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, , , , , 1, ...

, , , , 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2, 15

Reward = 5 + 6 + 3 + 10 + . . .β β2 β3

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.
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Dynamic Effort Allocation

• Research projects: how should I allocate my research time
amongst my favorite open problems so as to maximize the
value of my completed research?

• Job Scheduling: in what order should I work on the tasks in
my in-tray?

• Searching for information: shall I spend more time browsing
the web, or go to the library, or ask a friend?

• Dating strategy: should I contact a new prospect, or try
another date with someone I have dated before?
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Information vs. Immediate Payoff

In all these problems one wishes to learn about the effectiveness of
alternative strategies, while simultaneously wishing to use the best
strategy in the short-term.

“Bandit problems embody in essential form a conflict

evident in all human action: information versus immediate

payoff.”

— Peter Whittle (1989)

“Exploration versus exploitation”
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One of N drugs is to be administered at each of times t = 0, 1, . . .

The sth time drug i is used it is successful, Xi(s) = 1,
or unsuccessful, Xi(s) = 0.

P (Xi(s) = 1) = θi.

Xi(1),Xi(2), . . . are i.i.d. samples.

θi is unknown, but has a prior distribution,

— perhaps uniform on [0, 1]

f(θi) = 1 , 0 ≤ θi ≤ 1 .
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Bernoulli Bandits

Having seen si successes and fi are failures, the posterior is

f(θi | si, fi) =
(si+fi+1)!

si!fi!
θsii (1− θi)

fi , 0 ≤ θi ≤ 1 ,

with mean (si + 1)/(si + fi + 2).

We wish to maximize the expected total discounted sum of
number of successes.
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Multi-armed Bandit

N independent arms, with known states x1(t), . . . , xN (t).

At each time, t ∈ {0, 1, 2, . . .},

• One arm is to be activated (pulled/continued)
If arm i activated then it changes state:

x → y with probability Pi(x, y)

and produces reward ri(xi(t)).

• Other arms are to be passive (not pulled/frozen).

Objective: maximize the expected total β-discounted reward

E

[

∞
∑

t=0

rit(xit(t))β
t

]

,

where it is the arm pulled at time t, (0 < β < 1).
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The dynamic programming equation is

V (x1, . . . , xN )

= max
i

{

ri(xi) + β
∑

y

Pi(xi, y)V (x1, . . . , xi−1, y, xi+1, . . . , xN )
}

If bandit i moves on a state space of size ki, then (x1, . . . , xN )
moves on a state space of size

∏

i ki (exponential in N).
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Theorem [Gittins, ‘74, ‘79, ‘89]

Reward is maximized by always continuing the bandit
having greatest value of ‘dynamic allocation index’

Gi(xi) = sup
τ≥1

E
[

∑τ−1
t=0 ri(xi(t))β
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∣
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xi(0) = xi

]

E
[

∑τ−1
t=0 βt

∣
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∣
xi(0) = xi

]

where τ is a (past-measurable) stopping-time.

One problem (on a state space size
∏

i ki)
−→ N problems (on state spaces sizes k1, . . . , kn.)

Gi(xi) is called the Gittins index.

It can be computed in time O(k3i ).
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Gi(xi) = sup
τ≥1

E
[

∑τ−1
t=0 ri(xi(t))β

t
∣

∣

∣
xi(0) = xi

]

E
[

∑τ−1
t=0 β

t
∣

∣

∣
xi(0) = xi

]

Discounted reward up to τ .

Discounted time up to τ .



Gittins Indices for Bernoulli Bandits, β = 0.9

s 2 3 4 5 6 7 8
f
1 .7029 .8001 .8452 .8723 .8905 .9039 .9141 .9221
2 .5001 .6346 .7072 .7539 .7869 .8115 .8307 .8461
3 .3796 .5163 .6010 .6579 .6996 .7318 .7573 .7782
4 .3021 .4342 .5184 .5809 .6276 .6642 .6940 .7187
5 .2488 .3720 .4561 .5179 .5676 .6071 .6395 .6666
6 .2103 .3245 .4058 .4677 .5168 .5581 .5923 .6212
7 .1815 .2871 .3647 .4257 .4748 .5156 .5510 .5811
8 .1591 .2569 .3308 .3900 .4387 .4795 .5144 .5454

(s1, f1) = (2, 3): posterior mean = 3
7 = 0.4286, index = 0.5163
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s 2 3 4 5 6 7 8
f
1 .7029 .8001 .8452 .8723 .8905 .9039 .9141 .9221
2 .5001 .6346 .7072 .7539 .7869 .8115 .8307 .8461
3 .3796 .5163 .6010 .6579 .6996 .7318 .7573 .7782
4 .3021 .4342 .5184 .5809 .6276 .6642 .6940 .7187
5 .2488 .3720 .4561 .5179 .5676 .6071 .6395 .6666
6 .2103 .3245 .4058 .4677 .5168 .5581 .5923 .6212
7 .1815 .2871 .3647 .4257 .4748 .5156 .5510 .5811
8 .1591 .2569 .3308 .3900 .4387 .4795 .5144 .5454

(s1, f1) = (2, 3): posterior mean = 3
7 = 0.4286, index = 0.5163

(s2, f2) = (6, 7): posterior mean = 7
15 = 0.4667, index = 0.5156

So we prefer to use drug 1 next, even though it has the smaller
probability of success.
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Gittins Index Theorem

has become Better Known

Peter Whittle tells the story:

“A colleague of high repute asked an equally well-known col-
league:

— What would you say if you were told that the multi-armed
bandit problem had been solved?’

— Sir, the multi-armed bandit problem is not of such a
nature that it can be solved.’



Proofs of the Index Theorem

Since Gittins (1974, 1979), many researchers have reproved,
remodelled and resituated the index theorem.

Beale (1979)

Karatzas (1984)

Varaiya, Walrand, Buyukkoc (1985)

Chen, Katehakis (1986)

Kallenberg (1986)

Katehakis, Veinott (1986)

Eplett (1986)

Kertz (1986)

Tsitsiklis (1986)

Mandelbaum (1986, 1987)

Lai, Ying (1988)

Whittle (1988)
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• Index theorem has become better known.

• Alternative proofs have been explored.
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• Many applications (economics, engineering, . . . ).

• Notions of indexation have been generalized.
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Golf with N Balls

[Dimitriu, Tetali, Winkler ‘03, W. ‘92]

N balls are strewn about a golf course at locations x1, . . . , xN .

Hitting a ball i, that is in location xi, costs c(xi),

xi → y with probability P (xi, y)

Ball goes in the hole with probability P (xi, 0).

Objective

Minimize the expected total cost incurred up to sinking a first ball.
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Golf with 1 Ball

• Given the golfer’s ball is in location x, let us offer him a prize
of value g(x) if he eventually sinks the ball.

• Let us set this prize just great enough so that he can break
even, by playing one more stroke, and then quitting thereafter
whenever he likes.

g(x) = ‘fair prize’.

• If the ball arrives at a location y, from which g(x) is no longer
great enough to motivate the golfer to continue playing, then,
— just as he is about to quit —, we increase the prize to
g(y), which becomes the new ‘prevailing prize’.

• Continue doing this until the ball is sunk.

• This presents the golfer with a fair game, and it is optimal for
him to keep playing until the ball is sunk.

E(cost incurred) = E(prize won)
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Golf with 1 Ball

g(x) = 3.0, g(x′) = 2.5, g(x′′) = 4.0
Prevailing prize sequence is 3.0, 3.0, 4.0, . . .

x
x′

x′′

g(x) g(x)

g(x′′)
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g(x) = 3.0, g(x′) = 2.5, g(x′′) = 4.0
g(y) = 3.2, g(y′) = 3.5, g(y′′) = 4.2

x
x′

x′′

g(x) g(x)

g(x′′)

y

y′
y′′

g(y)

g(y′)
g(y′′)
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• ḡi(t) depends only on the ball’s history, not what has
happened to other balls. ḡi(t) = maxs≤t g(xi(s)).
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attached to it. ḡi(0) = g(xi(0)).
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Optimal Play with N Balls

• Each of the N balls has an initial ‘prevailing prize’, ḡi(0),
attached to it. ḡi(0) = g(xi(0)).

• Prevailing prize, ḡi(t), is increased whenever it is insufficient
to motivate golfer to play that ball; so it is nondecreasing.

• ḡi(t) depends only on the ball’s history, not what has
happened to other balls. ḡi(t) = maxs≤t g(xi(s)).

• Game is fair. It is impossible for golfer to make a strictly
positive profit (since he would have to do so for some ball).

E(cost incurred) ≥ E(prize won)

• Equality is achieved provided golfer does not switch away from
a ball unless its prevailing prize increases.

• Right hand side is minimized by always playing ball with least
prevailing prize.
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The expected cost incurred until a first ball is sunk equals the
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1
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τ≥1
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∣

∣
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∣

∣
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Suppose that a ball in location x can be played with a choice of
shots, from a set A(x). Choosing shot a ∈ A(x),

x → y with probability Pa(x, y)

Now the golfer must choose, not only which ball to play, but with
which shot to play it.



Golf with N Balls and a Set of Clubs

Suppose that a ball in location x can be played with a choice of
shots, from a set A(x). Choosing shot a ∈ A(x),

x → y with probability Pa(x, y)

Now the golfer must choose, not only which ball to play, but with
which shot to play it.

Under a condition, an index policy is again optimal.

He should play the ball with least prevailing prize, choosing the
shot from A that is optimal if that ball were the only ball present.



What has Happened Since 1989?

• Index theorem has become better known.

• Alternative proofs have been explored.

Playing golf with N balls

Achievable Performance Region Approach

• Many applications (economics, engineering, . . . ).

• Notions of indexation have been generalized.

Restless Bandits
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Let Ii(t) be an indicator for the event that at time t an arm is
pulled that is in state i.
We wish to maximize (conditional on the starting states of arms)

Eπ

[

∑

i∈E

ri

∞
∑

t=0

Ii(t)β
t

]

Suppose that under policy π,

zπi = Eπ

[

∞
∑

t=0

Ii(t)β
t

]

We wish to maximize
∑

i∈E riz
π
i .
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Consider a MABP with ri = 1 for all i. This shows that for all π.

∑

i∈E

AE
i z

π
i = 1 + β + β2 + · · · =

1

1− β
= b(E)

Now pick a subset of states S ⊂ E = {1, . . . , N}. Let

• T S
i = ‘number of pulls needed for state to return to S from i’.

AS
i = E

[

1 + β + · · ·+ βTS
i −1

]

.

• rSi = 0, i 6∈ S, and rSi = AS
i , i ∈ S.

This is a near-trivial MABP. Easy to show
∑

i r
S
i z

π
i minimized by

any policy that gives priority to arms whose states are not in S. So

∑

i∈E

AS
i z

π
i ≥ min

π

{

∑

i∈E

AS
i z

π
i

}

= b(S)



Constraints on the Achieveable Region

Lemma

There exist positive AS
i , as defined above, such that for any schedul-

ing policy π,

∑

i∈S

AS
i z

π
i ≥ b(S) , for all S ⊂ E, (1)

∑

i∈E

AE
i z

π
i = b(E) , (2)

and such that equality holds in (1) if π gives priority to arms whose
states are not in S over any arms whose states are in S.
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let S1 := E; let k := 2



Greedy Algorithm

Dual has 2N − 1 variables, yS, but only N of them are non-zero.
They can be computed one by one: ȳE, ȳS2
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, ȳS3
, . . . , ȳSN
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Greedy Algorithm

Dual has 2N − 1 variables, yS, but only N of them are non-zero.
They can be computed one by one: ȳE, ȳS2

, ȳS3
, . . . , ȳSN

.

Input: ri, pij , i, j ∈ E.

Initialization:

let ȳE := max{ri/A
E
i : i ∈ E}.

choose i1 ∈ E attaining the above maximum
set ȳS = 0 for all S, s.t. i1 ∈ S ⊂ E.
let gi1 := ȳE
let S1 := E; let k := 2

Loop: while k ≤ N do
let Sk := Sk−1 \ {ik−1}.

let ȳSk
:= max

{(

ri −
∑k−1

j=1
A

Sj

i

)

/ASk

i : i ∈ Sk

}

choose ik ∈ Sk attaining the above maximum
set ȳS = 0 for all S, s.t. ik ∈ S ⊂ Sk.
let gik := gik−1

+ ȳSk

let k := k + 1
end {while}



What has Happened Since 1989?

• Index theorem has become better known.

• Alternative proofs have been explored.

Playing golf with N balls

Achievable Performance Region Approach

• Many applications (economics, engineering, . . . ).

• Notions of indexation have been generalized.

Restless Bandits
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Restless Bandits

[Whittle ‘88]

• Two actions are available: active (a = 1) or passive (a = 0).

• Rewards, r(x, a), and transitions, P (y |x, a), depend on the
state and the action taken.

• Objective: Maximize time-average reward from n restless
bandits under a constraint that only m (m < n) of them
receive the active action simultaneously.

active a = 1 passive a = 0

work, increasing fatigue rest, recovery

high speed low speed

inspection no inspection
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Opportunistic Spectrum Access

Communication channels may be busy or free.

0 1 2 3 T

Channel 1

Channel 2

Opportunities

Opportunities

Aim is to ‘inspect’ m out of n channels, maximizing the number of
these that are found to be free.
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Opportunistic Spectrum Access

‘Condition’ of the channel (busy or free) evolves as Markov chain.

x(t) = P (channel is free at time t).

a = 0 : x(t+ 1) = x(t)p11 + (1− x(t))p01

a = 1 : x(t+ 1) =

{

p01
p11

with probability
1− x(t)
x(t)



Dynamic Programming Equation

Action set is Ω = {(a1, . . . , an) : ai ∈ {0, 1},
∑

i ai = m}.

For a state x = (x1, . . . , xn),

V (x) = max
a∈Ω

{

∑

i

r(xi, ai) + β
∑

y1,...,yn

V (y1, . . . , yn)
∏

i

P (yi |xi, ai)

}



Relaxed Problem for a Single Restless Bandit

Let us consider a relaxed problem, posed for 1 bandit only.

The aim is to maximize average reward obtained from this bandit
under a constraint that a = 1 for only a fraction m/n of the time.
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Let zax be proportion of time that the bandit is in state x and
action a is taken (under a stationary Markov policy).

An upper bound for our problem can found from a LP in variables
{zax : x ∈ E, a ∈ {0, 1}}:

maximize
∑
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LP for the Relaxed Problem

Let zax be proportion of time that the bandit is in state x and
action a is taken (under a stationary Markov policy).

An upper bound for our problem can found from a LP in variables
{zax : x ∈ E, a ∈ {0, 1}}:

maximize
∑

x,a

r(x, a)zax

s.t. zax ≥ 0 , for all x, a ;
∑

x,a

zax = 1 ;

∑

a

zax =
∑

y

zayP (x | y, a(y)) , for all x ;
∑

x

z0x = 1−m/n .



The Subsidy Problem

Optimal value of the dual LP problem is g, where this can be
found from the average-cost dynamic programming equation

φ(x) + g = max
a∈{0,1}

{

r(x, a) + λ(1− a) +
∑

y

φ(y)P (y |x, a)

}

.

λ and φ(x) are the Lagrange multipliers for constraints.

λ may be interpreted as a subsidy for taking a = 0.



The Subsidy Problem

Optimal value of the dual LP problem is g, where this can be
found from the average-cost dynamic programming equation

φ(x) + g = max
a∈{0,1}

{

r(x, a) + λ(1− a) +
∑

y

φ(y)P (y |x, a)

}

.

λ and φ(x) are the Lagrange multipliers for constraints.

λ may be interpreted as a subsidy for taking a = 0.

Solution partitions state space into sets: E0 (a = 0), E1 (a = 1)
and E01 (randomization between a = 0 and a = 1).
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to +∞ the set of states E0 (where a = 0 optimal) should increase
monotonically.

If it does then we say the bandit is indexable.

Whittle index, W (x), is the least subsidy for which it can be
optimal to take a = 0 in state x.

This motivates a heuristic policy:
use active action on the m bandits with the greatest Whittle

indices.

Like Gittins indices for classical bandits, Whittle indices can be
computed separately for each bandit.
Same as the Gittins index when a = 0 is freezing action.
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This is somewhat mysterious.

Special classes of restless bandits are indexable: such as ‘dual
speed’, Glazebrook, Niño-Mora, Ansell (2002), W. (2007).

Indexability can be proved in some problems (such as the
opportunistic spectrum access problem, Liu and Zhao (2009)).

• How good is the heuristic policy using Whittle indices?

It may be optimal. (opportunistic spectrum access —
identical channels, Ahmad, Liu, Javidi, and Zhao (2009)).

Lots of papers with numerical work.

It is often asymptotically optimal, W. and Weiss (1990).
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Asymptotic Optimality

Suppose a priority policy orders the states 1, 2, . . . .
At time t there are (n1, . . . , nk) bandits in states 1, . . . , k. Let

m = ρn.

zi = ni/n be proportion in state i.

na
i = number that receive action a.

uai (z) = na
i /ni.

n1 n2 n3 n4

m = ρn

0 1

u11(z) = u12(z) = 1 0 < u13(z) < 1 u03(z) = 1

qaij = rate a bandit in state i jumps to state j under action a;

qij(z) = u0i (z)q
0
ij + u1i (z)q

1
ij



Fluid Approximation

The ‘fluid approximation’ for large n is given by piecewise linear
differential equations, of the form:

dzi/dt =
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qij(z)zi
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Fluid Approximation

The ‘fluid approximation’ for large n is given by piecewise linear
differential equations, of the form:

dzi/dt =
∑

j

qji(z)zj −
∑

j

qij(z)zi

E.g., k = 2.

dz1/dt =

{

−(q012 + q021)z1 + (q012 − q112)ρ+ q021 , z1 ≥ ρ

−(q112 + q121)z1 − (q021 − q121)ρ+ q021 , z1 ≤ ρ

dz/dt = A(z)z + b(z), where A(z) and b(z) are constant within k
polyhedral regions.



Asymptotic Optimality

Theorem [W. and Weiss ‘90]

If bandits are indexable, and the fluid model has an asymptotically
stable equilibrium point, then the Whittle index heuristic is asymp-
totically optimal, — in the sense that the reward per bandit tends
to the reward that is obtained under the relaxed policy.

(proof via a theorem about law of large numbers for sample paths.)
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r0 = (0, 1, 10, 10) , r1 = (10, 10, 10, 0) , ρ = 0.835

Bandit is indexable.

Equilibrium point is (z̄1, z̄2, z̄3, z̄4) = (0.409, 0.327, 0.100, 0.164).

z̄1 + z̄2 + z̄3 = 0.836.

Relaxed policy obtains 10 per bandit per unit time.



Heuristic is Not Asymptotically Optimal

But equilibrium point z̄ is not asymptotically stable.

0.10

0.16

0.32

0.42

z1

z2

z3

z4

t →

a = 1

a = 0

a = 0/1

Relaxed policy obtains 10 per bandit.
Heuristic obtains only 9.9993 per bandit.
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