . . , n, they finished in expected time 1/λ1+ · · ·+
1/λn. So the order of processing does not matter.

But now suppose there are m (2 ≤ m < n) identical machines working in parallel.
Let Ci be the completion time of job i.

• maxi Ci is called the makespan (the time when all jobs are complete).

• ∑i Ci is called the flow time (sum of completion times).

Suppose we wish to minimize the expected makespan. We can find the optimal
order of processing by stochastic dynamic programming. But now we are in continuous
time, t ≥ 0. So we need the important facts:

(i) min(Xi, Xj) ∼ E(λi + λj); (ii) P (Xi < Xj | min(Xi, Xj) = t) = λi/(λi + λj).

Suppose m = 2. The optimality equations are

F ({i}) = 1

λi

F ({i, j}) = 1

λi + λj
[1 + λiF ({j}) + λjF ({i})]

F (S) = min
i,j∈S

1

λi + λj
[1 + λiF (Si) + λjF (Sj)],

where S is a set of uncompleted jobs, and we use the abbreviated notation Si = S \{i}.
It is helpful to rewrite the optimality equation. Let Λ =

∑

i λi. Then

F (S) = min
i,j∈S

1

Λ



1 + λiF (Si) + λjF (Sj) +
∑

k 6=i,j

λkF (S)





= min
ui∈[0,1],i∈S,∑

i
ui≤2

1

Λ

[

1 + ΛF (S) +
∑

i

uiλi(F (Si)− F (S))

]

This is helpful, because in all equations there is now the same divisor, Λ. An event
occurs after a time that is exponentially distributed with parameter Λ, but with proba-
bility λk/Λ this is a ‘dummy event’ if k 6= i, j. This trick is known as uniformization.
Having set this up we might also then say let Λ = 1.
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We see that it is optimal to start by processing the two jobs in S for which δi(S) :=
λi(F (Si)− F (S)) is least.

The policy of always processing the m jobs of smallest [largest] λi is called the
Lowest [Highest] Hazard Rate first policy, and denoted LHR [HHR] .

Theorem 9.1.
(a) Expected makespan is minimized by LHR.

(b) Expected flow time is minimized by HHR.

(c) E[C(n−m+1)] (expected time there is first an idle machine) is minimized by LHR.

Proof. (*starred*) We prove only (a), and for ease assume m = 2 and λ1 < · · · < λn.
We would like to prove that for all i, j ∈ S ⊆ {1, . . . , n},

i < j ⇐⇒ δi(S) < δj(S) (except possibly if both i and j

are the jobs that would be processed by the optimal policy).
(9.1)

Truth of (9.1) would imply that jobs should be started in the order 1, 2, . . . , n.
Stochastic sequential assignment problem with arrivals
Let π be LLR. Take an induction hypothesis that (9.1) is true and that F (S) =

F (π, S) when S is a strict subset of {1, . . . , n}. Now consider S = {1, . . . , n}. We
examine F (π, S), and δi(π, S), under π. Let S

k denote S \ {k}. For i ≥ 3,

F (π, S) =
1

λ1 + λ2
[1 + λ1F (S1) + λ2F (S2)]

F (π, Si) =
1

λ1 + λ2
[1 + λ1F (S1i) + λ2F (S2i)]

=⇒ δi(π, S) =
1

λ1 + λ2
[λ1δi(S

1) + λ2δi(S
2)], i ≥ 3. (9.2)

If for some 3 ≤ i < j we were to have δi(π, S) > δj(π, S) then this would require that
either δi(S

1) > δj(S
1) or δi(S

2) > δj(S
2). But our induction hypothesis for (9.1) rules

these out.
Similarly, we can compute δ1(π, S).

F (π, S) =
1

λ1 + λ2 + λ3
[1 + λ1F (S1) + λ2F (S2) + λ3F (π, S)]

F (π, S1) =
1

λ1 + λ2 + λ3
[1 + λ1F (S1) + λ2F (S12) + λ3F (S13)]

=⇒ δ1(π, S) =
1

λ1 + λ2 + λ3
[λ2δ1(S

2) + λ3δ1(π, S) + λ1δ3(S
1)]

=
1

λ1 + λ2
[λ1δ3(S

1) + λ2δ1(S
2)]. (9.3)

By comparing (9.2) and (9.3) we see that we could only have δi(S) < δ1(S) for i ≥ 3 if
at least one of δi(S

1) < δ3(S
1) or δi(S

2) < δ1(S
2) is true. These are ruled out by our

induction hypothesis. Similarly, we cannot have δi(S) < δ2(S) for i ≥ 3.
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This completes a step of a step of an inductive proof by showing that (9.1) is true
for S, and that F (S) = F (π, S). We only need to check the base of the induction. This
is provided by the simple calculation

δ1({1, 2}) = λ1(F ({2})− F ({1, 2})) = λ1

[
1

λ2
− 1

λ1 + λ2

(

1 +
λ1

λ2
+

λ2

λ1

)]

= − λ2

λ1 + λ2
≤ δ2({1, 2}).

The proof of (b) is very similar, except that the inequality in (9.1) should be reversed.
The base of the induction comes from δ1({1, 2}) = −1.

The proof of (c) is also similar. The base of the induction is provided by δ1({1, 2}) =
λ1(0 − 1/(λ1 + λ2)). Since we are seeking to maximize EC(n−m+1) we should process
jobs for which δi is greatest, i.e., least λi. The problem in (c) is known as the Lady’s
nylon stocking problem. We think of a lady (having m = 2 legs) who wears two
stockings each day, which may fail, and she wishes to maximize the expected time until
she has only one good stocking left to wear.

9.2 Controlled Markov jump processes

The above example illustrates the idea of a controlled Markov jump process. It
evolves in continuous time, and in a discrete state space. In general:

• The state is i. We choose some control, say u (u ∈ A(i), a set of available
controls).

• After a time that is exponentially distributed with parameter qi(u) =
∑

j 6=i qij(u),
(i.e. having mean 1/qi(u)), the state jumps.

• Until the jump occurs cost accrues at rate c(i, u).

• The jump is to state j (6= i) with probability qij(u)/qi(u).

The infinite-horizon optimality equation is

F (i) = min
u∈A(i)







1

qi(u)



c(i, u) +
∑

j

qij(u)F (j)










.

Suppose qi(u) ≤ B for all i, u and use the uniformization trick,

F (i) = min
u∈A(i)







1

B



c(i, u) + (B − qi(u))F (i) +
∑

j

qij(u)F (j)










.

We now have something that looks exactly like a discrete-time optimality equation

F (i) = min
u∈A(i)






c̄(i, u) +

∑

j

pij(u)F (j)






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where c̄(i, u) = c(i, u)/B, pij(u) = qij(u)/B, j 6= i, and Pii(u) = 1− qi(u)/B.
This is great! It means we can use all the methods and theorems that we have

developed previously for solving discrete-time dynamic programming problems.
We can also introduce discounting by imagining that there is an ‘exponential clock’

of rate α which takes the state to a place where no further cost or reward is obtained.
This leads to an optimality equation of the form

F (i) = min
u






c̄(i, u) + β

∑

j

pij(u)F (j)






,

where β = B/(B + α), c̄(i, u) = c(i, u)/(B + α), and pij(u) is as above.

9.3 Example: admission control at a queue

The number of customers waiting in a queue is 0, 1, . . . . There is a constant service
rate µ (meaning that the service times of customers are distributed E(µ), and we may
control the arrival rate u between 0 and a maximum value M . Let c(x, u) = ax− Ru.
There is a holding cost a per unit time for each customer in the queue and receiving
a reward R at the point that each new customer is admitted (and therefore incurring
reward at rate Ru when the arrival rate is u). Suppose there is discounting at rate α.
The problem is one of choosing 0 ≤ ut ≤ M to minimize

E

[∫ ∞

0

(axt −Rut)e
−αtdt

]

.

Let us take B = α+M + µ, and without loss of generality assume B = 1.
After uniformization the discounted-cost optimality equation will look like

F (0) = inf
u∈[0,M ]

{−Ru+ β[uF (1) + (M − u)F (j − 1)]}

F (x) = inf
u∈[0,M ]

{ax− Ru+ β[uF (x+ 1) + µF (x− 1) + (M − u)F (x)]}, x ≥ 1.

So we can see that the optimal control is bang-bang, taking u = 0 or u = M as the
coefficient of u, namely −R+ F (x+ 1)− F (x), is positive or negative. One can set up
a value iteration form of this, i.e.

Fk+1(0) = inf
u∈[0,M ]

{−Ru+ β[uFk(1) + (M − u)Fk(j − 1)]}

Fk+1(x) = inf
u∈[0,M ]

{ax−Ru+ β[uFk(x+ 1) + µFk(x − 1) + (M − u)Fk(x)]}, x ≥ 1

and then prove by induction that Fk(x) is concave in x. This means that there exists
a threshold rule such that the optimal policy will be of the form:

u =

{

0

M
as x

≥
<

x∗.
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Time-average cost optimality. The optimality equation is

φ(0) + γ = inf
u∈[0,M ]

[−Ru+ uφ(1) + (µ+M − u)φ(0)],

= inf
u∈[0,M ]

[u{−R+ φ(1)− φ(0)} + (µ+M)φ(0)],

φ(x) + γ = inf
u
[ax−Ru+ uφ(x+ 1) + µφ(x− 1) + (M − u)φ(x)],

= inf
u∈[0,M ]

[ax+ u{−R+ φ(x + 1)− φ(x)} + µφ(x− 1) +Mφ(x)], x ≥ 1.

Thus u should be chosen to be 0 or M as −R+ φ(x+1)− φ(x) is positive or negative.
Let us consider what happens under the policy that take u = M for all x. The

relative costs for this policy, say f , are given by

f(x) + γ = ax−Rλ+Mf(x+ 1) + µf(x− 1), x ≥ 1.

The solution to the homogeneous part of this recursion is of the form f(x) = d11
x +

d2(µ/M)x. Assuming M < µ and we desire a solution for f that does not grow
exponentially, we take d2 = 0 and so the solution is effectively the solution to the
inhomogeneous part, i.e.

f(x) =
ax(x+ 1)

2(µ−M)
, γ =

aM

µ−M
−MR,

Applying the idea of policy improvement, we conclude that a better policy is to take
u = 0 (i.e. don’t admit a customer) if −R+ f(x+ 1)− f(x) > 0, i.e. if

(x+ 1)a

µ−M
−R > 0.

Further policy improvement is needed to reach the optimal policy. However, this policy
already exhibits an interesting property: it rejects customers for smaller queue length
x than does a policy which rejects a customer if and only if

(x+ 1)a

µ
−R > 0.

This second policy is optimal if one is purely concerned with whether or not an in-
dividual customer that joins when there are x customers in front of him will show a
profit on the basis of the difference between the reward R and his expected holding
cost (x+1)a/µ. This example exhibits the difference between individual optimality
(which is myopic) and social optimality. The socially optimal policy is more reluc-
tant to admit customers because it anticipates that more customers are on the way;
thus it feels less badly about forgoing the profit on a customer that presents himself
now, recognizing that admitting such a customer can cause customers who are admitted
after him to suffer greater delay.
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10 LQ Regulation

Models with linear dynamics and quadratic costs in discrete and continuous time. Riccati

equation, and its validity with additive white noise. Linearization of nonlinear models.

10.1 The LQ regulation problem

As we have seen, the elements of a control optimization problem are specification of (i)
the dynamics of the process, (ii) which quantities are observable at a given time, and
(iii) an optimization criterion.

In the LQG model the plant equation and observation relations are linear, the
cost is quadratic, and the noise is Gaussian (jointly normal). The LQG model is
important because it has a complete theory and illuminates key concepts, such as
controllability, observability and the certainty-equivalence principle.

Begin with a model in which the state xt is fully observable and there is no noise.
The plant equation of the time-homogeneous [A,B, · ] system has the linear form

xt = Axt−1 +But−1, (10.1)

where xt ∈ R
n, ut ∈ R

m, A is n× n and B is n×m. The cost function is

C =
h−1∑

t=0

c(xt, ut) +Ch(xh), (10.2)

with one-step and terminal costs

c(x, u) = x⊤Rx+ u⊤Sx+ x⊤S⊤u+ u⊤Qu =

(
x
u

)⊤(
R S⊤

S Q

)(
x
u

)

, (10.3)

Ch(x) = x⊤Πhx. (10.4)

All quadratic forms are non-negative definite (� 0), and Q is positive definite (≻ 0).
There is no loss of generality in assuming that R, Q and Πh are symmetric. This is a
model for regulation of (x, u) to the point (0, 0) (i.e. steering to a critical value).

To solve the optimality equation we shall need the following lemma.

Lemma 10.1. Suppose x, u are vectors. Consider a quadratic form

(
x
u

)⊤(
Πxx Πxu

Πux Πuu

)(
x
u

)

.

Assume it is symmetric and Πuu > 0, i.e. positive definite. Then the minimum with
respect to u is achieved at

u = −Π−1
uuΠuxx,

and is equal to
x⊤
[
Πxx −ΠxuΠ

−1
uuΠux

]
x.

40



Proof. Suppose the quadratic form is minimized at u. Then

(
x

u+ h

)⊤(
Πxx Πxu

Πux Πuu

)(
x

u+ h

)

= x⊤Πxxx+ 2x⊤Πxuu+ 2h⊤Πuxx+ 2h⊤Πuuu
︸ ︷︷ ︸

+u⊤Πuuu+ h⊤Πuuh.

To be stationary at u, the underbraced linear term in h⊤ must be zero, so

u = −Π−1
uuΠuxx,

and the optimal value is x⊤
[
Πxx −ΠxuΠ

−1
uuΠux

]
x.

Theorem 10.2. Assume the structure of (10.1)–(10.4). Then the value function has
the quadratic form

F (x, t) = x⊤Πtx, t ≤ h, (10.5)

and the optimal control has the linear form

ut = Ktxt, t < h.

The time-dependent matrix Πt satisfies the Riccati equation

Πt = fΠt+1, t < h, (10.6)

where Πh has the value given in (10.4), and f is an operator having the action

fΠ = R+A⊤ΠA− (S⊤ +A⊤ΠB)(Q +B⊤ΠB)−1(S +B⊤ΠA). (10.7)

The m× n matrix Kt is given by

Kt = −(Q+B⊤Πt+1B)−1(S +B⊤Πt+1A), t < h. (10.8)

Proof. Assertion (10.5) is true at time h. Assume it is true at time t+ 1. Then

F (x, t) = inf
u

[
c(x, u) + (Ax +Bu)⊤Πt+1(Ax +Bu)

]

= inf
u

[(
x
u

)⊤(
R+A⊤Πt+1A S⊤ +A⊤Πt+1B
S +B⊤Πt+1A Q+B⊤Πt+1B

)(
x
u

)]

.

Lemma 10.1 shows the minimizer is u = Ktx, and gives the form of f .
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10.2 The Riccati recursion

The backward recursion (10.6)–(10.7) is called the Riccati equation.

(i) Since the optimal control is linear in the state, say u = Kx, an equivalent expression
for the Riccati equation is

fΠ = inf
K

[
R+K⊤S + S⊤K +K⊤QK + (A+BK)⊤Π(A +BK)

]
.

(ii) The optimally controlled process obeys xt+1 = Γtxt. We call Γt the gain matrix
and it is given by

Γt = A+BKt = A−B(Q+B⊤Πt+1B)−1(S +B⊤Πt+1A).

(iii) S can be normalized to zero by choosing a new control u∗ = u + Q−1Sx, and
setting A∗ = A − BQ−1S, R∗ = R − S⊤Q−1S. So A∗x + Bu∗ = Ax + Bu and
c(x, u) = x⊤Rx+ u∗⊤Qu∗.

(iv) Similar results are true if xt+1 = Atxt+Btut+αt, where {αt} is a known sequence
of disturbances, and the aim is to track a sequence of values (x̄t, ūt), t = 0, . . . , h− 1,
so the cost is

c(x, u, t) =

(
x− x̄t

u− ūt

)⊤(
Rt S⊤

t

St Qt

)(
x− x̄t

u− ūt

)

.

10.3 White noise disturbances

Suppose the plant equation (10.1) is now

xt+1 = Axt +But + ǫt,

where ǫt ∈ R
n is vector white noise, defined by the properties Eǫ = 0, Eǫtǫ

⊤
t = N

and Eǫtǫ
⊤
s = 0, t 6= s. The dynamic programming equation is then

F (x, t) = inf
u

{
c(x, u) + Eǫ[F (Ax +Bu+ ǫ, t+ 1)]

}
,

with F (x, h) = x⊤Πhx. Try a solution F (x, t) = x⊤Πtx + γt. This holds for t = h.
Suppose it is true for t+ 1, then

F (x, t) = inf
u

{
c(x, u) + E(Ax+Bu+ ǫ)⊤Πt+1(Ax +Bu+ ǫ) + γt+1

}

= inf
u

{
c(x, u) + (Ax+Bu)⊤Πt+1(Ax+Bu)

+ 2Eǫ⊤Πt+1(Ax +Bu)
}
+ E

[
ǫ⊤Πt+1ǫ

]
+ γt+1

= inf
u

{
c(x, u) + (Ax+Bu)⊤Πt+1(Ax+Bu)

}
+ tr(NΠt+1) + γt+1,

where tr(A) means the trace of matrix A. Here we use the fact that

E
[
ǫ⊤Πǫ

]
= E




∑

ij

ǫiΠijǫj



 = E




∑

ij

ǫjǫiΠij



 =
∑

ij

NjiΠij = tr(NΠ).
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Thus (i) Πt follows the same Riccati equation as before, (ii) the optimal control is
ut = Ktxt, and (iii)

F (x, t) = x⊤Πtx+ γt = x⊤Πtx+
h∑

j=t+1

tr(NΠj).

The final term can be viewed as the cost of correcting future noise. In the infinite
horizon limit of Πt → Π as t → ∞, we incur an average cost per unit time of tr(NΠ),
and a transient cost of x⊤Πx that is due to correcting the initial x.

10.4 LQ regulation in continuous-time

In continuous-time we take ẋ = Ax+Bu and cost

C =

∫ h

0

(
x
u

)⊤(
R S⊤

S Q

)(
x
u

)

dt+ (x⊤Πx)h.

We can obtain the continuous-time solution from the discrete time solution by moving
forward in time in increments of ∆. Make the following replacements.

xt+1 → xt+∆, A → I +A∆, B → B∆, R, S, Q → R∆, S∆, Q∆.

Then as before, F (x, t) = x⊤Πx, where Π obeys the Riccati equation

∂Π

∂t
+R+A⊤Π+ ΠA− (S⊤ +ΠB)Q−1(S +B⊤Π) = 0.

This is slightly simpler than the discrete time version. The optimal control is u(t) =
K(t)x(t), where K(t) = −Q−1(S +B⊤Π).

The optimally controlled plant equation is ẋ = Γ(t)x, where

Γ(t) = A+BK = A−BQ−1(S +B⊤Π).

10.5 Linearization of nonlinear models

Linear models are important because they arise naturally via the linearization of non-
linear models. Consider the state-structured nonlinear model:

ẋ = a(x, u).

Suppose x, u are perturbed from an equilibrium (x̄, ū) where a(x̄, ū) = 0. Let x′ = x− x̄
and u′ = u− ū. The linearized version is

ẋ′ = ẋ = a(x̄+ x′, ū+ u′) = Ax′ +Bu

where

Aij =
∂ai
∂xj

∣
∣
∣
∣
(x̄,ū)

, Bij =
∂ai
∂uj

∣
∣
∣
∣
(x̄,ū)

.

If (x̄, ū) is to be a stable equilibrium point then we must be able to choose a control
that can bring the system back to (x̄, ū) from any nearby starting point.
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11 Controllability and Observability

Controllability in discrete and continuous time. Stabilizability.

11.1 Controllability and Observability

The discrete-time system [A,B, ·] is defined by the plant equation

xt = Axt−1 +But−1, (11.1)

The controllability question is: can we bring x to an arbitrary prescribed value by
some u-sequence?

The discrete-time system [A,B,C] is defined by (11.1) and observation relation

yt = Cxt−1. (11.2)

yt ∈ R
p is observed, but xt is not. C is p× n. The observability question is: can we

infer x0 from subsequent y values?

Definition 11.1. The [A,B, ·] system is r-controllable if one can bring it from an ar-
bitrary prescribed x0 to an arbitrary prescribed xr by some u-sequence u0, u1, . . . , ur−1.
A system of dimension n is controllable if it is r-controllable for some r

Definition 11.2. The [A,B,C] system s said to be r-observable if x0 can be inferred
from knowledge of the observations y1, . . . , yr and relevant control values u0, . . . , ur−2

for any initial x0. An n-dimensional system is observable if r-observable for some r.

The notion of observability stands in dual relation to that of controllability; a duality
that indeed persists throughout the subject.

11.2 Controllability

Example 11.3. Consider the case, (n = 2, m = 1),

xt =

(
a11 0
a21 a22

)

xt−1 +

(
1
0

)

ut−1.

This system is not 1-controllable. But

x2 −A2x0 = Bu1 +ABu0 =

(
1 a11
0 a21

)(
u1

u0

)

.

So it is 2-controllable if and only if a21 6= 0.

In general, by substituting the plant equation (11.1) into itself, we see that we must
find u0, u1, . . . , ur−1 to satisfy

∆ = xr −Arx0 = Bur−1 +ABur−2 + · · ·+Ar−1Bu0, (11.3)

for arbitrary ∆. In providing conditions for controllability we use the following theorem.
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Theorem 11.4. (The Cayley-Hamilton theorem) Any n × n matrix A satisfies
its own characteristic equation. So that if

det(λI −A) =

n∑

j=0

ajλ
n−j

then
∑n

j=0 ajA
n−j = 0.

The implication is that I, A,A2, . . . , An−1 contains basis for Ar, r = 0, 1, . . . . We
are now in a position to characterise controllability.

Theorem 11.5. (i) The system [A,B, · ] is r-controllable iff the matrix

Mr =
[
B AB A2B · · · Ar−1B

]

has rank n, (ii) equivalently, iff the n× n matrix

MrM
⊤
r =

r−1∑

j=0

Aj(BB⊤)(A⊤)j

is nonsingular (or, equivalently, positive definite.) (iii) If the system is r-controllable
then it is s-controllable for s ≥ min(n, r), and (iv) a control transferring x0 to xr with

minimal cost
∑r−1

t=0 u⊤
t ut is

ut = B⊤(A⊤)r−t−1(MrM
⊤
r )−1(xr −Arx0), t = 0, . . . , r − 1.

Proof. (i) The system (11.3) has a solution for arbitrary ∆ iff Mr has rank n.

(ii) That is, iff there does not exist nonzero w such that w⊤Mr = 0. Now

MrM
⊤
r w = 0 =⇒ w⊤MrM

⊤
r w = 0 ⇐⇒ w⊤Mr = 0 =⇒ MrM

⊤
r w = 0.

(iii) The rank of Mr is non-decreasing in r, so if the system is r-controllable, it is
(r + 1)-controllable. By the Cayley-Hamilton theorem, the rank is constant for r ≥ n.

(iv) Consider the Lagrangian

r−1∑

t=0

u⊤
t ut + λ⊤

(

∆−
r−1∑

t=0

Ar−t−1But

)

,

giving

ut =
1
2B

⊤(A⊤)r−t−1λ.

Now we can determine λ from (11.3).
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11.3 Controllability in continuous-time

Theorem 11.6. (i) The n dimensional system [A,B, · ] is controllable iff the matrix
Mn has rank n, or (ii) equivalently, iff

G(t) =

∫ t

0

eAsBB⊤eA
⊤s ds,

is positive definite for all t > 0. (iii) If the system is controllable then a control that

achieves the transfer from x(0) to x(t) with minimal control cost
∫ t

0
u⊤
s usds is

u(s) = B⊤eA
⊤(t−s)G(t)−1(x(t)− eAtx(0)).

Note that there is now no notion of r-controllability. However, G(t) ↓ 0 as t ↓ 0, so
the transfer becomes more difficult and costly as t ↓ 0.

11.4 Example: broom balancing

Consider the problem of balancing a broom in an upright position on your hand. By
Newton’s laws, the system obeys m(ü cos θ + Lθ̈) = mg sin θ.

mg

Lθ̈

xx

θ

uu

L

ü cos θ

mg sin θ

Figure 1: Force diagram for broom balancing

For small θ we have cos θ ∼ 1 and θ ∼ sin θ = (x− u)/L. So with α = g/L

ẍ = α(x − u),

equivalently,
d

dt

(
x
ẋ

)

=

(
0 1
α 0

)(
x
ẋ

)

+

(
0
−α

)

u.

Since
[
B AB

]
=

[
0 −α
−α 0

]

,

the system is controllable if θ is initially small.
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11.5 Stabilizability

Suppose we apply the stationary closed-loop control u = Kx so that ẋ = Ax + Bu =
(A+BK)x. So with Γ = A+BK, we have

ẋ = Γx, xt = eΓtx0, where eΓt =

∞∑

j=0

(Γt)j/j!

Similarly, in discrete-time, we have can take the stationary control, ut = Kxt, so
that xt = Axt−1 +But−1 = (A+BK)xt−1. Now xt = Γtx0.

We are interested in choosing Γ so that xt → 0 and t → ∞.

Definition 11.7.
Γ is a stability matrix in the continuous-time sense if all its eigenvalues have

negative real part, and hence xt → 0 as t → ∞.

Γ is a stability matrix in the discrete-time sense if all its eigenvalues of lie strictly
inside the unit disc in the complex plane, |z| = 1, and hence xt → 0 as t → ∞.

The [A,B] system is said to stabilizable if there exists a K such that A + BK is
a stability matrix.

Note that ut = Kxt is linear and Markov. In seeking controls such that xt → 0 it
is sufficient to consider only controls of this type since, as we see in the next lecture,
such controls arise as optimal controls for the infinite-horizon LQ regulation problem.

11.6 Example: pendulum

Consider a pendulum of length L, unit mass bob and angle θ to the vertical. Suppose
we wish to stabilise θ to zero by application of a force u. Then

θ̈ = −(g/L) sin θ + u.

We change the state variable to x = (θ, θ̇) and write

d

dt

(
θ

θ̇

)

=

(

θ̇
−(g/L) sin θ + u

)

∼
(

0 1
−g/L 0

)(
θ

θ̇

)

+

(
0
1

)

u.

Suppose we try to stabilise with a control that is a linear function of only θ (not θ̇), so
u = Kx = (−κ, 0)x = −κθ. Then

Γ = A+BK =

(
0 1

−g/L 0

)

+

(
0
1

)
(
−κ 0

)
=

(
0 1

−g/L− κ 0

)

.

The eigenvalues of Γ are ±
√

−g/L− κ. So either −g/L − κ > 0 and one eigenvalue
has a positive real part, in which case there is in fact instability, or −g/L−K < 0 and
eigenvalues are purely imaginary, which means we will in general have oscillations. So
successful stabilization must be a function of θ̇ as well, (and this would come out of
solution to the LQ regulation problem.)
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11.7 Example: satellite in a plane orbit

Consider a satellite of unit mass in a planar orbit and take polar coordinates (r, θ).

r̈ = rθ̇2 − c

r2
+ ur, θ̈ = −2ṙθ̇

r
+

1

r
uθ,

where ur and uθ are the radial and tangential components of thrust. If ur = uθ = 0
then there is a possible equilibrium in which the orbit is a circle of radius r = ρ,
θ̇ = ω =

√

c/ρ3 and ṙ = θ̈ = 0.
Consider a perturbation of this orbit and measure the deviations from the orbit by

x1 = r − ρ, x2 = ṙ, x3 = θ − ωt, x4 = θ̇ − ω.

Then, with n = 4, m = 2,

ẋ ∼







0 1 0 0
3ω2 0 0 2ωρ
0 0 0 1
0 −2ω/ρ 0 0







x+







0 0
1 0
0 0
0 1/ρ







(
ur

uθ

)

= Ax+Bu.

It is easy to check that M2 =
[
B AB

]
has rank 4 and that therefore the system is

controllable.

Suppose ur = 0 (radial thrust fails). Then

B =







0
0
0

1/ρ







M4 =
[
B AB A2B A3B

]
=







0 0 2ω 0
0 2ω 0 −2ω3

0 1/ρ 0 −4ω2/ρ
1/ρ 0 −4ω2/ρ 0






.

which is of rank 4, so the system is still controllable. We can change the radius by
tangential braking or thrust.

But if uθ = 0 (tangential thrust fails). Then

B =







0
1
0
0







M4 =
[
B AB A2B A3B

]
=







0 1 0 −ω2

1 0 −ω2 0
0 0 −2ω/ρ 0
0 −2ω/ρ 0 2ω3/ρ






.

Since (2ωρ, 0, 0, ρ2)M4 = 0, this is singular and has only rank 3. In fact, the uncontrol-
lable component is the angular momentum, 2ωρδr + ρ2δθ̇ = δ(r2θ̇)|r=ρ,θ̇=ω.
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12 Observability and the LQG Model

LQ regulation problem over the infinite horizon. More on observability. Least squares estima-

tion and the LQG model.

12.1 Infinite horizon limits

Consider the time-homogeneous case and write the finite-horizon cost in terms of time
to go s. The terminal cost, when s = 0, is denoted F0(x) = x⊤Π0x. In all that follows
we take S = 0, without loss of generality.

Lemma 12.1. Suppose Π0 = 0, R � 0, Q � 0 and [A,B, · ] is controllable or stabiliz-
able. Then {Πs} has a finite limit Π.

Proof. Costs are non-negative, so Fs(x) is non-decreasing in s. Now Fs(x) = x⊤Πsx.
Thus x⊤Πsx is non-decreasing in s for every x. To show that x⊤Πsx is bounded we
use one of two arguments.

If the system is controllable then x⊤Πsx is bounded because there is a policy which,
for any x0 = x, will bring the state to zero in at most n steps and at finite cost and
can then hold it at zero with zero cost thereafter.

If the system is stabilizable then there is a K such that Γ = A+ BK is a stability
matrix. Using ut = Kxt, we have xt = Γtx and ut = KΓtx, so

Fs(x) ≤
∞∑

t=0

(x⊤
t Rxt + u⊤

t Qut) = x⊤

[
∞∑

t=0

(Γ⊤)t(R+K⊤QK)Γt

]

x < ∞.

Hence in either case we have an upper bound and so x⊤Πsx tends to a limit for
every x. By considering x = ej , the vector with a unit in the jth place and zeros
elsewhere, we conclude that the jth element on the diagonal of Πs converges. Then
taking x = ej + ek it follows that the off diagonal elements of Πs also converge.

Both value iteration and policy improvement are effective ways to compute the
solution to an infinite-horizon LQ regulation problem. Policy improvement goes along
the lines developed in Lecture 8.

12.2 Observability

From (11.1) and (11.2) we can determine yt in terms of x0 and subsequent controls:

xt = Atx0 +

t−1∑

s=0

AsBut−s−1,

yt = Cxt−1 = C

[

At−1x0 +

t−2∑

s=0

AsBut−s−2

]

.
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Thus, if we define the ‘reduced observation’

ỹt = yt − C

[
t−2∑

s=0

AsBut−s−2

]

,

then x0 is to be determined from the system of equations

ỹt = CAt−1x0, 1 ≤ t ≤ r. (12.1)

By hypothesis, these equations are mutually consistent, and so have a solution; the
question is whether this solution is unique. This is the reverse of the situation for
controllability, when the question was whether the equation for u had a solution at all,
unique or not. Note that an implication of the system definition is that the property
of observability depends only on the matrices A and C; not upon B at all.

Theorem 12.2. (i) The system [A, · , C] is r-observable iff the matrix

Nr =










C
CA
CA2

...
CAr−1










has rank n, or (ii) equivalently, iff the n× n matrix

N⊤
r Nr =

r−1∑

j=0

(A⊤)jC⊤CAj

is nonsingular. (iii) If the system is r-observable then it is s-observable for s ≥
min(n, r), and (iv) the determination of x0 can be expressed

x0 = (N⊤
r Nr)

−1
r∑

j=1

(A⊤)j−1C⊤ỹj. (12.2)

Proof. If the system has a solution for x0 (which is so by hypothesis) then this solution
must is unique iff the matrix Nr has rank n, whence assertion (i). Assertion (iii) follows
from (i). The equivalence of conditions (i) and (ii) can be verified directly as in the
case of controllability.

If we define the deviation ηt = ỹt −CAt−1x0 then the equation amounts to ηt = 0,
1 ≤ t ≤ r. If these equations were not consistent we could still define a ‘least-squares’
solution to them by minimizing any positive-definite quadratic form in these deviations
with respect to x0. In particular, we could minimize

∑r−1
t=0 η⊤t ηt. This minimization

gives (12.2). If equations (12.1) indeed have a solution (i.e. are mutually consistent,
as we suppose) and this is unique then expression (12.2) must equal this solution; the
actual value of x0. The criterion for uniqueness of the least-squares solution is that
N⊤

r Nr should be nonsingular, which is also condition (ii).
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We have again found it helpful to bring in an optimization criterion in proving (iv);
this time, not so much to construct one definite solution out of many, but to construct
a ‘best-fit’ solution where an exact solution might not have existed. This approach lies
close to the statistical approach necessary when observations are corrupted by noise.

12.3 Observability in continuous-time

Theorem 12.3. (i) The n-dimensional continuous-time system [A, · , C] is observable
iff the matrix Nn has rank n, or (ii) equivalently, iff

H(t) =

∫ t

0

eA
⊤sC⊤CeAs ds

is positive definite for all t > 0. (iii) If the system is observable then the determination
of x(0) can be written

x(0) = H(t)−1

∫ t

0

eA
⊤sC⊤ỹ(s) ds,

where

ỹ(t) = y(t)−
∫ t

0

CeA(t−s)Bu(s) ds.

12.4 Example: satellite in planar orbit

Recall the linearised equation ẋ = Ax, for perturbations of the orbit of a satellite, (here
taking ρ = 1), where







x1

x2

x3

x4







=







r − ρ
ṙ

θ − ωt

θ̇ − ω







A =







0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0







.

By taking C =
[
0 0 1 0

]
we see that the system is observable on the basis of

angle measurements alone, but not observable for C̃ =
[
1 0 0 0

]
, i.e. on the basis

of radius movements alone.

N4 =







0 0 1 0
0 0 0 1
0 −2ω 0 0

−6ω3 0 0 −4ω2







Ñ4 =







1 0 0 0
0 1 0 0

3ω2 0 0 2ω
0 −ω2 0 0







12.5 Imperfect state observation with noise

The full LQG model, whose description has been deferred until now, assumes linear
dynamics, quadratic costs and Gaussian noise. Imperfect observation is the most im-
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portant point. The model is

xt = Axt−1 +But−1 + ǫt, (12.3)

yt = Cxt−1 + ηt, (12.4)

where ǫt is process noise. The state observations are degraded in that we observe only
the p-vector yt = Cxt−1 + ηt, where ηt is observation noise. Typically p < n. In this
[A,B,C] system A is n× n, B is n×m, and C is p× n. Assume

cov

(
ǫ
η

)

= E

(
ǫ
η

)(
ǫ
η

)⊤

=

(
N L
L⊤ M

)

and that x0 ∼ N(x̂0, V0). Let Wt = (Yt, Ut−1) = (y1, . . . , yt;u0, . . . , ut−1) denote the
observed history up to time t. Of course we assume that t, A, B, C, N , L, M , x̂0 and
V0 are also known; Wt denotes what might be different if the process were rerun.

Lemma 12.4. Suppose x and y are jointly normal with zero means and covariance
matrix

cov

[
x
y

]

=

[
Vxx Vxy

Vyx Vyy

]

.

Then the distribution of x conditional on y is Gaussian, with

E(x | y) = VxyV
−1
yy y, (12.5)

and
cov(x | y) = Vxx − VxyV

−1
yy Vyx. (12.6)

Proof. Both y and x− VxyV
−1
yy y are linear functions of x and y and therefore they are

Gaussian. From E
[
(x− VxyV

−1
yy y)y⊤

]
= 0 it follows that they are uncorrelated and

this implies they are independent. Hence the distribution of x − VxyV
−1
yy y conditional

on y is identical with its unconditional distribution, and this is Gaussian with zero
mean and the covariance matrix given by (12.6)

The estimate of x in terms of y defined as x̂ = Hy = VxyV
−1
yy y is known as the

linear least squares estimate of x in terms of y. Even without the assumption that
x and y are jointly normal, this linear function of y has a smaller covariance matrix
than any other unbiased estimate for x that is a linear function of y. In the Gaussian
case, it is also the maximum likelihood estimator.
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13 Kalman Filter and Certainty Equivalence

The Kalman filter. Certainty equivalence. The HJB equation for dynamic programming in

continuous time.

13.1 The Kalman filter

Notice that both xt and yt can be written as a linear functions of the unknown noise
and the known values of u0, . . . , ut−1.

xt = Atx0 +At−1Bu0 + · · ·+But−1 +At−1ǫ0 + · · ·+Aǫt−1 + ǫt

yt = C
(

At−1x0 +At−2Bu0 + · · ·+But−2 +At−2ǫ0 + · · ·+Aǫt−2 + ǫt−1

)

+ ηt

Thus the distribution of xt conditional on Wt = (Yt, Ut−1) must be normal, with some
mean x̂t and covariance matrix Vt. Notice that Vt is policy independent (does not
depend on u0, . . . , ut−1).

The following theorem describes recursive updating relations for x̂t and Vt.

Theorem 13.1. (The Kalman filter) Suppose that conditional on W0, the initial
state x0 is distributed N(x̂0, V0) and the state and observations obey the recursions of
the LQG model (12.3)–(12.4). Then conditional on Wt, the current state is distributed
N(x̂t, Vt). The conditional mean and variance obey the updating recursions

x̂t = Ax̂t−1 +But−1 +Ht(yt − Cx̂t−1), (13.1)

where the time-dependent matrix Vt satisfies a Riccati equation

Vt = gVt−1, t < h,

where V0 is given, and g is the operator having the action

gV = N +AV A⊤ − (L +AV C⊤)(M + CV C⊤)−1(L⊤ + CV A⊤). (13.2)

The p×m matrix Ht is given by

Ht = (L +AVt−1C
⊤)(M + CVt−1C

⊤)−1. (13.3)

Compare this to the very similar statement of Theorem 10.2. Notice that (13.2)
computes Vt forward in time (Vt = gVt−1), whereas (10.7) computes Πt backward in
time (Πt = fΠt+1).

Proof. The proof is by induction on t. Consider the moment when ut−1 has been chosen
but yt has not yet observed. The distribution of (xt, yt) conditional on (Wt−1, ut−1) is
jointly normal with means

E(xt | Wt−1, ut−1) = Ax̂t−1 +But−1,

E(yt | Wt−1, ut−1) = Cx̂t−1.
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Let ∆t−1 = x̂t−1 − xt−1, which by an inductive hypothesis is N(0, Vt−1). Consider the
innovations

ξt = xt − E(xt | Wt−1, ut−1) = xt − (Ax̂t−1 +But−1) = ǫt −A∆t−1,

ζt = yt − E(yt | Wt−1, ut−1) = yt − Cx̂t−1 = ηt − C∆t−1.

Conditional on (Wt−1, ut−1), these quantities are normally distributed with zero means
and covariance matrix

cov

[
ǫt −A∆t−1

ηt − C∆t−1

]

=

[
N +AVt−1A

⊤ L+AVt−1C
⊤

L⊤ + CVt−1A
⊤ M + CVt−1C

⊤

]

=

[
Vξξ Vξζ

Vζξ Vζζ

]

.

Thus it follows from Lemma 12.4 that the distribution of ξt conditional on knowing
(Wt−1, ut−1, ζt), (which is equivalent to knowing Wt = (Yt, Ut−1)), is normal with mean
VξζV

−1
ζζ ζt and covariance matrix Vξξ − VξζV

−1
ζζ Vζξ. These give (13.1)–(13.3).

13.2 Certainty equivalence

We say that a quantity a is policy-independent if Eπ(a | W0) is independent of π.

Theorem 13.2. Suppose LQG model assumptions hold. Then (i) the value function
is of the form

F (Wt) = x̂⊤
t Πtx̂t + · · · (13.4)

where x̂t is the linear least squares estimate of xt whose evolution is determined by the
Kalman filter in Theorem 13.1 and ‘+ · · · ’ indicates terms that are policy independent;
(ii) the optimal control is given by

ut = Ktx̂t,

where Πt and Kt are the same matrices as in the full information case of Theorem 10.2.

It is important to grasp the remarkable fact that (ii) asserts: the optimal control
ut is exactly the same as it would be if all unknowns were known and took values equal
to their linear least square estimates (equivalently, their conditional means) based upon
observations up to time t. This is the idea known as certainty equivalence. As we
have seen in the previous section, the distribution of the estimation error x̂t − xt does
not depend on Ut−1. The fact that the problems of optimal estimation and optimal
control can be decoupled in this way is known as the separation principle.

Proof. The proof is by backward induction. Suppose (13.4) holds at t. Recall that

x̂t = Ax̂t−1 +But−1 +Htζt, ∆t−1 = x̂t−1 − xt−1.
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Then with a quadratic cost of the form c(x, u) = x⊤Rx+ 2u⊤Sx+ u⊤Qu, we have

F (Wt−1) = min
ut−1

E [c(xt−1, ut−1) + x̂tΠtx̂t + · · · | Wt−1, ut−1]

= min
ut−1

E

[

c(x̂t−1 −∆t−1, ut−1)

+ (Ax̂t−1 +But−1 +Htζt)
⊤Πt(Ax̂t−1 +But−1 +Htζt)

+ · · ·
∣
∣
∣Wt−1, ut−1

]

(13.5)

= min
ut−1

[
c(x̂t−1, ut−1) + (Ax̂t−1 +But−1)

⊤Πt(Ax̂t−1 +But−1)
]
+ · · · ,

where we use the fact that, conditional on Wt−1, ut−1, the quantities ∆t−1 and ζt have
zero means and are policy independent. So when we evalute (13.5) the expectations
of all terms which are linear in these quantities are zero, like E[x̂⊤

t−1R∆t−1], and the
expectations of all terms which are quadratic in these quantities, like E[∆⊤

t−1R∆t−1],
are policy independent (and so may be included as part of + · · · ).

13.3 The Hamilton-Jacobi-Bellman equation

In continuous time the plant equation is,

ẋ = a(x, u, t).

Consider a discounted cost of

C =

∫ h

0

e−αtc(x, u, t) dt+ e−αhC(x(h), h).

The discount factor over δ is e−αδ = 1− αδ + o(δ). So the optimality equation is,

F (x, t) = inf
u

[c(x, u, t)δ + (1− αδ)F (x + a(x, u, t)δ, t+ δ) + o(δ)] .

By considering the term of order δ in the Taylor series expansion we obtain,

inf
u

[

c(x, u, t)− αF +
∂F

∂t
+

∂F

∂x
a(x, u, t)

]

= 0, t < h, (13.6)

with F (x, h) = C(x, h). In the undiscounted case, we simply put α = 0. Notice that in
(14.8) we have α = 0 and the term of ∂F

∂t disappears because h = ∞.

Equation (13.6) is called the Hamilton-Jacobi-Bellman equation (HJB). Its
heuristic derivation we have given above is justified by the following theorem. It can be
viewed as the equivalent, in continuous time, of the backwards induction that we use
in discrete time to verify that a policy is optimal because it satisfies the the dynamic
programming equation.
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Theorem 13.3. Suppose a policy π, using a control u, has a value function F which
satisfies the HJB equation (13.6) for all values of x and t. Then π is optimal.

Proof. Consider any other policy, using control v, say. Then along the trajectory defined
by ẋ = a(x, v, t) we have

− d

dt
e−αtF (x, t) = e−αt

[

c(x, v, t)−
(

c(x, v, t) − αF +
∂F

∂t
+

∂F

∂x
a(x, v, t)

)]

≤ e−αtc(x, v, t).

The inequality is because the term round brackets is nonnegative. Integrating this
inequality along the v path, from x(0) to x(h), gives

F (x(0), 0)− e−αhC(x(h), h) ≤
∫ h

t=0

e−αtc(x, v, t) dt.

Thus the v path incurs a cost of at least F (x(0), 0), and hence π is optimal.

13.4 Example: LQ regulation

The undiscounted continuous time DP equation for the LQ regulation problem is

0 = inf
u

[
x⊤Rx+ u⊤Qu+ Ft + F⊤

x (Ax +Bu)
]
.

Suppose we try a solution of the form F (x, t) = x⊤Π(t)x, where Π(t) is a symmetric ma-
trix. Then Fx = 2Π(t)x and the optimizing u is u = − 1

2Q
−1B⊤Fx = −Q−1B⊤Π(t)x.

Therefore the DP equation is satisfied with this u if

0 = x⊤

[

R+ΠA+A⊤Π−ΠBQ−1B⊤Π+
dΠ

dt

]

x,

where we use the fact that 2x⊤ΠAx = x⊤ΠAx+x⊤A⊤Πx. This must hold for all x. So
we have a solution to the HJB equation if Π(t) satisfies the Riccati differential equation

R +ΠA+A⊤Π−ΠBQ−1B⊤Π+
dΠ

dt
= 0,

with a given boundary value for Π(h).

56



13.5 Example: harvesting fish

A fish population of size x obeys the plant equation,

ẋ = a(x, u) =

{
a(x) − u x > 0,
a(x) x = 0.

The function a(x) reflects the facts that the population can grow when it is small,
but is subject to environmental limitations when it is large. It is desired to maximize

the discounted total harvest
∫ T

0
ue−αt dt, subject to 0 ≤ u ≤ umax, where umax is the

greatest possible fishing rate.

Solution. The DP equation (with discounting) is

sup
u

[

u− αF +
∂F

∂t
+

∂F

∂x
[a(x)− u]

]

= 0, t < T.

Since u occurs linearly with the maximization we again have a bang-bang optimal
control, of the form

u =





0
undetermined

umax



 for Fx





>
=
<



 1.

Suppose F (x, t) → F (x) as T → ∞, and ∂F/∂t → 0. Then

sup
u

[

u− αF +
∂F

∂x
[a(x) − u]

]

= 0. (13.7)

Let us make a guess that F (x) is concave, and then deduce that

u =





0
undetermined, but effectively a(x̄)

umax



 for x





<
=
>



 x̄. (13.8)

Clearly, x̄ is the operating point. We suppose

ẋ =

{
a(x) > 0, x < x̄
a(x)− umax < 0, x > x̄.

We say that there is chattering about the point x̄, in the sense that u will switch
between its maximum and minimum values either side of x̄, effectively taking the value
a(x̄) at x̄. To determine x̄ we note that

F (x̄) =

∫ ∞

0

e−αta(x̄)dt = a(x̄)/α. (13.9)

So from (13.7) and (13.9) we have

Fx(x) =
αF (x) − u(x)

a(x)− u(x)
→ 1 as x ր x̄ or x ց x̄. (13.10)
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For F to be concave, Fxx must be negative if it exists. So we must have

Fxx =
αFx

a(x)− u
−
(

αF − u

a(x)− u

)(
a′(x)

a(x)− u

)

=

(
αF − u

a(x)− u

)(
α− a′(x)

a(x)− u

)

≃ α− a′(x)

a(x)− u(x)

where the last line follows because (13.10) holds in a neighbourhood of x̄. It is required
that Fxx be negative. But the denominator changes sign at x̄, so the numerator must
do so also, and therefore we must have a′(x̄) = α. We now have the complete solution.
The control in (13.8) has a value function F which satisfies the HJB equation.

xx̄

a(x)

umax

α = a′(x̄)

u = a(x̄)

Figure 2: Growth rate a(x) subject to environment pressures

Notice that we sacrifice long term yield for immediate return. If the initial popula-
tion is greater than x̄ then the optimal policy is to fish at rate umax until we reach x̄
and then fish at rate u = a(x̄). As α ր a′(0), x̄ ց 0. If α ≥ a′(0) then it is optimal to
wipe out the entire fish stock.

Finally, it would be good to verify that F (x) is concave, as we conjectured from the
start. The argument is as follows. Suppose x > x̄. Then

F (x) =

∫ T

0

umaxe
−αtdt+

∫ ∞

T

a(x̄)e−αtdt

= a(x̄)/α+ (umax − a(x̄))
(
1− e−αT

)
/α
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where T = T (x) is the time taken for the fish population to decline from x to x̄, when
ẋ = a(x)− umax. Now

T (x) = δ + T (x+ (a(x) − umax)δ) =⇒ 0 = 1 + (a(x)− umax)T
′(x)

=⇒ T ′(x) = 1/(umax − a(x))

So F ′′(x) has the same sign as that of

d2

dx2

(
1− e−αT

)
= −αe−αT (α− a′(x))

(umax − a(x))2
,

which is negative, as required, since α = a′(x̄) ≥ a′(x), when x > x̄. The case x < x̄ is
similar.
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14 Pontryagin’s Maximum Principle

Pontryagin’s maximum principle. Optimization of consumption. Parking a rocket car. Adjoint

variables as Lagrange multipliers.

14.1 Example: optimization of consumption

Suppose that given x(0), κ and T , all positive, we wish to choose u(t) to maximize
∫ T

0

log u(t) dt+ κ logx(T ), subject to ẋ(t) = ax(t) − u(t), 0 ≤ t ≤ T.

Solution. Try using a Lagrange multiplier λ(t) for the constraint ẋ(t) = ax(t)− u(t).
The Lagrangian is

L = κ logx(T ) +

∫ T

0

[log u− λ(ẋ − (ax− u))]dt

Now use integration by parts, and define H(x, u, λ) = log u+ λ(ax− u).

L = κ log x(T )− λ(t)x(t)
∣
∣
∣

T

0
+

∫ T

0

[log u+ λ̇x+ λ(ax − u)]dt

= [κ log x(T )− λ(T )x(T )] + λ(0)x(0) +

∫ T

0

[λ̇x+H(x, u, λ)]dt.

To make L stationary with respect to both x(t) and u(t), at every point within the
integrand, we need

λ̇+
∂

∂x
H(x, u, λ) = 0 =⇒ λ̇ = −aλ

∂

∂u
H(x, u, λ) = 0 =⇒ u = 1/λ,

and so λ(t) = λ(0)e−at, u(t) = λ(0)−1eat and ẋ(t) = ax(t) − λ(0)−1eat.
If the value of x(T ) is prescribed (and < eaTx(0) so u need not be negative), then

we can solve this differential equation for x, choosing λ(0) so that x(t) takes prescribed
values x(0) and x(T ) at t = 0 and T . We get (after some algebra)

u(t) =

(
x(0)− x(T )e−aT

(T − t)x(0)− x(T )e−aT

)

x(t).

If the value of x(T ) is free, then stationarity of L with respect to x(T ) requires
κ/x(T )− λ(T ) = 0 which (after some algebra) implies λ(0) = (κ+ T )/x(0) and

u(t) =
1

T + κ
x(0)eat =

1

(T − t) + κ
x(t).

If a > 1/(κ + T ) the trajectory is one in which x(t) is initially increasing and then
decreasing; otherwise x(t) is decreasing. The optimal ‘inheritance’ left at T is

x(T ) =
κ

κ+ T
x(0)eaT .
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14.2 Heuristic derivation of Pontryagin’s maximum principle

Pontryagin’s maximum principle (PMP) states a necessary condition that must
hold on an optimal trajectory. It is a calculation for a fixed initial value of the state,
x(0). In comparison, the dynamic programming approach is a calculation for a general
initial value of the state. Thus, when PMP is useful, it finds an open-loop prescription
of the optimal control, whereas dynamic programming is useful for finding a closed-loop
prescription. PMP can be used as both a computational and analytic technique (and
in the second case can solve the problem for general initial value.)

We begin by considering a time-homogeneous formulation, with plant equation ẋ =
a(x, u) and instantaneous cost c(x, u). The trajectory is to be controlled until it reaches
some stopping set S, where there is a terminal costK(x). As in (13.6) the value function
F (x) obeys the a dynamic programming equation (without discounting)

inf
u∈U

[

c(x, u) +
∂F

∂x
a(x, u)

]

= 0, x 6∈ S, (14.1)

with terminal condition

F (x) = K(x), x ∈ S. (14.2)

Define the adjoint variable

λ = −Fx. (14.3)

This is a column n-vector, and is to be regarded as a function of time as the state
moves along the optimal trajectory. The proof that Fx exists in the required sense is
actually a tricky technical matter. We also define the Hamiltonian

H(x, u, λ) = λ⊤a(x, u)− c(x, u), (14.4)

a scalar, defined at each point of the path as a function of the current x, u and λ.

Theorem 14.1. (PMP) Suppose u(t) and x(t) represent the optimal control and state
trajectory. Then there exists an adjoint trajectory λ(t) such that together u(t), x(t) and
λ(t) satisfy

ẋ = Hλ, [ = a(x, u) ] (14.5)

λ̇ = −Hx, [ = −λ⊤ax + cx ] (14.6)

and for all t, 0 ≤ t ≤ T , and all feasible controls v,

H(x(t), v, λ(t)) ≤ H(x(t), u(t), λ(t)), (14.7)

i.e. the optimal control u(t) is the value of v maximizing H((x(t), v, λ(t)).

‘Proof.’ Our heuristic proof is based upon the DP equation; this is the most direct
and enlightening way to derive conclusions that may be expected to hold in general.
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Assertion (14.5) is immediate, and (14.7) follows from the fact that the minimizing
value of u in (14.1) is optimal. Assuming u is the optimal control we have from (14.1)
in incremental form as

F (x, t) = c(x, u)δ + F (x+ a(x, u)δ, t+ δ) + o(δ).

Now use the chain rule to differentiate with respect to xi and this yields

d

dxi
F (x, t) = δ

d

dxi
c(x, u) +

∑

j

∂

∂xj
F (x+ a(x, u)δ, t+ δ)

d

dxi
(xj + aj(x, u)δ)

=⇒ −λi(t) = δ
dc

dxi
− λi(t+ δ)− δ

∑

j

λj(t+ δ)
daj
dxi

+ o(δ)

=⇒ d

dt
λi(t) =

dc

dxi
−
∑

j

λj(t)
daj
dxi

which is (14.6).

Notice that (14.5) and (14.6) each give n equations. Condition (14.7) gives a further
m equations (since it requires stationarity with respect to variation of them components
of u.) So in principle these equations, if nonsingular, are sufficient to determine the
2n+m functions u(t), x(t) and λ(t).

14.3 Example: parking a rocket car

A rocket car has engines at both ends. Initial position and velocity are x1(0) and x2(0).

0 x1

x2

By firing the rockets (causing acceleration of u in the forward or reverse direction) we
wish to park the car in minimum time, i.e. minimize T such that x1(T ) = x2(T ) = 0.
The dynamics are ẋ1 = x2 and ẋ2 = u, where u is constrained by |u| ≤ 1.

Let F (x) be minimum time that is required to park the rocket car. Then

F (x1, x2) = min
−1≤u≤1

{

δ + F (x1 + x2δ, x2 + uδ)
}

.

By making a Taylor expansion and then letting δ → 0 we find the HJB equation:

0 = min
−1≤u≤1

{

1 +
∂F

∂x1
x2 +

∂F

∂x2
u

}

(14.8)
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with boundary condition F (0, 0) = 0. We can see that the optimal control will be a
bang-bang control with u = − sign( ∂F

∂x2
) and so F satisfies

0 = 1 +
∂F

∂x1
x2 −

∣
∣
∣
∣

∂F

∂x2

∣
∣
∣
∣
.

Now let us tackle the same problem using PMP. We wish to minimize

C =

∫ T

0

1 dt

where T is the first time at which x = (0, 0). For dynamics if ẋ1 = x2, ẋ2 = u, |u| ≤ 1,
the Hamiltonian is

H = λ1x2 + λ2u− 1,

which is maximized by u = sign(λ2). The adjoint variables satisfy λ̇i = −∂H/∂xi, so

λ̇1 = 0, λ̇2 = −λ1. (14.9)

Suppose that at termination λ1 = α, λ2 = β. Then in terms of time to go we can
compute

λ1 = α, λ2 = β + αs.

These reveal the form of the solution: there is at most one change of sign of λ2 on the
optimal path; u is maximal in one direction and then possibly maximal in the other.

From (14.1) or (14.8) we see that the maximized value of H must be 0. So at
termination (when x2 = 0), we conclude that we must have |β| = 1. We now consider
the case β = 1. The case β = −1 is similar.

If β = 1, α ≥ 0 then λ2 = 1 + αs ≥ 0 for all s ≥ 0 and

u = 1, x2 = −s, x1 = s2/2.

In this case the optimal trajectory lies on the parabola x1 = x2
2/2, x1 ≥ 0, x2 ≤ 0. This

is half of the switching locus x1 = ±x2
2/2 (shown dotted in Figure 3).

If β = 1, α < 0 then u = −1 or u = 1 as the time to go is greater or less than
s0 = 1/|α|. In this case,

u = −1, x2 = (s− 2s0), x1 = 2s0s− 1
2s

2 − s20, s ≥ s0,
u = 1, x2 = −s, x1 = 1

2s
2, s ≤ s0.

The control rule expressed as a function of s is open-loop, but in terms of (x1, x2) and
the switching locus, it is closed-loop.
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a

b

x1

x2

u = 1

u = −1
switching locus

Figure 3: Optimal trajectories for parking a rocket car. Notice that the trajectories
starting from two nearby points, a and b, are qualitatively different. From a we take
first u = 1 then u = −1. From b we first take u = −1, then u = 1.

14.4 Adjoint variables as Lagrange multipliers

We have already seen in §14.1 that it is possible to think of λ(t) as a Lagrange multiplier
for the constraint ẋ = a(x, u) (at time t). Consider the Lagrangian

L = −K(x(T )) +

∫ T

0

[
−c− λ⊤(ẋ− a)

]
dt.

This is to be maximized over (x, u, λ) paths having the property that x(t) first enters
the set S at time T . We integrate λ⊤ẋ by parts to obtain

L = −K(x(T ))− λ(T )⊤x(T ) + λ(0)⊤x(0) +

∫ T

0

[

λ̇⊤x+ λ⊤a− c
]

dt.

We now think about varying both x(t) and u(t), but without regard to the constraint
ẋ = a(x, u). The quantity within the integral must be stationary with respect to
x = x(t) and hence λ̇+ λ⊤ax − cx = 0 =⇒ λ̇ = −Hx, i.e. (14.6).

If x(T ) is unconstrained then the Lagrangian must also be stationary with respect
to small variations in x(T ) that are in a direction σ such that x(T ) + ǫσ is in the
stopping set (or within o(ǫ) of it), and this gives (Kx(x(T )) + λ(T ))⊤σ = 0, i.e. the
so-called transversality conditions, which we will say more about in (15.1).

It is good to have this alternative viewpoint, but it is informal and less easy to
rigorise than the ‘proofs’ of in §14.2, and §15.1
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15 Using Pontryagin’s Maximum Principle

Transversality conditions. Examples with Pontryagin’s maximum principle.

15.1 Transversality conditions

In (14.1) we see that H must be maximized to 0. We can make this a generally valid
assertion, and also say some things about the terminal value of λ(T ) (the so-called
transversality conditions.)

Theorem 15.1. (i) H = 0 on the optimal path. (ii) The terminal condition

(λ+Kx)
⊤σ = 0 (15.1)

holds at the terminal x for all σ such that x+ ǫσ is within o(ǫ) of the termination point
of a possible optimal trajectory for all sufficiently small positive ǫ.

‘Proof.’ Assertion (i) follows from (14.1). To see (ii), suppose that x is a point at
which the optimal trajectory first enters S. Then x ∈ S and so F (x) = K(x). Suppose
x+ ǫσ + o(ǫ) ∈ S. Then

0 = F (x+ ǫσ + o(ǫ))−K(x+ ǫσ + o(ǫ))

= F (x)−K(x) + (Fx(x)−Kx(x))
⊤σǫ + o(ǫ)

Together with F (x) = K(x) this gives (Fx − Kx)
⊤σ = 0. Since λ = −Fx we get

(λ+Kx)
⊤σ = 0.

15.2 Example: use of transversality conditions

Suppose ẋ1 = x2, ẋ2 = u, x(0) = (0, 0), u is unconstrained, and we wish to minimize

C = −x1(1) +

∫ 1

0

1
2u(t)

2 dt.

Here K(x) = −x1(1). The Hamiltonian is

H(x, u, λ) = λ1x2 + λ2u− 1
2u

2,

which is maximized at u(t) = λ2(t). Now λ̇i = −∂H/∂xi gives

λ̇1 = 0, λ̇2 = −λ1.

The terminal x is unconstrained so in the transversality condition of (λ+Kx)
⊤σ = 0,

σ is arbitrary and so we also have

λ1(1)− 1 = 0, λ2(1) = 0.

Thus the solution must be λ1(t) = 1 and λ2(t) = 1 − t. The optimal control is
u(t) = 1− t.

Note that there is often more than one way to set up a control problem. In this

problem, we might have takenK = 0, but included a cost of−
∫ 1

0
x2 dt = −x1(1)+x1(0).
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15.3 Example: insects as optimizers

A colony of insects consists of workers and queens, of numbers w(t) and q(t) at time t.
If a time-dependent proportion u(t) of the colony’s effort is put into producing workers,
(0 ≤ u(t) ≤ 1, then w, q obey the equations

ẇ = auw − bw, q̇ = c(1− u)w,

where a, b, c are constants, with a > b. The function u is to be chosen to maximize the
number of queens at the end of the season. Show that the optimal policy is to produce
only workers up to some moment, and produce only queens thereafter.

Solution. In this problem the Hamiltonian is

H = λ1(auw − bw) + λ2c(1 − u)w

and K(w, q) = −q. The adjoint equations and transversality conditions give

−λ̇1 = Hw = λ1(au− b) + λ2c(1− u)

−λ̇2 = Hq = 0
,

λ1(T ) = −Kw = 0
λ2(T ) = −Kq = 1

,

and hennce λ2(t) = 1 for all t. Since H is maximized by u,

u =
0
1

if ∆(t) := λ1a− c
<
>

0.

Since ∆(T ) = −c, we must have u(T ) = 0. If t is a little less than T , λ1 is small and
u = 0 so the equation for λ1 is

λ̇1 = λ1b− c. (15.2)

As long as λ1 is small, λ̇1 < 0. Therefore as the remaining time s increases, λ1(s)
increases, until such point that ∆(t) = λ1a−c ≥ 0. The optimal control becomes u = 1
and then λ̇1 = −λ1(a − b) < 0, which implies that λ1(s) continues to increase as s
increases, right back to the start. So there is no further switch in u.

The point at which the single switch occurs is found by integrating (15.2) from t to
T , to give λ1(t) = (c/b)(1− e−(T−t)b) and so the switch occurs where λ1a− c = 0, i.e.
(a/b)(1− e−(T−t)b) = 1, or

tswitch = T + (1/b) log(1− b/a).

Experimental evidence suggests that social insects do closely follow this policy and
adopt a switch time that is nearly optimal for their natural environment.

15.4 Problems in which time appears explicitly

Thus far, c(·), a(·) and K(·) have been function of (x, u), but not t. Sometimes we
wish to solve problems in t appears, such as when ẋ = a(x, u, t). We can cope with this
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generalization by the simple mechanism of introducing a new variable that equates to
time. Let x0 = t, with ẋ0 = a0 = 1.

Having been augmented by this variable, the Hamiltonian gains a term and becomes

H̃ = λ0a0 +H = λ0a0 +
n∑

i=1

λiai − c

where λ0 = −Ft and a0 = 1. Theorem 15.1 says that H̃ must be maximized to 0.
Equivalently, on the optimal trajectory,

H(x, u, λ) =

n∑

i=1

λiai − c must be maximized to − λ0.

Theorem 14.1 still holds. However, to (14.6) we can now add

λ̇0 = −Ht = ct − λat, (15.3)

and transversality condition

(λ +Kx)
⊤σ + (λ0 +Kt)τ = 0, (15.4)

which must hold at the termination point (x, t) if (x + ǫσ, t + ǫτ) is within o(ǫ) of the
termination point of an optimal trajectory for all small enough positive ǫ.

We can now understand what to do with various types of time-dependancy and ter-
minal conditions on x(T ) and/or T . For example, we can draw the following inferences.

(i) If K is time-independent (so Kt = 0) and the terminal time T is unconstrained
(so τ is arbitrary) then the transversality condition implies λ0(T ) = 0. Since H
is always maximized to −λ0(t) it must be maximized to 0 at T .

(ii) If a, c are only functions of (x, u) then λ̇0 = ct − λ⊤at = 0, and so λ0(t) is
constant on the optimal trajectory. Since H is always maximized to −λ0(t) it
must be maximized to a constant on the optimal trajectory.

(iii) If both (i) and (ii) are true then H is maximized to 0 along the entire optimal
trajectory. We had this in the problem of parking in minimal time, §14.3.

15.5 Example: monopolist

Miss Prout holds the entire remaining stock of Cambridge elderberry wine for the
vintage year 1959. If she releases it at rate u (in continuous time) she realises a unit
price p(u) = (1 − u/2), for 0 ≤ u ≤ 2 and p(u) = 0 for u ≥ 2. She holds an amount x
at time 0 and wishes to release it in a way that maximizes her total discounted return,
∫ T

0
e−αtup(u) dt, (where T is unconstrained.)
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Solution. Notice that t appears in the cost function. The plant equation is ẋ = −u
and the Hamiltonian is

H(x, u, λ) = e−αtup(u)− λu = e−αtu(1− u/2)− λu.

Note that K = 0. Maximizing with respect to u and using λ̇ = −Hx gives

u = 1− λeαt, λ̇ = 0, t ≥ 0,

so λ is constant. The terminal time is unconstrained so the transversality condition gives
λ0(T ) = −Kt|t=T = 0. Therefore, since we require H to be maximized to −λ0(T ) = 0
at T , we have u(T ) = 0, and hence

λ = e−αT , u = 1− e−α(T−t), t ≤ T,

where T is then the time at which all wine has been sold, and so

x =

∫ T

0

u dt = T −
(
1− e−αT

)
/α.

Thus u is implicitly a function of x, through T .

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

x(t)

u(t)

Figure 4: Trajectories of x(t), u(t), for α = 1.

The optimal value function is

F (x) =

∫ T

0

(u− u2/2)e−αt dt =
1

2

∫ T

0

(
e−αt − eαt−2αT

)
dt =

(
1− e−αT

)2

2α
.

15.6 Example: neoclassical economic growth

Suppose x is the existing capital per worker and u is consumption of capital per worker.
The plant equation is

ẋ = f(x)− γx− u, (15.5)

where f(x) is production per worker (which depends on capital available to the worker),
and −γx represents depreciation of capital. We wish to choose u to maximize

∫ T

t=0

e−αtg(u)dt,
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where g(u) measures utility and T is prescribed.

Solution. This is really the same as the fish harvesting example in §13.5, with a(x) =
f(x)− γx. So let us take

ẋ = a(x)− u. (15.6)

It is convenient to take
H = e−αt [g(u) + λ(a(x) − u)]

so including a discount factor in the definition of u, corresponding to expression of F
in terms of present values. Here λ is a scalar. Then g′(u) = λ (assuming the maximum
is at a stationary point), and

d

dt

(
e−αtλ

)
= −Hx = −e−αtλa′(x) (15.7)

or
λ̇(t) = (α − a′(x))λ(t). (15.8)

From g′(u) = λ we have g′′(u)u̇ = λ̇ and hence from (15.8) we obtain

u̇ =
1

σ(u)
[a′(x)− α], (15.9)

where

σ(u) = −g′′(u)

g′(u)

is the elasticity of marginal utility. Assuming g is strictly increasing and concave we
have σ > 0. So (x, u) are determined by (15.6) and (15.9). An equilibrium solution at
x̄, ū is determined by

ū = a(x̄) a′(x̄) = α,

These give the balanced growth path; interestingly, it is independent of g.

This provides an example of so-called turnpike theory. For sufficiently large T the
optimal trajectory will move from the initial x(0) to within an arbitrary neighbourhood
of the balanced growth path (the turnpike) and stay there for all but an arbitrarily small
fraction of the time. As the terminal time becomes imminent the trajectory leaves the
neighbourhood of the turnpike and heads for the terminal point x(T ) = 0.
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16 Controlled Diffusion Processes

Control problems in a continuous-time, continuous state space, stochastic setting.

16.1 The dynamic programming equation

The DP equation in incremental form is

F (x, t) = inf
u
{c(x, u)δt+ E[F (x(t+ δt), t+ δt) | x(t) = x, u(t) = u)]}.

If appropriate limits exist then this can be written in the limit δt ↓ 0 as

inf
u
[c(x, u) + Ft(x, t) + Λ(u)F (x, t)] = 0.

Here Λ(u) is the operator defined by

Λ(u)φ(x) = lim
δt↓0

[
E[φ(x(t + δt)) | x(t) = x, u(t) = u]− φ(x)

δt

]

(16.1)

or

Λ(u)φ(x) = lim
δt↓0

E

[
φ(x(t + δt))− φ(x)

δt

∣
∣
∣
∣
x(t) = x, u(t) = u

]

the conditional expectation of the ‘rate of change’ of φ(x) along the path. The operator
Λ converts a scalar function of state, φ(x), to another such function, Λφ(x). However, its
action depends upon the control u, so we write it as Λ(u). It is called the infinitesimal
generator of the controlled Markov process. Equation (16.1) is equivalent to

E[φ(x(t + δt) | x(t) = x, u(t) = u] = φ(x) + Λ(u)φ(x)δt + o(δt).

This equation takes radically different forms depending upon whether the state space
is discrete or continuous. Both are important.

If the state space is discrete we have the Markov jump process of Lecture 9. In this
case Λ(u)φ(i) =

∑

j qij(u)[φ(j) − φ(i)]. Now we turn to the case of continuous state
space.

16.2 Diffusion processes and controlled diffusion processes

The Wiener process {B(t)}, is a scalar process for which B(0) = 0, the increments
in B over disjoint time intervals are statistically independent and B(t) is normally
distributed with zero mean and variance t. (‘B’ stands for Brownian motion. It can
be understood as a δ → 0 limit of a symmetric random walk in which steps ±

√
δ are

made at times δ, 2δ, . . . .) The specification is internally consistent because, for example,

B(t) = B(t1) + [B(t)−B(t1)]

and for 0 ≤ t1 ≤ t the two terms on the right-hand side are independent normal
variables of zero mean and with variance t1 and t− t1 respectively.
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If δB is the increment of B in a time interval of length δt then

E(δB) = 0, E[(δB)2] = δt, E[(δB)j ] = o(δt), for j > 2,

where the expectation is one conditional on the past of the process. Note that since

E[(δB/δt)2] = O
[
(δt)−1

]
→ ∞,

the formal derivative ǫ = dB/dt (continuous-time ‘white noise’) does not exist in a
mean-square sense, but expectations such as

E

[{∫

α(t)ǫ(t)dt

}2
]

= E

[{∫

α(t)dB(t)

}2
]

=

∫

α(t)2dt

make sense if the integral is convergent.
Now consider a stochastic differential equation

δx = a(x, u)δt+ g(x, u)δB,

which we shall write formally as

ẋ = a(x, u) + g(x, u)ǫ.

This, as a Markov process, has an infinitesimal generator with action

Λ(u)φ(x) = lim
δt↓0

E

[
φ(x(t + δt))− φ(x)

δt

∣
∣
∣
∣
x(t) = x, u(t) = u

]

= φxa+
1
2φxxg

2

= φxa+
1
2Nφxx,

where N(x, u) = g(x, u)2. So in the scalar case this controlled diffusion process has
DP equation

inf
u

[
c+ Ft + Fxa+ 1

2NFxx

]
= 0, (16.2)

and in the vector case

inf
u

[
c+ Ft + F⊤

x a+ 1
2 tr(NFxx)

]
= 0.

16.3 Example: noisy LQ regulation in continuous time

The dynamic programming equation is

inf
u

[
x⊤Rx+ u⊤Qu+ Ft + F⊤

x (Ax+Bu) + 1
2 tr(NFxx)

]
= 0.

In analogy with the discrete and deterministic continuous cases that we have considered
previously, we try a solution of the form,

F (x, t) = x⊤Π(t)x + γ(t).
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This leads to the same Riccati equation as in Section 13.4,

0 = x⊤

[

R+ΠA+A⊤Π−ΠBQ−1B⊤Π+
dΠ

dt

]

x,

and also, as in Section 10.3,

dγ

dt
+ tr(NΠ(t)) = 0, giving γ(t) =

∫ T

t

tr(NΠ(τ)) dτ.

16.4 Example: passage to a stopping set

Consider a problem of movement on the unit interval 0 ≤ x ≤ 1 in continuous time,
ẋ = u + ǫ, where ǫ is white noise of power v. The process terminates at time T when
x reaches one end or the other of the the interval. The cost is made up of an integral

term 1
2

∫ T

0
(L + Qu2)dt, penalising both control and time spent, and a terminal cost

which takes the value C0 or C1 according as termination takes place at 0 or 1.
Show that in the deterministic case v = 0 one should head straight for one of the

termination points at a constant rate and that the value function F (x) has a piecewise
linear form, with possibly a discontinuity at one of the boundary points if that boundary
point is the optimal target from no interior point of the interval.

Show, in the stochastic case, that the dynamic programming equation with the
control value optimized out can be linearised by a transformation F (x) = α logφ(x) for
a suitable constant α, and hence solve the problem.

Solution. In the deterministic case the optimality equation is

inf
u

[
L+Qu2

2
+ u

∂F

∂x

]

= 0, 0 < x < 1, (16.3)

with boundary conditions F (0) = C0, F (1) = C1. If one goes (from x) for x = 0 at
speed w one incurs a cost of C0 + (x/2w)(L +Qw2) with a minimum over w value of
C0 + x

√
LQ. Indeed (16.3) is solved by

F (x) = min
[

C0 + x
√

LQ,C1 + (1− x)
√

LQ
]

.

The minimizing option determines the target and the optimal w is
√

L/Q.
In the stochastic case

inf
u

[
L+Qu2

2
+ u

∂F

∂x
+

v

2

∂2F

∂x2

]

= 0.

So u = −Q−1Fx and

L−Q−1

(
∂F

∂x

)2

+ v
∂2F

∂x2
= 0.
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Make the transform F (x) = −Qv logφ(x) so φ(x) = e−F (x)/Qv. Then the above equa-
tion simplifies to

Qv2
∂2φ

∂x2
− Lφ = 0,

with solution
φ(x) = k1 exp

(x

v

√

L/Q
)

+ k2 exp
(

−x

v

√

L/Q
)

.

We choose the constants k1, k2 to meet the two boundary conditions on F .
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Figure 5: F (x) against x for the passage to a stopping set

The figure shows the solution for L = 1, Q = 4, C0 = 1, C1 = 1.5 and v = 0.125, 0.25,
0.5, 1, 2 and the deterministic solution.

Notice that for these parameter choices the presence of noise actually reduces cost.
This is because we are nearly indifferent as to which endpoint we hit, and L is small
relative to Q. So it will be good to keep u small and let the noise do most of the work
in bringing the state to endpoint.
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