# Multi-armed Bandits and the Gittins Index 

Richard Weber<br>Statistical Laboratory, University of Cambridge

Seminar at Microsoft, Cambridge, June 20, 2011

## The Multi-armed Bandit Problem

## The Multi-armed Bandit Problem



## Multi-armed Bandit Allocation Indices

J.C.GITTIINS


## Multi-armed Bandit Allocation Indices

2nd Edition edition
11 March 2011
Gittins, Glazebrook and Weber

## MULTI-ARMED BANDIT ALLOCATION INDICES

2nd Edition
John Gittins, Kevin Glazebrook
and Richard Weber


## Two-armed Bandit



## Two-armed Bandit



$$
\begin{gathered}
3,10,4,9,12,1, \ldots \\
, 6,2,15,2,7, \ldots
\end{gathered}
$$

## Two-armed Bandit



$$
\begin{gathered}
3,10,4,9,12,1, \ldots \\
, \quad, 2,15,2,7, \ldots
\end{gathered}
$$

## Two-armed Bandit



## Two-armed Bandit



$$
\begin{aligned}
& , 4,9,12,1, \ldots \\
& , 2,15,2,7, \ldots
\end{aligned}
$$

## Two-armed Bandit



## Two-armed Bandit



$$
\begin{array}{r}
, 12,1, \ldots \\
, 2,15,2,7, \ldots
\end{array} \longrightarrow 5,3,10,4,9
$$

## Two-armed Bandit



## Two-armed Bandit



## Two-armed Bandit



## Two-armed Bandit



Reward $=5+6 \beta+3 \beta^{2}+10 \beta^{3}+\cdots$
$0<\beta<1$.

## Two-armed Bandit


$0<\beta<1$. Of course, in practice we must choose which arms to pull without knowing the future sequences of rewards.

## Dynamic Effort Allocation

- Research projects: how should I allocate my research time amongst my favorite open problems so as to maximize the value of my completed research?


## Dynamic Effort Allocation

- Research projects: how should I allocate my research time amongst my favorite open problems so as to maximize the value of my completed research?
- Job Scheduling: in what order should I work on the tasks in my in-tray?


## Dynamic Effort Allocation

- Research projects: how should I allocate my research time amongst my favorite open problems so as to maximize the value of my completed research?
- Job Scheduling: in what order should I work on the tasks in my in-tray?
- Searching for information: shall I spend more time browsing the web, or go to the library, or ask a friend?


## Dynamic Effort Allocation

- Research projects: how should I allocate my research time amongst my favorite open problems so as to maximize the value of my completed research?
- Job Scheduling: in what order should I work on the tasks in my in-tray?
- Searching for information: shall I spend more time browsing the web, or go to the library, or ask a friend?
- Dating strategy: should I contact a new prospect, or try another date with someone I have dated before?


## Information vs. Immediate Payoff

In all these problems one wishes to learn about the effectiveness of alternative strategies, while simultaneously wishing to use the best strategy in the short-term.

## Information vs. Immediate Payoff

In all these problems one wishes to learn about the effectiveness of alternative strategies, while simultaneously wishing to use the best strategy in the short-term.
"Bandit problems embody in essential form a conflict evident in all human action: information versus immediate payoff."

- Peter Whittle (1989)


## Information vs. Immediate Payoff

In all these problems one wishes to learn about the effectiveness of alternative strategies, while simultaneously wishing to use the best strategy in the short-term.
"Bandit problems embody in essential form a conflict evident in all human action: information versus immediate payoff."

- Peter Whittle (1989)
"Exploration versus exploitation"


## Clinical Trials



## Bernoulli Bandits

One of $N$ drugs is to be administered at each of times $t=0,1, \ldots$

## Bernoulli Bandits

One of $N$ drugs is to be administered at each of times $t=0,1, \ldots$
The $s$ th time drug $i$ is used it is successful, $X_{i}(s)=1$, or unsuccessful, $X_{i}(s)=0$.

## Bernoulli Bandits

One of $N$ drugs is to be administered at each of times $t=0,1, \ldots$ The $s$ th time drug $i$ is used it is successful, $X_{i}(s)=1$, or unsuccessful, $X_{i}(s)=0$.
$P\left(X_{i}(s)=1\right)=\theta_{i}$.

## Bernoulli Bandits

One of $N$ drugs is to be administered at each of times $t=0,1, \ldots$ The $s$ th time drug $i$ is used it is successful, $X_{i}(s)=1$, or unsuccessful, $X_{i}(s)=0$.
$P\left(X_{i}(s)=1\right)=\theta_{i}$.
$X_{i}(1), X_{i}(2), \ldots$ are i.i.d. samples.

## Bernoulli Bandits

One of $N$ drugs is to be administered at each of times $t=0,1, \ldots$
The $s$ th time drug $i$ is used it is successful, $X_{i}(s)=1$, or unsuccessful, $X_{i}(s)=0$.
$P\left(X_{i}(s)=1\right)=\theta_{i}$.
$X_{i}(1), X_{i}(2), \ldots$ are i.i.d. samples.
$\theta_{i}$ is unknown, but has a prior distribution,

- perhaps uniform on $[0,1]$

$$
f\left(\theta_{i}\right)=1, \quad 0 \leq \theta_{i} \leq 1
$$

## Bernoulli Bandits

Having seen $s_{i}$ successes and $f_{i}$ are failures, the posterior is

$$
f\left(\theta_{i} \mid s_{i}, f_{i}\right)=\frac{\left(s_{i}+f_{i}+1\right)!}{s_{i}!f_{i}!} \theta_{i}^{s_{i}}\left(1-\theta_{i}\right)^{f_{i}}, \quad 0 \leq \theta_{i} \leq 1
$$

with mean $\left(s_{i}+1\right) /\left(s_{i}+f_{i}+2\right)$.

## Bernoulli Bandits

Having seen $s_{i}$ successes and $f_{i}$ are failures, the posterior is

$$
f\left(\theta_{i} \mid s_{i}, f_{i}\right)=\frac{\left(s_{i}+f_{i}+1\right)!}{s_{i}!f_{i}!} \theta_{i}^{s_{i}}\left(1-\theta_{i}\right)^{f_{i}}, \quad 0 \leq \theta_{i} \leq 1
$$

with mean $\left(s_{i}+1\right) /\left(s_{i}+f_{i}+2\right)$.
We wish to maximize the expected total discounted sum of number of successes.

## Multi-armed Bandit

$N$ independent arms, with known states $x_{1}(t), \ldots, x_{N}(t)$.

## Multi-armed Bandit

$N$ independent arms, with known states $x_{1}(t), \ldots, x_{N}(t)$.
At each time, $t \in\{0,1,2, \ldots\}$,

- One arm is to be activated (pulled/continued) If arm $i$ activated then it changes state:

$$
x \rightarrow y \quad \text { with probability } P_{i}(x, y)
$$

and produces reward $r_{i}\left(x_{i}(t)\right)$.

## Multi-armed Bandit

$N$ independent arms, with known states $x_{1}(t), \ldots, x_{N}(t)$.
At each time, $t \in\{0,1,2, \ldots\}$,

- One arm is to be activated (pulled/continued) If arm $i$ activated then it changes state:

$$
x \rightarrow y \quad \text { with probability } P_{i}(x, y)
$$

and produces reward $r_{i}\left(x_{i}(t)\right)$.

- Other arms are to be passive (not pulled/frozen).


## Multi-armed Bandit

$N$ independent arms, with known states $x_{1}(t), \ldots, x_{N}(t)$.
At each time, $t \in\{0,1,2, \ldots\}$,

- One arm is to be activated (pulled/continued) If arm $i$ activated then it changes state:

$$
x \rightarrow y \quad \text { with probability } P_{i}(x, y)
$$

and produces reward $r_{i}\left(x_{i}(t)\right)$.

- Other arms are to be passive (not pulled/frozen).

Objective: maximize the expected total $\beta$-discounted reward

$$
E\left[\sum_{t=0}^{\infty} r_{i_{t}}\left(x_{i_{t}}(t)\right) \beta^{t}\right]
$$

where $i_{t}$ is the arm pulled at time $t,(0<\beta<1)$.

## Dynamic Programming Solution

The dynamic programming equation is

$$
\begin{aligned}
& V\left(x_{1}, \ldots, x_{N}\right) \\
& \quad=\max _{i}\left\{r_{i}\left(x_{i}\right)+\beta \sum_{y} P_{i}\left(x_{i}, y\right) V\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{N}\right)\right\}
\end{aligned}
$$

## Dynamic Programming Solution

The dynamic programming equation is

$$
\begin{aligned}
& V\left(x_{1}, \ldots, x_{N}\right) \\
& \quad=\max _{i}\left\{r_{i}\left(x_{i}\right)+\beta \sum_{y} P_{i}\left(x_{i}, y\right) V\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{N}\right)\right\}
\end{aligned}
$$

If bandit $i$ moves on a state space of size $k_{i}$, then $\left(x_{1}, \ldots, x_{N}\right)$ moves on a state space of size $\prod_{i} k_{i}$ (exponential in $N$ ).

## Gittins Index Solution

## Theorem [Gittins, '74, '79, '89]

Reward is maximized by always continuing the bandit having greatest value of 'dynamic allocation index'

$$
G_{i}\left(x_{i}\right)=\sup _{\tau \geq 1} \frac{E\left[\sum_{t=0}^{\tau-1} r_{i}\left(x_{i}(t)\right) \beta^{t} \mid x_{i}(0)=x_{i}\right]}{E\left[\sum_{t=0}^{\tau-1} \beta^{t} \mid x_{i}(0)=x_{i}\right]}
$$

where $\tau$ is a (past-measurable) stopping-time.

## Gittins Index Solution

## Theorem [Gittins, '74, '79, '89]

Reward is maximized by always continuing the bandit having greatest value of 'dynamic allocation index'

$$
G_{i}\left(x_{i}\right)=\sup _{\tau \geq 1} \frac{E\left[\sum_{t=0}^{\tau-1} r_{i}\left(x_{i}(t)\right) \beta^{t} \mid x_{i}(0)=x_{i}\right]}{E\left[\sum_{t=0}^{\tau-1} \beta^{t} \mid x_{i}(0)=x_{i}\right]}
$$

where $\tau$ is a (past-measurable) stopping-time.

One problem (on a state space size $\prod_{i} k_{i}$ )
$\longrightarrow N$ problems (on state spaces sizes $k_{1}, \ldots, k_{n}$.)

## Gittins Index Solution

## Theorem [Gittins, '74, '79, '89]

Reward is maximized by always continuing the bandit having greatest value of 'dynamic allocation index'

$$
G_{i}\left(x_{i}\right)=\sup _{\tau \geq 1} \frac{E\left[\sum_{t=0}^{\tau-1} r_{i}\left(x_{i}(t)\right) \beta^{t} \mid x_{i}(0)=x_{i}\right]}{E\left[\sum_{t=0}^{\tau-1} \beta^{t} \mid x_{i}(0)=x_{i}\right]}
$$

where $\tau$ is a (past-measurable) stopping-time.

One problem (on a state space size $\prod_{i} k_{i}$ ) $\longrightarrow N$ problems (on state spaces sizes $k_{1}, \ldots, k_{n}$.)
$G_{i}\left(x_{i}\right)$ is called the Gittins index.

## Gittins Index Solution

## Theorem [Gittins, '74, '79, '89]

Reward is maximized by always continuing the bandit having greatest value of 'dynamic allocation index'

$$
G_{i}\left(x_{i}\right)=\sup _{\tau \geq 1} \frac{E\left[\sum_{t=0}^{\tau-1} r_{i}\left(x_{i}(t)\right) \beta^{t} \mid x_{i}(0)=x_{i}\right]}{E\left[\sum_{t=0}^{\tau-1} \beta^{t} \mid x_{i}(0)=x_{i}\right]}
$$

where $\tau$ is a (past-measurable) stopping-time.

One problem (on a state space size $\prod_{i} k_{i}$ ) $\longrightarrow N$ problems (on state spaces sizes $k_{1}, \ldots, k_{n}$.)
$G_{i}\left(x_{i}\right)$ is called the Gittins index.
It can be computed in time $O\left(k_{i}^{3}\right)$.

## Gittins Index

$$
\left.\left.G_{i}\left(x_{i}\right)=\sup _{\tau \geq 1} \frac{E\left[\sum_{t=0}^{\tau-1} r_{i}\left(x_{i}(t)\right) \beta^{t} \mid x_{i}(0)=x_{i}\right]}{E\left[\sum_{t=0}^{\tau-1} \beta^{t}\right.} \right\rvert\, x_{i}(0)=x_{i}\right] \quad
$$

## Gittins Index

$$
\left.\left.G_{i}\left(x_{i}\right)=\sup _{\tau \geq 1} \frac{E\left[\sum_{t=0}^{\tau-1} r_{i}\left(x_{i}(t)\right) \beta^{t}\right.}{} \right\rvert\, x_{i}(0)=x_{i}\right] ~\left(\sum_{t=0}^{\tau-1} \beta^{t} \mid x_{i}(0)=x_{i}\right] \quad,
$$

Discounted reward up to $\tau$.

## Gittins Index

$$
\left.G_{i}\left(x_{i}\right)=\sup _{\tau \geq 1} \frac{E\left[\sum_{t=0}^{\tau-1} r_{i}\left(x_{i}(t)\right) \beta^{t}\right.}{} \begin{array}{l}
\left.x_{i}(0)=x_{i}\right] \\
E\left[\sum_{t=0}^{\tau-1} \beta^{t}\right.
\end{array} x_{i}(0)=x_{i}\right] \quad,
$$

Discounted reward up to $\tau$.
Discounted time up to $\tau$.

## Gittins Indices for Bernoulli Bandits, $\beta=0.9$

| $s$ |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f$ |  |  |  |  |  |  |  |  |
| 1 | .7029 | .8001 | .8452 | .8723 | .8905 | .9039 | .9141 | .9221 |
| 2 | .5001 | .6346 | .7072 | .7539 | .7869 | .8115 | .8307 | .8461 |
| 3 | .3796 | .5163 | .6010 | .6579 | .6996 | .7318 | .7573 | .7782 |
| 4 | .3021 | .4342 | .5184 | .5809 | .6276 | .6642 | .6940 | .7187 |
| 5 | .2488 | .3720 | .4561 | .5179 | .5676 | .6071 | .6395 | .6666 |
| 6 | .2103 | .3245 | .4058 | .4677 | .5168 | .5581 | .5923 | .6212 |
| 7 | .1815 | .2871 | .3647 | .4257 | .4748 | .5156 | .5510 | .5811 |
| 8 | .1591 | .2569 | .3308 | .3900 | .4387 | .4795 | .5144 | .5454 |

$\left(s_{1}, f_{1}\right)=(2,3):$ posterior mean $=\frac{3}{7}=0.4286$, index $=0.5163$

## Gittins Indices for Bernoulli Bandits, $\beta=0.9$

| $s$ |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f$ |  |  |  |  |  |  |  |  |
| 1 | .7029 | .8001 | .8452 | .8723 | .8905 | .9039 | .9141 | .9221 |
| 2 | .5001 | .6346 | .7072 | .7539 | .7869 | .8115 | .8307 | .8461 |
| 3 | .3796 | .5163 | .6010 | .6579 | .6996 | .7318 | .7573 | .7782 |
| 4 | .3021 | .4342 | .5184 | .5809 | .6276 | .6642 | .6940 | .7187 |
| 5 | .2488 | .3720 | .4561 | .5179 | .5676 | .6071 | .6395 | .6666 |
| 6 | .2103 | .3245 | .4058 | .4677 | .5168 | .5581 | .5923 | .6212 |
| 7 | .1815 | .2871 | .3647 | .4257 | .4748 | .5156 | .5510 | .5811 |
| 8 | .1591 | .2569 | .3308 | .3900 | .4387 | .4795 | .5144 | .5454 |

$\left(s_{1}, f_{1}\right)=(2,3):$ posterior mean $=\frac{3}{7}=0.4286$, index $=0.5163$
$\left(s_{2}, f_{2}\right)=(6,7):$ posterior mean $=\frac{7}{15}=0.4667$, index $=0.5156$

## Gittins Indices for Bernoulli Bandits, $\beta=0.9$

| $s$ |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f$ |  |  |  |  |  |  |  |  |
| 1 | .7029 | .8001 | .8452 | .8723 | .8905 | .9039 | .9141 | .9221 |
| 2 | .5001 | .6346 | .7072 | .7539 | .7869 | .8115 | .8307 | .8461 |
| 3 | .3796 | .5163 | .6010 | .6579 | .6996 | .7318 | .7573 | .7782 |
| 4 | .3021 | .4342 | .5184 | .5809 | .6276 | .6642 | .6940 | .7187 |
| 5 | .2488 | .3720 | .4561 | .5179 | .5676 | .6071 | .6395 | .6666 |
| 6 | .2103 | .3245 | .4058 | .4677 | .5168 | .5581 | .5923 | .6212 |
| 7 | .1815 | .2871 | .3647 | .4257 | .4748 | .5156 | .5510 | .5811 |
| 8 | .1591 | .2569 | .3308 | .3900 | .4387 | .4795 | .5144 | .5454 |

$\left(s_{1}, f_{1}\right)=(2,3):$ posterior mean $=\frac{3}{7}=0.4286$, index $=0.5163$
$\left(s_{2}, f_{2}\right)=(6,7)$ : posterior mean $=\frac{7}{15}=0.4667$, index $=0.5156$
So we prefer to use drug 1 next, even though it has the smaller probability of success.

## What has Happened Since 1989?

- Index theorem has become better known.


## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored.


## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored. Playing golf with $\mathbf{N}$ balls


## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored.

Playing golf with N balls
Achievable Performance Region Approach

## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored.

Playing golf with N balls
Achievable Performance Region Approach

- Many applications (economics, engineering, ...).


## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored. Playing golf with N balls
Achievable Performance Region Approach
- Many applications (economics, engineering, ...).
- Notions of indexation have been generalized.


## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored. Playing golf with N balls Achievable Performance Region Approach
- Many applications (economics, engineering, ...).
- Notions of indexation have been generalized. Restless Bandits


## Gittins Index Theorem has become Better Known

Peter Whittle tells the story:
"A colleague of high repute asked an equally well-known colleague:

- What would you say if you were told that the multi-armed bandit problem had been solved?'


## Gittins Index Theorem has become Better Known

Peter Whittle tells the story:
"A colleague of high repute asked an equally well-known colleague:

- What would you say if you were told that the multi-armed bandit problem had been solved?'
- Sir, the multi-armed bandit problem is not of such a nature that it can be solved.'


## Proofs of the Index Theorem

Since Gittins (1974, 1979), many researchers have reproved, remodelled and resituated the index theorem.

Beale (1979)
Karatzas (1984)
Varaiya, Walrand, Buyukkoc (1985)
Chen, Katehakis (1986)
Kallenberg (1986)
Katehakis, Veinott (1986)
Eplett (1986)
Kertz (1986)
Tsitsiklis (1986)
Mandelbaum $(1986,1987)$
Lai, Ying (1988)
Whittle (1988)

## Proofs of the Index Theorem

Since Gittins (1974, 1979), many researchers have reproved, remodelled and resituated the index theorem.

```
Beale (1979)
Karatzas (1984)
Varaiya, Walrand, Buyukkoc (1985)
Chen, Katehakis (1986)
Kallenberg (1986)
Katehakis, Veinott (1986)
Eplett (1986)
Kertz (1986)
Tsitsiklis (1986)
Mandelbaum (1986, 1987)
Lai, Ying (1988)
Whittle (1988)
```

Weber (1992)
El Karoui, Karatzas (1993)
Ishikida and Varaiya (1994)
Tsitsiklis (1994)
Bertsimas, Niño-Mora (1996)
Glazebrook, Garbe (1996)
Kaspi, Mandelbaum (1998)
Bäuerle, Stidham (2001)
Dimitriu, Tetali, Winkler (2003)

## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored.

Playing golf with N balls

## Achievable Performance Region Approach

- Many applications (economics, engineering, ... ).
- Notions of indexation have been generalized. Restless Bandits


## Golf with N Balls

> [Dimitriu, Tetali, Winkler ‘03, W. ‘92]
$N$ balls are strewn about a golf course at locations $x_{1}, \ldots, x_{N}$.


## Golf with N Balls

## [Dimitriu, Tetali, Winkler '03, W. '92]

$N$ balls are strewn about a golf course at locations $x_{1}, \ldots, x_{N}$. Hitting a ball $i$, that is in location $x_{i}$, costs $c\left(x_{i}\right)$,

$$
x_{i} \rightarrow y \quad \text { with probability } P\left(x_{i}, y\right)
$$

Ball goes in the hole with probability $P\left(x_{i}, 0\right)$.
Objective
Minimize the expected total cost incurred up to sinking a first ball.

## Golf with 1 Ball

- Given the golfer's ball is in location $x$, let us offer him a prize of value $g(x)$ if he eventually sinks the ball.


## Golf with 1 Ball

- Given the golfer's ball is in location $x$, let us offer him a prize of value $g(x)$ if he eventually sinks the ball.
- Let us set this prize just great enough so that he can break even, by playing one more stroke, and then quitting thereafter whenever he likes.


## Golf with 1 Ball

- Given the golfer's ball is in location $x$, let us offer him a prize of value $g(x)$ if he eventually sinks the ball.
- Let us set this prize just great enough so that he can break even, by playing one more stroke, and then quitting thereafter whenever he likes.

$$
g(x)=\text { 'fair prize'. }
$$

## Golf with 1 Ball

- Given the golfer's ball is in location $x$, let us offer him a prize of value $g(x)$ if he eventually sinks the ball.
- Let us set this prize just great enough so that he can break even, by playing one more stroke, and then quitting thereafter whenever he likes.
$g(x)=$ 'fair prize'.
- If the ball arrives at a location $y$, from which $g(x)$ is no longer great enough to motivate the golfer to continue playing, then, - just as he is about to quit -, we increase the prize to $g(y)$, which becomes the new 'prevailing prize'.


## Golf with 1 Ball

- Given the golfer's ball is in location $x$, let us offer him a prize of value $g(x)$ if he eventually sinks the ball.
- Let us set this prize just great enough so that he can break even, by playing one more stroke, and then quitting thereafter whenever he likes.
$g(x)=$ 'fair prize'.
- If the ball arrives at a location $y$, from which $g(x)$ is no longer great enough to motivate the golfer to continue playing, then, - just as he is about to quit -, we increase the prize to $g(y)$, which becomes the new 'prevailing prize'.
- Continue doing this until the ball is sunk.


## Golf with 1 Ball

- Given the golfer's ball is in location $x$, let us offer him a prize of value $g(x)$ if he eventually sinks the ball.
- Let us set this prize just great enough so that he can break even, by playing one more stroke, and then quitting thereafter whenever he likes.
$g(x)=$ 'fair prize'.
- If the ball arrives at a location $y$, from which $g(x)$ is no longer great enough to motivate the golfer to continue playing, then, - just as he is about to quit -, we increase the prize to $g(y)$, which becomes the new 'prevailing prize'.
- Continue doing this until the ball is sunk.
- This presents the golfer with a fair game, and it is optimal for him to keep playing until the ball is sunk.

$$
E(\text { cost incurred })=E(\text { prize won })
$$

## Golf with 1 Ball

$$
g(x)=3.0
$$



## Golf with 1 Ball

$$
g(x)=3.0, g\left(x^{\prime}\right)=2.5
$$



## Golf with 1 Ball

$$
g(x)=3.0, g\left(x^{\prime}\right)=2.5, g\left(x^{\prime \prime}\right)=4.0
$$



## Golf with 1 Ball

$g(x)=3.0, g\left(x^{\prime}\right)=2.5, g\left(x^{\prime \prime}\right)=4.0$
Prevailing prize sequence is $3.0,3.0,4.0, \ldots$


## Golf with 2 Balls

$$
\begin{aligned}
& g(x)=\overline{3.0} \\
& g(y)=\overline{3.2}
\end{aligned}
$$



## Golf with 2 Balls

$$
\begin{aligned}
& g(x)=\overline{3.0}, g\left(x^{\prime}\right)=2.5 \\
& g(y)=\overline{3.2}
\end{aligned}
$$



## Golf with 2 Balls

$$
\begin{aligned}
& g(x)=3.0, g\left(x^{\prime}\right)=2.5, g\left(x^{\prime \prime}\right)=\overline{4.0} \\
& g(y)=\overline{3.2}
\end{aligned}
$$



## Golf with 2 Balls

$$
\begin{aligned}
& g(x)=3.0, g\left(x^{\prime}\right)=2.5, g\left(x^{\prime \prime}\right)=\overline{4.0} \\
& g(y)=3.2, g\left(y^{\prime}\right)=\overline{3.5}
\end{aligned}
$$



## Golf with 2 Balls

$$
\begin{aligned}
& g(x)=3.0, g\left(x^{\prime}\right)=2.5, g\left(x^{\prime \prime}\right)=\overline{4.0} \\
& g(y)=3.2, g\left(y^{\prime}\right)=3.5, g\left(y^{\prime \prime}\right)=\overline{4.2}
\end{aligned}
$$



## Optimal Play with N Balls

- Each of the $N$ balls has an initial 'prevailing prize', $\bar{g}_{i}(0)$, attached to it. $\bar{g}_{i}(0)=g\left(x_{i}(0)\right)$.


## Optimal Play with N Balls

- Each of the $N$ balls has an initial 'prevailing prize', $\bar{g}_{i}(0)$, attached to it. $\bar{g}_{i}(0)=g\left(x_{i}(0)\right)$.
- Prevailing prize, $\bar{g}_{i}(t)$, is increased whenever it is insufficient to motivate golfer to play that ball; so it is nondecreasing.


## Optimal Play with N Balls

- Each of the $N$ balls has an initial 'prevailing prize', $\bar{g}_{i}(0)$, attached to it. $\bar{g}_{i}(0)=g\left(x_{i}(0)\right)$.
- Prevailing prize, $\bar{g}_{i}(t)$, is increased whenever it is insufficient to motivate golfer to play that ball; so it is nondecreasing.
- $\bar{g}_{i}(t)$ depends only on the ball's history, not what has happened to other balls. $\bar{g}_{i}(t)=\max _{s \leq t} g\left(x_{i}(s)\right)$.


## Optimal Play with N Balls

- Each of the $N$ balls has an initial 'prevailing prize', $\bar{g}_{i}(0)$, attached to it. $\bar{g}_{i}(0)=g\left(x_{i}(0)\right)$.
- Prevailing prize, $\bar{g}_{i}(t)$, is increased whenever it is insufficient to motivate golfer to play that ball; so it is nondecreasing.
- $\bar{g}_{i}(t)$ depends only on the ball's history, not what has happened to other balls. $\bar{g}_{i}(t)=\max _{s \leq t} g\left(x_{i}(s)\right)$.
- Game is fair. It is impossible for golfer to make a strictly positive profit (since he would have to do so for some ball).

$$
E(\text { cost incurred }) \geq E(\text { prize won })
$$

## Optimal Play with N Balls

- Each of the $N$ balls has an initial 'prevailing prize', $\bar{g}_{i}(0)$, attached to it. $\bar{g}_{i}(0)=g\left(x_{i}(0)\right)$.
- Prevailing prize, $\bar{g}_{i}(t)$, is increased whenever it is insufficient to motivate golfer to play that ball; so it is nondecreasing.
- $\bar{g}_{i}(t)$ depends only on the ball's history, not what has happened to other balls. $\bar{g}_{i}(t)=\max _{s \leq t} g\left(x_{i}(s)\right)$.
- Game is fair. It is impossible for golfer to make a strictly positive profit (since he would have to do so for some ball).

$$
E(\text { cost incurred }) \geq E(\text { prize won })
$$

- Equality is achieved provided golfer does not switch away from a ball unless its prevailing prize increases.


## Optimal Play with N Balls

- Each of the $N$ balls has an initial 'prevailing prize', $\bar{g}_{i}(0)$, attached to it. $\bar{g}_{i}(0)=g\left(x_{i}(0)\right)$.
- Prevailing prize, $\bar{g}_{i}(t)$, is increased whenever it is insufficient to motivate golfer to play that ball; so it is nondecreasing.
- $\bar{g}_{i}(t)$ depends only on the ball's history, not what has happened to other balls. $\bar{g}_{i}(t)=\max _{s \leq t} g\left(x_{i}(s)\right)$.
- Game is fair. It is impossible for golfer to make a strictly positive profit (since he would have to do so for some ball).

$$
E(\text { cost incurred }) \geq E(\text { prize won })
$$

- Equality is achieved provided golfer does not switch away from a ball unless its prevailing prize increases.
- Right hand side is minimized by always playing ball with least prevailing prize.


## Golf and the Multi-armed Bandit

Having solved the golf problem, the solution to the multi-armed bandit problem follows. Just let $P(x, 0)=1-\beta$ for all $x$.

The expected cost incurred until a first ball is sunk equals the expected total $\beta$-discounted cost over the infinite horizon.

## Golf and the Multi-armed Bandit

Having solved the golf problem, the solution to the multi-armed bandit problem follows. Just let $P(x, 0)=1-\beta$ for all $x$.

The expected cost incurred until a first ball is sunk equals the expected total $\beta$-discounted cost over the infinite horizon.

The fair prize, $g(x)$, is $1 /(1-\beta)$ times the Gittins index, $G(x)$.

## Golf and the Multi-armed Bandit

Having solved the golf problem, the solution to the multi-armed bandit problem follows. Just let $P(x, 0)=1-\beta$ for all $x$.

The expected cost incurred until a first ball is sunk equals the expected total $\beta$-discounted cost over the infinite horizon.

The fair prize, $g(x)$, is $1 /(1-\beta)$ times the Gittins index, $G(x)$.

$$
\begin{aligned}
g(x) & =\inf \left\{g: \sup _{\tau \geq 1} E\left[\sum_{t=0}^{\tau-1}-c(x(t)) \beta^{t}\right.\right. \\
& \left.\left.+(1-\beta)\left(1+\beta+\cdots+\beta^{\tau-1}\right) g \mid x(0)=x\right] \geq 0\right\}
\end{aligned}
$$

## Golf and the Multi-armed Bandit

Having solved the golf problem, the solution to the multi-armed bandit problem follows. Just let $P(x, 0)=1-\beta$ for all $x$.

The expected cost incurred until a first ball is sunk equals the expected total $\beta$-discounted cost over the infinite horizon.

The fair prize, $g(x)$, is $1 /(1-\beta)$ times the Gittins index, $G(x)$.

$$
\begin{aligned}
g(x) & =\inf \left\{g: \sup _{\tau \geq 1} E\left[\sum_{t=0}^{\tau-1}-c(x(t)) \beta^{t}\right.\right. \\
& \left.\left.+(1-\beta)\left(1+\beta+\cdots+\beta^{\tau-1}\right) g \mid x(0)=x\right] \geq 0\right\} \\
& =\frac{1}{1-\beta} \inf _{\tau \geq 1} \frac{E\left[\sum_{t=0}^{\tau-1} c(x(t)) \beta^{t} \mid x(0)=x\right]}{E\left[\sum_{t=0}^{\tau-1} \beta^{t} \mid x(0)=x\right]}
\end{aligned}
$$

## Golf with N Balls and a Set of Clubs

Suppose that a ball in location $x$ can be played with a choice of shots, from a set $A(x)$. Choosing shot $a \in A(x)$,

$$
x \rightarrow y \text { with probability } P_{a}(x, y)
$$

Now the golfer must choose, not only which ball to play, but with which shot to play it.

## Golf with N Balls and a Set of Clubs

Suppose that a ball in location $x$ can be played with a choice of shots, from a set $A(x)$. Choosing shot $a \in A(x)$,

$$
x \rightarrow y \quad \text { with probability } P_{a}(x, y)
$$

Now the golfer must choose, not only which ball to play, but with which shot to play it.

Under a condition, an index policy is again optimal.
He should play the ball with least prevailing prize, choosing the shot from $A$ that is optimal if that ball were the only ball present.

## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored. Playing golf with $\mathbf{N}$ balls Achievable Performance Region Approach
- Many applications (economics, engineering, ...).
- Notions of indexation have been generalized. Restless Bandits


## Achievable Performance Region Approach

Suppose all arms move on state space $E=\{1, \ldots, N\}$.
Let $I_{i}(t)$ be an indicator for the event that at time $t$ an arm is pulled that is in state $i$.
We wish to maximize (conditional on the starting states of arms)

$$
E_{\pi}\left[\sum_{i \in E} r_{i} \sum_{t=0}^{\infty} I_{i}(t) \beta^{t}\right]
$$

## Achievable Performance Region Approach

Suppose all arms move on state space $E=\{1, \ldots, N\}$.
Let $I_{i}(t)$ be an indicator for the event that at time $t$ an arm is pulled that is in state $i$.
We wish to maximize (conditional on the starting states of arms)

$$
E_{\pi}\left[\sum_{i \in E} r_{i} \sum_{t=0}^{\infty} I_{i}(t) \beta^{t}\right]
$$

Suppose that under policy $\pi$,

$$
z_{i}^{\pi}=E_{\pi}\left[\sum_{t=0}^{\infty} I_{i}(t) \beta^{t}\right]
$$

We wish to maximize $\sum_{i \in E} r_{i} z_{i}^{\pi}$.

## Some Conservation Laws

Consider a MABP with $r_{i}=1$ for all $i$. This shows that for all $\pi$.

$$
\sum_{i \in E} z_{i}^{\pi}=1+\beta+\beta^{2}+\cdots=\frac{1}{1-\beta}
$$

## Some Conservation Laws

Consider a MABP with $r_{i}=1$ for all $i$. This shows that for all $\pi$.

$$
\sum_{i \in E} A_{i}^{E} z_{i}^{\pi}=1+\beta+\beta^{2}+\cdots=\frac{1}{1-\beta}
$$

## Some Conservation Laws

Consider a MABP with $r_{i}=1$ for all $i$. This shows that for all $\pi$.

$$
\sum_{i \in E} A_{i}^{E} z_{i}^{\pi}=1+\beta+\beta^{2}+\cdots=\frac{1}{1-\beta}
$$

Now pick a subset of states $S \subset E=\{1, \ldots, N\}$.

## Some Conservation Laws

Consider a MABP with $r_{i}=1$ for all $i$. This shows that for all $\pi$.

$$
\sum_{i \in E} A_{i}^{E} z_{i}^{\pi}=1+\beta+\beta^{2}+\cdots=\frac{1}{1-\beta}
$$

Now pick a subset of states $S \subset E=\{1, \ldots, N\}$. Let

- $T_{i}^{S}=$ 'number of pulls needed for state to return to $S$ from $i$ '.

$$
A_{i}^{S}=E\left[1+\beta+\cdots+\beta^{T_{i}^{S}-1}\right]
$$

## Some Conservation Laws

Consider a MABP with $r_{i}=1$ for all $i$. This shows that for all $\pi$.

$$
\sum_{i \in E} A_{i}^{E} z_{i}^{\pi}=1+\beta+\beta^{2}+\cdots=\frac{1}{1-\beta}
$$

Now pick a subset of states $S \subset E=\{1, \ldots, N\}$. Let

- $T_{i}^{S}=$ 'number of pulls needed for state to return to $S$ from $i$ '.

$$
A_{i}^{S}=E\left[1+\beta+\cdots+\beta^{T_{i}^{S}-1}\right]
$$

- $r_{i}^{S}=0, i \notin S$, and $r_{i}^{S}=A_{i}^{S}, i \in S$.


## Some Conservation Laws

Consider a MABP with $r_{i}=1$ for all $i$. This shows that for all $\pi$.

$$
\sum_{i \in E} A_{i}^{E} z_{i}^{\pi}=1+\beta+\beta^{2}+\cdots=\frac{1}{1-\beta}
$$

Now pick a subset of states $S \subset E=\{1, \ldots, N\}$. Let

- $T_{i}^{S}=$ 'number of pulls needed for state to return to $S$ from $i$ '.

$$
\begin{gathered}
A_{i}^{S}=E\left[1+\beta+\cdots+\beta^{T_{i}^{S}-1}\right] \\
\cdot r_{i}^{S}=0, i \notin S, \text { and } r_{i}^{S}=A_{i}^{S}, i \in S
\end{gathered}
$$

This is a near-trivial MABP. Easy to show $\sum_{i} r_{i}^{S} z_{i}^{\pi}$ minimized by any policy that gives priority to arms whose states are not in $S$. So

$$
\sum_{i \in E} A_{i}^{S} z_{i}^{\pi} \geq \min _{\pi}\left\{\sum_{i \in E} A_{i}^{S} z_{i}^{\pi}\right\}
$$

## Some Conservation Laws

Consider a MABP with $r_{i}=1$ for all $i$. This shows that for all $\pi$.

$$
\sum_{i \in E} A_{i}^{E} z_{i}^{\pi}=1+\beta+\beta^{2}+\cdots=\frac{1}{1-\beta}
$$

Now pick a subset of states $S \subset E=\{1, \ldots, N\}$. Let

- $T_{i}^{S}=$ 'number of pulls needed for state to return to $S$ from $i$ '.

$$
A_{i}^{S}=E\left[1+\beta+\cdots+\beta^{T_{i}^{S}-1}\right]
$$

- $r_{i}^{S}=0, i \notin S$, and $r_{i}^{S}=A_{i}^{S}, i \in S$.

This is a near-trivial MABP. Easy to show $\sum_{i} r_{i}^{S} z_{i}^{\pi}$ minimized by any policy that gives priority to arms whose states are not in $S$. So

$$
\sum_{i \in E} A_{i}^{S} z_{i}^{\pi} \geq \min _{\pi}\left\{\sum_{i \in E} A_{i}^{S} z_{i}^{\pi}\right\}
$$

## Some Conservation Laws

Consider a MABP with $r_{i}=1$ for all $i$. This shows that for all $\pi$.

$$
\sum_{i \in E} A_{i}^{E} z_{i}^{\pi}=1+\beta+\beta^{2}+\cdots=\frac{1}{1-\beta}=b(E)
$$

Now pick a subset of states $S \subset E=\{1, \ldots, N\}$. Let

- $T_{i}^{S}=$ 'number of pulls needed for state to return to $S$ from $i$ '.

$$
A_{i}^{S}=E\left[1+\beta+\cdots+\beta^{T_{i}^{S}-1}\right]
$$

- $r_{i}^{S}=0, i \notin S$, and $r_{i}^{S}=A_{i}^{S}, i \in S$.

This is a near-trivial MABP. Easy to show $\sum_{i} r_{i}^{S} z_{i}^{\pi}$ minimized by any policy that gives priority to arms whose states are not in $S$. So

$$
\sum_{i \in E} A_{i}^{S} z_{i}^{\pi} \geq \min _{\pi}\left\{\sum_{i \in E} A_{i}^{S} z_{i}^{\pi}\right\}=b(S)
$$

## Constraints on the Achieveable Region

## Lemma

There exist positive $A_{i}^{S}$, as defined above, such that for any scheduling policy $\pi$,

$$
\begin{align*}
& \sum_{i \in S} A_{i}^{S} z_{i}^{\pi} \geq b(S), \text { for all } S \subset E  \tag{1}\\
& \sum_{i \in E} A_{i}^{E} z_{i}^{\pi}=b(E) \tag{2}
\end{align*}
$$

and such that equality holds in (1) if $\pi$ gives priority to arms whose states are not in $S$ over any arms whose states are in $S$.

## A Linear Programming Relaxation

Primal

$$
\begin{aligned}
& \underset{\left\{z_{i}\right\}}{\operatorname{maximize}} \sum_{i \in E} r_{i} z_{i} \\
& \sum_{i \in S} A_{i}^{S} z_{i} \geq b(S), \text { for all } S \subset E, \\
& \sum_{i \in S} A_{i}^{E} z_{i}=b(E), \\
& z_{i} \geq 0, \text { for all } i .
\end{aligned}
$$

## A Linear Programming Relaxation

## Primal

$$
\begin{aligned}
& \underset{\left\{z_{i}\right\}}{\operatorname{maximize}} \sum_{i \in E} r_{i} z_{i} \\
& \sum_{i \in S} A_{i}^{S} z_{i} \geq b(S), \text { for all } S \subset E, \\
& \sum_{i \in S} A_{i}^{E} z_{i}=b(E), \\
& z_{i} \geq 0, \text { for all } i .
\end{aligned}
$$

The optimal value of this LP is an upper bound on the optimal value for our bandit problem.

## A Linear Programming Relaxation

## Primal

$\underset{\left\{z_{i}\right\}}{\operatorname{maximize}} \sum_{i \in E} r_{i} z_{i}$
$\sum_{i \in S} A_{i}^{S} z_{i} \geq b(S)$, for all $S \subset E$,
$\sum_{i \in S} A_{i}^{E} z_{i}=b(E)$,
$z_{i} \geq 0$, for all $i$.

Dual

$$
\underset{\left\{y_{S}\right\}}{\operatorname{minimize}} \sum_{S} y_{S} b(S)
$$

$\sum_{S: i \in S} y_{S} A_{i}^{S} \geq r_{i}$, for all $i$,
$y_{S} \leq 0$, for all $S \subset E$,
$y_{E}$ unrestricted in sign.

The optimal value of this LP is an upper bound on the optimal value for our bandit problem.

## A Linear Programming Relaxation

## Primal

```
\underset{{\mp@subsup{z}{i}{\prime}}}{\operatorname{maximize}}\mp@subsup{\sum}{i\inE}{}\mp@subsup{r}{i}{}\mp@subsup{z}{i}{}
```

$\sum_{i \in S} A_{i}^{S} z_{i} \geq b(S)$, for all $S \subset E$,
$\sum_{i \in S} A_{i}^{E} z_{i}=b(E)$,
$z_{i} \geq 0$, for all $i$.

Dual

$$
\begin{aligned}
& \underset{\left\{y_{S}\right\}}{\operatorname{minimize}} \sum_{S} y_{S} b(S) \\
& \sum_{S: i \in S} y_{S} A_{i}^{S} \geq r_{i}, \text { for all } i,
\end{aligned}
$$

$$
y_{S} \leq 0, \text { for all } S \subset E,
$$

$$
y_{E} \text { unrestricted in sign. }
$$

The optimal value of this LP is an upper bound on the optimal value for our bandit problem.

A greedy algorithm computes dual vectors $\bar{y}_{S}$ that are dual feasible and complementary slack, and a primal solution $\bar{z}_{i}=z_{i}^{\pi}$ which is the performance vector of a priority policy.

## A Linear Programming Relaxation

## Primal

```
{}\underset{{\mp@subsup{z}{i}{\prime}}}{\operatorname{maximize}}\mp@subsup{\sum}{i\inE}{}\mp@subsup{r}{i}{}\mp@subsup{z}{i}{
```

$\sum_{i \in S} A_{i}^{S} z_{i} \geq b(S)$, for all $S \subset E$,
$\sum_{i \in S} A_{i}^{E} z_{i}=b(E)$,
$z_{i} \geq 0$, for all $i$.

Dual

$$
\begin{aligned}
& \underset{\left\{y_{S}\right\}}{\operatorname{minimize}} \sum_{S} y_{S} b(S) \\
& \sum_{S: i \in S} y_{S} A_{i}^{S} \geq r_{i}, \text { for all } i,
\end{aligned}
$$

$$
y_{S} \leq 0, \text { for all } S \subset E,
$$

$$
y_{E} \text { unrestricted in sign. }
$$

The optimal value of this LP is an upper bound on the optimal value for our bandit problem.

A greedy algorithm computes dual vectors $\bar{y}_{S}$ that are dual feasible and complementary slack, and a primal solution $\bar{z}_{i}=z_{i}^{\pi}$ which is the performance vector of a priority policy.

## A Linear Programming Relaxation

$$
\begin{aligned}
& \text { Primal } \\
& \underset{\left\{z_{i}\right\}}{\operatorname{maximize}} \sum_{i \in E} r_{i} z_{i} \\
& \sum_{i \in S} A_{i}^{S} z_{i} \geq b(S), \text { for all } S \subset E, \\
& \sum_{i \in S} A_{i}^{E} z_{i}=b(E), \\
& z_{i} \geq 0, \text { for all } i .
\end{aligned}
$$

Dual

$$
\underset{\left\{y_{S}\right\}}{\operatorname{minimize}} \sum_{S} y_{S} b(S)
$$

$$
\sum_{S: i \in S} y_{S} A_{i}^{S} \geq r_{i}, \text { for all } i
$$

$$
y_{S} \leq 0, \text { for all } S \subset E \text {, }
$$

$$
y_{E} \text { unrestricted in sign. }
$$

The optimal value of this LP is an upper bound on the optimal value for our bandit problem.

A greedy algorithm computes dual vectors $\bar{y}_{S}$ that are dual feasible and complementary slack, and a primal solution $\bar{z}_{i}=z_{i}^{\pi}$ which is the performance vector of a priority policy.

## Greedy Algorithm

Dual has $2^{N}-1$ variables, $y_{S}$, but only $N$ of them are non-zero. They can be computed one by one: $\bar{y}_{E}, \bar{y}_{S_{2}}, \bar{y}_{S_{3}}, \ldots, \bar{y}_{S_{N}}$.

## Greedy Algorithm

Dual has $2^{N}-1$ variables, $y_{S}$, but only $N$ of them are non-zero.
They can be computed one by one: $\bar{y}_{E}, \bar{y}_{S_{2}}, \bar{y}_{S_{3}}, \ldots, \bar{y}_{S_{N}}$.

Input: $r_{i}, p_{i j}, i, j \in E$.
Initialization:
let $\bar{y}_{E}:=\max \left\{r_{i} / A_{i}^{E}: i \in E\right\}$.

## Greedy Algorithm

Dual has $2^{N}-1$ variables, $y_{S}$, but only $N$ of them are non-zero.
They can be computed one by one: $\bar{y}_{E}, \bar{y}_{S_{2}}, \bar{y}_{S_{3}}, \ldots, \bar{y}_{S_{N}}$.

Input: $r_{i}, p_{i j}, i, j \in E$.
Initialization:
let $\bar{y}_{E}:=\max \left\{r_{i} / A_{i}^{E}: i \in E\right\}$. choose $i_{1} \in E$ attaining the above maximum

## Greedy Algorithm

Dual has $2^{N}-1$ variables, $y_{S}$, but only $N$ of them are non-zero.
They can be computed one by one: $\bar{y}_{E}, \bar{y}_{S_{2}}, \bar{y}_{S_{3}}, \ldots, \bar{y}_{S_{N}}$.

Input: $r_{i}, p_{i j}, i, j \in E$.

## Initialization:

let $\bar{y}_{E}:=\max \left\{r_{i} / A_{i}^{E}: i \in E\right\}$. choose $i_{1} \in E$ attaining the above maximum set $\bar{y}_{S}=0$ for all $S$, s.t. $i_{1} \in S \subset E$.

So dual constraint, $\sum_{S: i_{1} \in S} y_{S} A_{i}^{S} \geq r_{i_{1}}$, holds with equality.

## Greedy Algorithm

Dual has $2^{N}-1$ variables, $y_{S}$, but only $N$ of them are non-zero.
They can be computed one by one: $\bar{y}_{E}, \bar{y}_{S_{2}}, \bar{y}_{S_{3}}, \ldots, \bar{y}_{S_{N}}$.

Input: $r_{i}, p_{i j}, i, j \in E$.

## Initialization:

let $\bar{y}_{E}:=\max \left\{r_{i} / A_{i}^{E}: i \in E\right\}$. choose $i_{1} \in E$ attaining the above maximum
set $\bar{y}_{S}=0$ for all $S$, s.t. $i_{1} \in S \subset E$.
let $g_{i_{1}}:=\bar{y}_{E}$
let $S_{1}:=E$; let $k:=2$

## Greedy Algorithm

Dual has $2^{N}-1$ variables, $y_{S}$, but only $N$ of them are non-zero.
They can be computed one by one: $\bar{y}_{E}, \bar{y}_{S_{2}}, \bar{y}_{S_{3}}, \ldots, \bar{y}_{S_{N}}$.

Input: $r_{i}, p_{i j}, i, j \in E$.

## Initialization:

let $\bar{y}_{E}:=\max \left\{r_{i} / A_{i}^{E}: i \in E\right\}$. choose $i_{1} \in E$ attaining the above maximum set $\bar{y}_{S}=0$ for all $S$, s.t. $i_{1} \in S \subset E$.
let $g_{i_{1}}:=\bar{y}_{E}$
let $S_{1}:=E$; let $k:=2$
Loop: while $k \leq N$ do
let $S_{k}:=S_{k-1} \backslash\left\{i_{k-1}\right\}$.
let $\bar{y}_{S_{k}}:=\max \left\{\left(r_{i}-\sum_{j=1}^{k-1} A_{i}^{S_{j}}\right) / A_{i}^{S_{k}}: i \in S_{k}\right\}$
choose $i_{k} \in S_{k}$ attaining the above maximum

## Greedy Algorithm

Dual has $2^{N}-1$ variables, $y_{S}$, but only $N$ of them are non-zero.
They can be computed one by one: $\bar{y}_{E}, \bar{y}_{S_{2}}, \bar{y}_{S_{3}}, \ldots, \bar{y}_{S_{N}}$.

Input: $r_{i}, p_{i j}, i, j \in E$.

## Initialization:

let $\bar{y}_{E}:=\max \left\{r_{i} / A_{i}^{E}: i \in E\right\}$. choose $i_{1} \in E$ attaining the above maximum
set $\bar{y}_{S}=0$ for all $S$, s.t. $i_{1} \in S \subset E$.
let $g_{i_{1}}:=\bar{y}_{E}$
let $S_{1}:=E$; let $k:=2$
Loop: while $k \leq N$ do
let $S_{k}:=S_{k-1} \backslash\left\{i_{k-1}\right\}$.
let $\bar{y}_{S_{k}}:=\max \left\{\left(r_{i}-\sum_{j=1}^{k-1} A_{i}^{S_{j}}\right) / A_{i}^{S_{k}}: i \in S_{k}\right\}$
choose $i_{k} \in S_{k}$ attaining the above maximum
set $\bar{y}_{S}=0$ for all $S$, s.t. $i_{k} \in S \subset S_{k}$.
So dual constraint, $\sum_{S: i_{k} \in S} y_{S} A_{i}^{S} \geq r_{i_{k}}$, holds with equality.

## Greedy Algorithm

Dual has $2^{N}-1$ variables, $y_{S}$, but only $N$ of them are non-zero. They can be computed one by one: $\bar{y}_{E}, \bar{y}_{S_{2}}, \bar{y}_{S_{3}}, \ldots, \bar{y}_{S_{N}}$.

Input: $r_{i}, p_{i j}, i, j \in E$.

## Initialization:

let $\bar{y}_{E}:=\max \left\{r_{i} / A_{i}^{E}: i \in E\right\}$. choose $i_{1} \in E$ attaining the above maximum
set $\bar{y}_{S}=0$ for all $S$, s.t. $i_{1} \in S \subset E$.
let $g_{i_{1}}:=\bar{y}_{E}$
let $S_{1}:=E$; let $k:=2$
Loop: while $k \leq N$ do
let $S_{k}:=S_{k-1} \backslash\left\{i_{k-1}\right\}$.
let $\bar{y}_{S_{k}}:=\max \left\{\left(r_{i}-\sum_{j=1}^{k-1} A_{i}^{S_{j}}\right) / A_{i}^{S_{k}}: i \in S_{k}\right\}$
choose $i_{k} \in S_{k}$ attaining the above maximum
set $\bar{y}_{S}=0$ for all $S$, s.t. $i_{k} \in S \subset S_{k}$.
let $g_{i_{k}}:=g_{i_{k-1}}+\bar{y}_{S_{k}}$
let $k:=k+1$
end \{while\}

## What has Happened Since 1989?

- Index theorem has become better known.
- Alternative proofs have been explored. Playing golf with N balls Achievable Performance Region Approach
- Many applications (economics, engineering, ...).
- Notions of indexation have been generalized. Restless Bandits


## Restless Bandits

## Spinning Plates



## Restless Bandits

[Whittle '88]

- Two actions are available: active $(a=1)$ or passive $(a=0)$.


## Restless Bandits

## [Whittle "88]

- Two actions are available: active $(a=1)$ or passive $(a=0)$.
- Rewards, $r(x, a)$, and transitions, $P(y \mid x, a)$, depend on the state and the action taken.


## Restless Bandits

## [Whittle '88]

- Two actions are available: active $(a=1)$ or passive $(a=0)$.
- Rewards, $r(x, a)$, and transitions, $P(y \mid x, a)$, depend on the state and the action taken.
- Objective: Maximize time-average reward from $n$ restless bandits under a constraint that only $m(m<n)$ of them receive the active action simultaneously.


## Restless Bandits

## [Whittle '88]

- Two actions are available: active $(a=1)$ or passive $(a=0)$.
- Rewards, $r(x, a)$, and transitions, $P(y \mid x, a)$, depend on the state and the action taken.
- Objective: Maximize time-average reward from $n$ restless bandits under a constraint that only $m(m<n)$ of them receive the active action simultaneously.

| active $a=1$ | passive $a=0$ |
| :---: | :---: |
| work, increasing fatigue | rest, recovery |

## Restless Bandits

## [Whittle '88]

- Two actions are available: active $(a=1)$ or passive $(a=0)$.
- Rewards, $r(x, a)$, and transitions, $P(y \mid x, a)$, depend on the state and the action taken.
- Objective: Maximize time-average reward from $n$ restless bandits under a constraint that only $m(m<n)$ of them receive the active action simultaneously.

| active $a=1$ | passive $a=0$ |
| :---: | :---: |
| work, increasing fatigue | rest, recovery |
| high speed | low speed |

$$
P(y \mid x, 0)=\epsilon P(y \mid x, 1), \quad y \neq x
$$

## Restless Bandits

## [Whittle '88]

- Two actions are available: active $(a=1)$ or passive $(a=0)$.
- Rewards, $r(x, a)$, and transitions, $P(y \mid x, a)$, depend on the state and the action taken.
- Objective: Maximize time-average reward from $n$ restless bandits under a constraint that only $m(m<n)$ of them receive the active action simultaneously.

| active $a=1$ | passive $a=0$ |
| :---: | :---: |
| work, increasing fatigue | rest, recovery |
| high speed | low speed |
| inspection | no inspection |

## Opportunistic Spectrum Access

Communication channels may be busy or free.


## Opportunistic Spectrum Access

Communication channels may be busy or free.


Aim is to 'inspect' $m$ out of $n$ channels, maximizing the number of these that are found to be free.

## Opportunistic Spectrum Access

'Condition' of the channel (busy or free) evolves as Markov chain. $x(t)=P($ channel is free at time $t)$.

## Opportunistic Spectrum Access

'Condition' of the channel (busy or free) evolves as Markov chain. $x(t)=P($ channel is free at time $t)$.

$$
a=0: \quad x(t+1)=x(t) p_{11}+(1-x(t)) p_{01}
$$

## Opportunistic Spectrum Access

'Condition' of the channel (busy or free) evolves as Markov chain. $x(t)=P($ channel is free at time $t)$.

$$
\begin{aligned}
& a=0: \quad x(t+1)=x(t) p_{11}+(1-x(t)) p_{01} \\
& a=1: \quad x(t+1)=\left\{\begin{array}{l}
p_{01} \\
p_{11}
\end{array} \text { with probability } \begin{array}{l}
1-x(t) \\
x(t)
\end{array}\right.
\end{aligned}
$$

## Dynamic Programming Equation

Action set is $\Omega=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in\{0,1\}, \sum_{i} a_{i}=m\right\}$.
For a state $x=\left(x_{1}, \ldots, x_{n}\right)$,
$V(x)=\max _{a \in \Omega}\left\{\sum_{i} r\left(x_{i}, a_{i}\right)+\beta \sum_{y_{1}, \ldots, y_{n}} V\left(y_{1}, \ldots, y_{n}\right) \prod_{i} P\left(y_{i} \mid x_{i}, a_{i}\right)\right\}$

## Relaxed Problem for a Single Restless Bandit

Let us consider a relaxed problem, posed for 1 bandit only.
The aim is to maximize average reward obtained from this bandit under a constraint that $a=1$ for only a fraction $m / n$ of the time.

## LP for the Relaxed Problem

Let $z_{x}^{a}$ be proportion of time that the bandit is in state $x$ and action $a$ is taken (under a stationary Markov policy).
An upper bound for our problem can found from a LP in variables $\left\{z_{x}^{a}: x \in E, a \in\{0,1\}\right\}:$

$$
\text { maximize } \sum_{x, a} r(x, a) z_{x}^{a}
$$

## LP for the Relaxed Problem

Let $z_{x}^{a}$ be proportion of time that the bandit is in state $x$ and action $a$ is taken (under a stationary Markov policy).
An upper bound for our problem can found from a LP in variables $\left\{z_{x}^{a}: x \in E, a \in\{0,1\}\right\}$ :

$$
\text { maximize } \sum_{x, a} r(x, a) z_{x}^{a}
$$

$$
\text { s.t. } z_{x}^{a} \geq 0, \text { for all } x, a
$$

## LP for the Relaxed Problem

Let $z_{x}^{a}$ be proportion of time that the bandit is in state $x$ and action $a$ is taken (under a stationary Markov policy).
An upper bound for our problem can found from a LP in variables $\left\{z_{x}^{a}: x \in E, a \in\{0,1\}\right\}$ :

$$
\text { maximize } \sum_{x, a} r(x, a) z_{x}^{a}
$$

s.t. $z_{x}^{a} \geq 0$, for all $x, a ; \sum_{x, a} z_{x}^{a}=1$

## LP for the Relaxed Problem

Let $z_{x}^{a}$ be proportion of time that the bandit is in state $x$ and action $a$ is taken (under a stationary Markov policy).
An upper bound for our problem can found from a LP in variables $\left\{z_{x}^{a}: x \in E, a \in\{0,1\}\right\}$ :

$$
\operatorname{maximize} \sum_{x, a} r(x, a) z_{x}^{a}
$$

$$
\text { s.t. } z_{x}^{a} \geq 0, \text { for all } x, a ; \sum_{x, a} z_{x}^{a}=1 ;
$$

$$
\sum_{a} z_{x}^{a}=\sum_{y} z_{y}^{a} P(x \mid y, a(y)), \text { for all } x
$$

## LP for the Relaxed Problem

Let $z_{x}^{a}$ be proportion of time that the bandit is in state $x$ and action $a$ is taken (under a stationary Markov policy).
An upper bound for our problem can found from a LP in variables $\left\{z_{x}^{a}: x \in E, a \in\{0,1\}\right\}$ :

$$
\operatorname{maximize} \sum_{x, a} r(x, a) z_{x}^{a}
$$

$$
\text { s.t. } z_{x}^{a} \geq 0, \text { for all } x, a ; \sum_{x, a} z_{x}^{a}=1 ;
$$

$$
\sum_{a} z_{x}^{a}=\sum_{y} z_{y}^{a} P(x \mid y, a(y)), \text { for all } x ; \quad \sum_{x} z_{x}^{0}=1-m / n
$$

## The Subsidy Problem

Optimal value of the dual LP problem is $g$, where this can be found from the average-cost dynamic programming equation

$$
\phi(x)+g=\max _{a \in\{0,1\}}\left\{r(x, a)+\lambda(1-a)+\sum_{y} \phi(y) P(y \mid x, a)\right\} .
$$

$\lambda$ and $\phi(x)$ are the Lagrange multipliers for constraints.
$\lambda$ may be interpreted as a subsidy for taking $a=0$.

## The Subsidy Problem

Optimal value of the dual LP problem is $g$, where this can be found from the average-cost dynamic programming equation

$$
\phi(x)+g=\max _{a \in\{0,1\}}\left\{r(x, a)+\lambda(1-a)+\sum_{y} \phi(y) P(y \mid x, a)\right\} .
$$

$\lambda$ and $\phi(x)$ are the Lagrange multipliers for constraints.
$\lambda$ may be interpreted as a subsidy for taking $a=0$.
Solution partitions state space into sets: $E_{0}(a=0), E_{1}(a=1)$ and $E_{01}$ (randomization between $a=0$ and $a=1$ ).

## Indexability

Reasonable that as the subsidy $\lambda$ (for $a=0$ ) increases from $-\infty$ to $+\infty$ the set of states $E_{0}$ (where $a=0$ optimal) should increase monotonically.

If it does then we say the bandit is indexable.

## Indexability

Reasonable that as the subsidy $\lambda$ (for $a=0$ ) increases from $-\infty$ to $+\infty$ the set of states $E_{0}$ (where $a=0$ optimal) should increase monotonically.

If it does then we say the bandit is indexable.
Whittle index, $W(x)$, is the least subsidy for which it can be optimal to take $a=0$ in state $x$.

## Indexability

Reasonable that as the subsidy $\lambda$ (for $a=0$ ) increases from $-\infty$ to $+\infty$ the set of states $E_{0}$ (where $a=0$ optimal) should increase monotonically.

If it does then we say the bandit is indexable.
Whittle index, $W(x)$, is the least subsidy for which it can be optimal to take $a=0$ in state $x$.

This motivates a heuristic policy:
use active action on the m bandits with the greatest Whittle indices.

## Indexability

Reasonable that as the subsidy $\lambda$ (for $a=0$ ) increases from $-\infty$ to $+\infty$ the set of states $E_{0}$ (where $a=0$ optimal) should increase monotonically.

If it does then we say the bandit is indexable.
Whittle index, $W(x)$, is the least subsidy for which it can be optimal to take $a=0$ in state $x$.

This motivates a heuristic policy:
use active action on the m bandits with the greatest Whittle indices.

Like Gittins indices for classical bandits, Whittle indices can be computed separately for each bandit.
Same as the Gittins index when $a=0$ is freezing action.

## Two Questions

- Under what assumptions is a restless bandit indexable?


## Two Questions

- Under what assumptions is a restless bandit indexable?

This is somewhat mysterious.
Special classes of restless bandits are indexable: such as 'dual speed', Glazebrook, Niño-Mora, Ansell (2002), W. (2007).

## Two Questions

- Under what assumptions is a restless bandit indexable?

This is somewhat mysterious.
Special classes of restless bandits are indexable: such as 'dual speed', Glazebrook, Niño-Mora, Ansell (2002), W. (2007). Indexability can be proved in some problems (such as the opportunistic spectrum access problem, Liu and Zhao (2009)).

## Two Questions

- Under what assumptions is a restless bandit indexable?

This is somewhat mysterious.
Special classes of restless bandits are indexable: such as 'dual speed', Glazebrook, Niño-Mora, Ansell (2002), W. (2007). Indexability can be proved in some problems (such as the opportunistic spectrum access problem, Liu and Zhao (2009)).

- How good is the heuristic policy using Whittle indices?


## Two Questions

- Under what assumptions is a restless bandit indexable?

This is somewhat mysterious.
Special classes of restless bandits are indexable: such as 'dual speed', Glazebrook, Niño-Mora, Ansell (2002), W. (2007). Indexability can be proved in some problems (such as the opportunistic spectrum access problem, Liu and Zhao (2009)).

- How good is the heuristic policy using Whittle indices?

It may be optimal. (opportunistic spectrum access identical channels, Ahmad, Liu, Javidi, and Zhao (2009)).

## Two Questions

- Under what assumptions is a restless bandit indexable?

This is somewhat mysterious.
Special classes of restless bandits are indexable: such as 'dual speed', Glazebrook, Niño-Mora, Ansell (2002), W. (2007). Indexability can be proved in some problems (such as the opportunistic spectrum access problem, Liu and Zhao (2009)).

- How good is the heuristic policy using Whittle indices?

It may be optimal. (opportunistic spectrum access identical channels, Ahmad, Liu, Javidi, and Zhao (2009)). Lots of papers with numerical work.

## Two Questions

- Under what assumptions is a restless bandit indexable?

This is somewhat mysterious.
Special classes of restless bandits are indexable: such as 'dual speed', Glazebrook, Niño-Mora, Ansell (2002), W. (2007). Indexability can be proved in some problems (such as the opportunistic spectrum access problem, Liu and Zhao (2009)).

- How good is the heuristic policy using Whittle indices?

It may be optimal. (opportunistic spectrum access identical channels, Ahmad, Liu, Javidi, and Zhao (2009)). Lots of papers with numerical work.
It is often asymptotically optimal, W. and Weiss (1990).

## Asymptotic Optimality

Suppose a priority policy orders the states $1,2, \ldots$.
At time $t$ there are $\left(n_{1}, \ldots, n_{k}\right)$ bandits in states $1, \ldots, k$. Let $m=\rho n$.

## Asymptotic Optimality

Suppose a priority policy orders the states $1,2, \ldots$.
At time $t$ there are $\left(n_{1}, \ldots, n_{k}\right)$ bandits in states $1, \ldots, k$. Let $m=\rho n$.
$z_{i}=n_{i} / n$ be proportion in state $i$.

## Asymptotic Optimality

Suppose a priority policy orders the states $1,2, \ldots$.
At time $t$ there are $\left(n_{1}, \ldots, n_{k}\right)$ bandits in states $1, \ldots, k$. Let $m=\rho n$.
$z_{i}=n_{i} / n$ be proportion in state $i$.
$n_{i}^{a}=$ number that receive action $a$.

## Asymptotic Optimality

Suppose a priority policy orders the states $1,2, \ldots$.
At time $t$ there are $\left(n_{1}, \ldots, n_{k}\right)$ bandits in states $1, \ldots, k$. Let $m=\rho n$.
$z_{i}=n_{i} / n$ be proportion in state $i$.
$n_{i}^{a}=$ number that receive action $a$.
$u_{i}^{a}(z)=n_{i}^{a} / n_{i}$.

## Asymptotic Optimality

Suppose a priority policy orders the states $1,2, \ldots$.
At time $t$ there are $\left(n_{1}, \ldots, n_{k}\right)$ bandits in states $1, \ldots, k$. Let
$m=\rho n$.
$z_{i}=n_{i} / n$ be proportion in state $i$.
$n_{i}^{a}=$ number that receive action $a$.
$u_{i}^{a}(z)=n_{i}^{a} / n_{i}$.


## Asymptotic Optimality

Suppose a priority policy orders the states $1,2, \ldots$.
At time $t$ there are $\left(n_{1}, \ldots, n_{k}\right)$ bandits in states $1, \ldots, k$. Let
$m=\rho n$.
$z_{i}=n_{i} / n$ be proportion in state $i$.
$n_{i}^{a}=$ number that receive action $a$.
$u_{i}^{a}(z)=n_{i}^{a} / n_{i}$.


## Asymptotic Optimality

Suppose a priority policy orders the states $1,2, \ldots$.
At time $t$ there are $\left(n_{1}, \ldots, n_{k}\right)$ bandits in states $1, \ldots, k$. Let $m=\rho n$.
$z_{i}=n_{i} / n$ be proportion in state $i$.
$n_{i}^{a}=$ number that receive action $a$.
$u_{i}^{a}(z)=n_{i}^{a} / n_{i}$.

$q_{i j}^{a}=$ rate a bandit in state $i$ jumps to state $j$ under action $a ;$

$$
q_{i j}(z)=u_{i}^{0}(z) q_{i j}^{0}+u_{i}^{1}(z) q_{i j}^{1}
$$

## Fluid Approximation

The 'fluid approximation' for large $n$ is given by piecewise linear differential equations, of the form:

$$
d z_{i} / d t=\sum_{j} q_{j i}(z) z_{j}-\sum_{j} q_{i j}(z) z_{i}
$$

E.g., $k=2$.

$$
d z_{1} / d t= \begin{cases}-\left(q_{12}^{0}+q_{21}^{0}\right) z_{1}+\left(q_{12}^{0}-q_{12}^{1}\right) \rho+q_{21}^{0}, & z_{1} \geq \rho \\ -\left(q_{12}^{1}+q_{21}^{1}\right) z_{1}-\left(q_{21}^{0}-q_{21}^{1}\right) \rho+q_{21}^{0}, & z_{1} \leq \rho\end{cases}
$$

## Fluid Approximation

The 'fluid approximation' for large $n$ is given by piecewise linear differential equations, of the form:

$$
d z_{i} / d t=\sum_{j} q_{j i}(z) z_{j}-\sum_{j} q_{i j}(z) z_{i}
$$

E.g., $k=2$.

$$
d z_{1} / d t= \begin{cases}-\left(q_{12}^{0}+q_{21}^{0}\right) z_{1}+\left(q_{12}^{0}-q_{12}^{1}\right) \rho+q_{21}^{0}, & z_{1} \geq \rho \\ -\left(q_{12}^{1}+q_{21}^{1}\right) z_{1}-\left(q_{21}^{0}-q_{21}^{1}\right) \rho+q_{21}^{0}, & z_{1} \leq \rho\end{cases}
$$

$d z / d t=A(z) z+b(z)$, where $A(z)$ and $b(z)$ are constant within $k$ polyhedral regions.

## Asymptotic Optimality

## Theorem [W. and Weiss '90]

If bandits are indexable, and the fluid model has an asymptotically stable equilibrium point, then the Whittle index heuristic is asymptotically optimal, - in the sense that the reward per bandit tends to the reward that is obtained under the relaxed policy.
(proof via a theorem about law of large numbers for sample paths.)

## Heuristic May Not be Asymptotically Optimal

$$
\begin{gathered}
\left(q_{i j}^{0}\right)=\left(\begin{array}{cccc}
-2 & 1 & 0 & 1 \\
2 & -2 & 0 & 0 \\
0 & 56 & -\frac{113}{2} & \frac{1}{2} \\
1 & 1 & \frac{1}{2} & -\frac{5}{2}
\end{array}\right), \quad\left(q_{i j}^{1}\right)=\left(\begin{array}{cccc}
-2 & 1 & 0 & 1 \\
2 & -2 & 0 & 0 \\
0 & \frac{7}{25} & -\frac{113}{400} & \frac{1}{400} \\
1 & 1 & \frac{1}{2} & -\frac{5}{2}
\end{array}\right) \\
r^{0}=(0,1,10,10), \quad r^{1}=(10,10,10,0), \quad \rho=0.835
\end{gathered}
$$

## Heuristic May Not be Asymptotically Optimal

$$
\begin{gathered}
\left(q_{i j}^{0}\right)=\left(\begin{array}{cccc}
-2 & 1 & 0 & 1 \\
2 & -2 & 0 & 0 \\
0 & 56 & -\frac{113}{2} & \frac{1}{2} \\
1 & 1 & \frac{1}{2} & -\frac{5}{2}
\end{array}\right), \quad\left(q_{i j}^{1}\right)=\left(\begin{array}{cccc}
-2 & 1 & 0 & 1 \\
2 & -2 & 0 & 0 \\
0 & \frac{7}{25} & -\frac{113}{400} & \frac{1}{40} \\
1 & 1 & \frac{1}{2} & -\frac{5}{2}
\end{array}\right) \\
r^{0}=(0,1,10,10), \quad r^{1}=(10,10,10,0), \quad \rho=0.835
\end{gathered}
$$

Bandit is indexable.
Equilibrium point is $\left(\bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}, \bar{z}_{4}\right)=(0.409,0.327,0.100,0.164)$. $\bar{z}_{1}+\bar{z}_{2}+\bar{z}_{3}=0.836$.
Relaxed policy obtains 10 per bandit per unit time.

## Heuristic is Not Asymptotically Optimal

But equilibrium point $\bar{z}$ is not asymptotically stable.


Relaxed policy obtains 10 per bandit. Heuristic obtains only 9.9993 per bandit.

## Questions



