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OPTIMIZATION AND CONTROL Richard Weber

Example Sheet 1

1. Suppose that the matrix Mk is of dimension nk × nk+1, k ∈ {1, . . . , h}. We wish to compute
the product M1M2 · · ·Mh. Notice that the order of multiplication makes a difference. For example,
if (n1, n2, n3, n4) = (1, 10, 1, 10), the calculation (M1M2)M3 requires 20 scalar multiplications, but
the calculation M1(M2M3) requires 200 scalar multiplications. Indeed, multiplying a m × n matrix
by a n × k matrix requires mnk scalar multiplications. Let F (n1, n2, . . . , nh+1;h) be the minimal
total number of scalar multiplications required to compute M1M2 · · ·Mh. Explain why the dynamic
programming equation is

F (n1, n2, . . . , nk+1; k) = min
1<i<k+1

{ni−1nini+1 + F (n1, . . . , ni−1, ni+1, . . . , nk+1; k − 1)} ,

k = 1, . . . , h. Hence describe an algorithm which finds the multiplication order requiring least scalar
multiplications. Solve the problem for

(a) h = 3, (n1, n2, n3, n4) = (2, 10, 5, 1);
(b) h = 4, (n1, n2, n3, n4, n5) = (2, 10, 1, 5, 1).
Show that as h increases the amount of effort required to find the optimal order increases faster

than any polynomial function of h.

2. A deck of cards is thoroughly shuffled and placed face down on the table. You turn over cards one
by one, counting the numbers of reds and blacks you have seen so far. Exactly once, whenever you
like, you may bet that the next card you turn over will be red. If correct you win £1000.

Let F (r, b) be the probability of winning if you play optimally, beginning from a point at which
you have not yet bet and you know that exactly r red and b black cards remain in the face down
pack. Find F (26, 26) and your optimal strategy.

Arguably, it should be possible to win the £1000 with a probability greater than 1/2 because
you can wait until you have seen more black cards than red and then bet that the next card is red.
Explain why this argument is wrong.

3. A gambler has the opportunity to bet on a sequence on N coin tosses. The probability of heads
on the nth toss is known to be pn, n = 1, . . . , N . For the nth toss he may stake any non-negative
amount not exceeding his current capital (which is his initial capital plus his winnings so far) and call
‘heads’ or ‘tails’. If he calls correctly then he retains his stake and wins an amount equal to it, but if
he calls incorrectly he loses his stake. Let X0 ≥ 0 denote his initial capital and XN his capital after
the final toss. Determine how the gambler should call and how much he should stake for each toss in
order to maximize E[logXN ]. How would your answer differ if the aim is to maximize E[XN ]?

4. A man stands in a queue waiting for service, with n people ahead of him. There is a constant
probability p that the person at the head of the queue will complete service in the next unit of time
(say, 1 minute) independently of what happens in all other units of time. He incurs a cost c for every
unit of time spent waiting for his own service to begin. He may leave the queue at any time, but must
pay a reneging cost r. The problem is to determine the policy that minimizes his expected cost.

Let F (n) denote the expected return obtained by employing an optimal waiting policy when there
are n people ahead. To what theorem can we appeal to justify the optimality equation

F (n) = min[r, c+ pF (n− 1) + (1− p)F (n)], n > 0, (1)
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with F (0) = 0? Show that (1) can be re-written as

F (n) = min [r, F (n− 1) + c/p] , n > 0. (2)

Hence prove inductively that F (n) ≥ F (n− 1). Why is this fact intuitive?
Show there exists an integer n∗ such that the form of the optimal policy is to wait only if n ≤ n∗.

Find expressions for F (n) and n∗ in terms of r, c and p.
Give an alternative derivation of the optimal policy, without recourse to dynamic programming.

5. The Greek adventurer Theseus is trapped in a room from which lead n passages. Theseus knows
that if he enters passage i (i = 1, . . . , n) one of three fates will befall him: he will escape with
probability pi, he will be killed with probability qi, and with probability ri (= 1− pi− qi) he will find
the passage to be a dead end and be forced to return to the room. Assume 0 < ri < 1. The fates
associated with different passages are independent. He attempts each passsage at most once. Establish
the order in which Theseus should attempt the passages if he wishes to maximize his probability of
eventual escape.

6. At the beginning of each day a certain machine can be either working or broken. If it is broken
then the whole day is spent repairing it, and this costs 8c in labour and lost production. If the
machine is working, then it may be run unattended or attended, at costs of 0 or c respectively. In
either case there is a chance that the machine will breakdown and need repair the following day, with
probabilities p and p′ respectively. Costs are discounted by factor β, 0 < β < 1, and it is desired
to minimize the total-expected discounted-cost over the infinite horizon. Let F (0) and F (1) denote
the minimal value of such cost, starting from a morning on which the machine is broken or working
respectively. Show that it is optimal to run the machine unattended iff (7p− 8p′) ≤ 1/β.

7. A hunter earns £1 for each member of an animal population captured, but hunting costs him £c
per unit time. The number r, of animals remaining uncaptured is known, and will not change by
natural causes on the relevant time scale. The probability of a single capture, in the next time unit, is
λ(r), where λ is a known increasing function. The probability of more than one capture per unit time
is 0. The hunter wishes to maximize his net expected profit. The dynamic programming equation for
this problem, posed to an infinite horizon, is intuitively

F (r) = max{0,−c+ λ(r) + λ(r)F (r − 1) + (1− λ(r))F (r)}.

Recall that it is a theorem that the dynamic programming equation holds in general cases of negative,
positive or discounted programming. How can you reformulate this problem so that it becomes one
of these cases? [Hint. Assume that initially r = r0.] What should be his stopping rule?

8. A burglar loots some house every night. His profit from successive crimes forms a sequence of
independent random variables, each having the exponential distribution with mean 1/λ. Each night
there is a probability q, 0 < q < 1, of his being caught and forced to return his whole profit. If he has
the choice, when should the burglar retire so as to maximize his total expected profit? [Hint. Start
by finding the optimal policy in a problem where the burgler must retire by the end of the sth day.]

9. This question shows that optimality equations can be solved with linear programming.
Consider the following infinite-horizon discounted-cost optimality equation for a Markov decision
process with, 0 < β < 1, a finite state space, x ∈ {1, . . . , N}, and u ∈ {1, . . . ,M}:

F (x) = min
u

[
c(x, u) + β

N∑
x1=1

F (x1)P (x1 | x0 = x, u0 = u)

]
. (3)
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Consider also the linear programming problem

LP: maximize
G(1),...,G(N)

N∑
i=1

G(i)

with

G(x) ≤ c(x, u) + β
∑N

x1=1G(x1)P (x1 | x0 = x, u0 = u), for all x, u.

This LP has N variables and N ×M constraints. Suppose F is a solution to (3). Show that F is a
feasible solution to LP. Suppose G is also a feasible solution to LP. Show that for each x there exists
a u such that,

F (x)−G(x) ≥ βE[F (x1)−G(x1) | x0 = x, u0 = u],

and hence that F ≥ G.
Argue finally, that F is the unique optimal solution to LP. What is the use of this result?

10. This question is about proving a structural property of an optimal policy. In lecture
2 we considered a problem about exercising a call option. We proved the the value function Fs(·) has
the property that Fs(x)− x is non-decreasing in x. We used this to prove that the optimal policy is
of threshold type, i.e. exercise the option if x ≥ as, where as increases with the time-to-go, s. The
following problem is of similar.

Each morning at 9 am a barrister has a meeting with his instructing solicitor. With probability
θ, independently of other mornings, he will be offered a new case, which he may either decline or
accept it. If he accepts it he will be paid R when it is complete. However, for each day that the case
is unfinished he will incur a charge of c and so it is expensive to have too many cases outstanding.
Following the meeting he spends the rest of the day working on a single case, which he finishes by
the end of the day with probability p, p < 1/2. If he wishes he can hire a temporary assistant for the
day, at cost a, and by working on a case together they can finish it with probability 2p.

The barrister wishes to maximize his expected total-profit over s days. Let Gs(x) and Fs(y) be the
maximal such profit he can obtain, given that his number of outstanding cases are x and y ∈ {x, x+1}
respectively, just before and just after the meeting on the first day. It is a reasonable to conjecture
that the optimal policy is a ‘threshold policy’, i.e.,

Conjecture C. There exist integers n(s) and m(s) such that it is optimal to accept a new case if
and only if x ≤ n(s) and to employ the assistant if and only if y ≥ m(s).

By writing Gs in terms of Fs, and writing Fs in terms of Gs−1, show that the optimal decisions do
indeed take this form provided both Fs(x) and Gs−1(x) are concave functions of x.

Now suppose that conjecture C is true for all s ≤ t, and that Ft and Gt−1 are concave functions
of x. First show that for x > 0,

Gt(x+ 1)− 2Gt(x) +Gt(x− 1)

= (1− θ)
{
Ft(x+ 1)− 2Ft(x) + Ft(x− 1)

}
+ θ
{

max[Ft(x+ 1), Ft(x+ 2)]

−2 max[Ft(x), Ft(x+ 1)] + max[Ft(x− 1), Ft(x)]
}
. (4)

Now, by considering the values of terms on the right have side of this expression, separately in the
three cases x + 1 ≤ n(t), x − 1 > n(t) and x − 1 ≤ n(t) < x + 1, show that Gt is also concave and
hence that it is also true that the optimal hiring policy is of threshold form when the horizon is t+ 1.

In a similar manner, one can next show that Ft+1 is concave, and so inductively push through a
proof of Conjecture C for all finite-horizon problems.
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Example Sheet 2

1. Nine boxes are placed in front of you and money is put into each box: perhaps £2 in one box, £15
in another box, and so on. You are able to see each of the values and their sum is £100. A tenth
box containing a Devil’s penny is added to the mix. The boxes are then closed and mixed so that
you can’t tell which box contains which amount of money, or the Devil’s penny. You may then open
up, one by one, as many boxes as you’d like and keep the money inside, but if you open the box with
the Devil’s penny you lose everything. You wish to maximize the expected amount of money you can
take home. Find your optimal strategy and prove that it is optimal.

2. A financial advisor can impress his clients if immediately following a week in which the FTSE 100
index moves by more than 5% in some direction he correctly predicts that this is the last week during
the calendar year that it moves more than 5% in that direction.

Suppose that in each week the market change is up > 5%, down > 5%, or neither of these, with
probabilities p, p, 1 − 2p, respectively, (p < 1/2). He makes at most one prediction this year. With
what strategy does he maximize the probability of impressing his clients?

3. Jobs 1, 2, 3, 4 are to be processed in some order by a single machine. Once a job has been started
its processing cannot be interrupted. Job i has a known processing time si. If it completes at time
ti then a discounted reward of rie

−αti is obtained, α > 0. There are precedence constraints amongst
jobs such that job i cannot be started until job i− 2 is complete, i = 3, 4. We wish to maximize the
total discounted reward obtained from the 4 jobs. E.g. a possible schedule is 1, 2, 4, 3, with reward

r1e
−αs1 + r2e

−α(s1+s2) + r4e
−α(s1+s2+s4) + r3e

−α(s1+s2+s4+s3)

Use the Gittins index theorem (appropriately generalized to continuous time, i.e. with e−αt replacing
βt) to show that job 1 should be processed first (rather than job 2) if

max

{
r1e
−αs1

1− e−αs1
,
r1e
−αs1 + r3e

−α(s1+s3)

1− e−α(s1+s3)

}
≥ max

{
r2e
−αs2

1− e−αs2
,
r2e
−αs2 + r4e

−α(s2+s4)

1− e−α(s2+s4)

}
.

Now replace ri by a cost ci. Suppose we modify the problem to one in which we initially we
pay a cost

∑
i ci, but then cie

−αti is refunded when job i completes at time t. Thus the net cost is∑
i [ci − cie−αti ] = α

∑
i citi + o(α), which is effectively minimized by maximizing

∑
i cie

−αti .

Use this idea on a problem in which a waiting cost is incurred at rate ci per unit of time until job
i completes. Show that the total waiting cost is minimized by processing job 1 first (rather than 2) if

max

{
c1
s1
,
c1 + c3
s1 + s3

}
≥ max

{
c2
s2
,
c2 + c4
s2 + s4

}
.

4. Recall Question 6 from Examples Sheet 1.
At the beginning of each day a machine can be in either a working or broken state. If it is broken

then the whole day is spent repairing it, and this costs 8c in labour and lost production. If the machine
is working, then it may be run unattended or attended, at costs of 0 or c respectively. In either case
there is a chance that the machine will breakdown and need repair the following day, with probabilities
p and p′ respectively.
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Solve for the variables f 0(0), f 0(1) and λ,

f 0(0) + λ = 8c+ f 0(1)

f 0(1) + λ = pf 0(0) + qf 0(1).

Explain the meaning of λ and f 0(0)− f 0(1).
By considering a step of the poilcy improvement algorithm show that the policy of running the

machine unattended minimizes the average-cost iff (7p− 8p′) ≤ 1.
Let Fβ(1) be the minimal expected β-discounted cost when starting on a day when the machine

is working. Find limβ→1(1− β)Fβ(1) and compare it to the minimal average-cost.

5. A motorist has to travel an enormous distance along a newly open motorway. Regulations insist
that filling stations can be built only at sites at distances 1, 2, . . . from his starting point. The
probability that there is a filling station at any particular point is p, independently of the situation
at other sites. On a full tank of petrol, the motorist’s car can travel a distance of exactly G units
(where G is an integer greater than 1), so that it can just reach site G when starting full at site 0.
The petrol gauge on the car is extremely accurate. Since he has to pay for the petrol anyway, the
motorist ignores its cost. Whenever he stops to fill his tank, he incurs an ‘annoyance’ cost A. If he
arrives with an empty tank at a site with no filling station, he incurs a ‘disaster’ cost D and has to
have the tank filled by a motoring organization.

You should check that you understand that the average-cost optimality equations are

λ+ φ(x) = qφ(x− 1) + pmin[A+ φ(G), φ(x− 1)], 1 < x ≤ G,

λ+ φ(1) = q[D + φ(G)] + p[A+ φ(G)].

Consider the policy π, defined as ‘On seeing a filling station, stop and fill the tank’. Suppose we take
φ(G) = 0. If π is optimal then

λ+ φ(x) = qφ(x− 1) + pA, 1 < x ≤ G,

to which the general solution is of the form φ(x) = a+ bqx.
Determine values for a and b. Thus prove that if the following condition holds:

(1− qG)A < pqG−1D,

then the π minimizes the expected long-run average cost. Show that when π is employed the average
cost is Ap+ qGDp/(1− qG).

6. Suppose that at time t a machine is in state x (where x is a non-negative integer.) The machine
costs cx to run until time t + 1. With probability a = 1 − b the machine is serviced and so goes
to state 0 at time t + 1. If it is not serviced then the machine will be in states x or x + 1 at time
t+ 1 with respective probabilities p and q = 1− p. Costs are discounted by a factor β per unit time.
Let F (x) be the expected discounted cost over an infinite future for a machine starting from state x.
Thus F (x) obeys the equation

F (x) = cx+ aβF (0) + bβ[pF (x) + qF (x+ 1)].

Show that there is a solution F (x) = φ+ θx and determine the coefficients φ, θ.
A maintenance engineer must divide his time between n such machines, the i the machine having

parameters ci, pi and state variable xi. Suppose he uses a non-deterministic stationary Markov policy
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in which he allocates his time randomly, in that he services machine i with a probability ai at a
given time, independently of machines states or of the previous history,

∑
i ai = 1. The expected cost

starting from state variables xi under this policy will be
∑

i Fi(xi) =
∑

i(φi + θixi) if one neglects the
coupling of machine-states introduced by the fact that the engineer can only be in one place at once
(a coupling which vanishes in continuous time.)

Consider one application of the policy improvement algorithm. Show that under the improved
policy the engineer should next service the machine whose label i maximizes ci(xi + qi)/(1− βbi).

7. Customers arrive at a queue as a Poisson process of rate λ. They are served at rate u = u(x),
where x denotes the current size of the queue. Suppose that cost is incurred as rate ax + bu where
a, b > 0. The service rate u is the control variable. The dynamic programming equation can be
viewed as the limit as δ → 0 of the discrete time average cost optimality equation

f(x) + δγ = inf
u

{
(ax+ bu)δ + λδf(x+ 1) + 1x>0uδf(x− 1) +

(
1− δ[λ+ 1x>0u]

)
f(x)

}
where γ denotes the average rate at which cost is incurred under the optimal policy and where f(x)
denotes the extra cost associated with starting from state x. (Here 1x>0 = 0 if x = 0, and 1x>0 = 1 if
x = 1, 2, 3, . . . ) In the δ → 0 limit this gives

γ = inf
u
{ax+ bu+ λ[f(x+ 1)− f(x)] + u1x>0[f(x− 1)− f(x)]} .

Check that you understand the above derivation.
Show that under the constraint that u(x) is a fixed constant, say u(x) = ū, independent of x, and

greater that λ then, for some C, there is a solution of the form

γ =
aλ

ū− λ
+ bū, f(x) = C +

ax(x+ 1)

2(ū− λ)
.

i.e., such that f(x) does not grow exponentially in x (which is needed to ensure that (1/t)Ef(xt)→ 0
as t → ∞ and hence, similarly as in the proof for a discrete time model, that γ can be shown to be
the time-average cost.)

Let π be the policy u(x) = ū, with optimal value of ū. What is ū?
Suppose now that we allow u to vary with x, subject to the constraint m ≤ u ≤M , where M > λ.

What is the policy which results if we carry out one stage of policy improvement to π.

Questions 8–10 are about optimal control in LQ models, which is the subject of
Lectures 10. However, you should be able to do all the following 3 questions using only
what you know about dynamic programming from Lectures 1 and 2.

8. Successive attempts are made to regulate the speed of a clock, but these introduce also a random
change whose size tends to increase with the size of the intended change. Explicitly, let xn be the error
in the speed of the clock after n corrections. On the basis of the observed value of xn one attempts
to correct the speed by an amount un. The actual error in speed then becomes

xn+1 = xn − un + εn+1

where, conditional on events up to the choice of un, the variable εn+1 is normally distributed with
zero mean and variance αu2n. If, after all attempts at regulation, one leaves the clock with an error
x, then there is a cost x2.

Suppose exactly s attempts are to be made to regulate the clock with initial error x. Determine
the optimal policy and the minimal expected cost.
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9. Consider a scalar deterministic linear system, xt = Axt−1+But−1, with cost function
∑h−1

t=0 Qu
2
t+x

2
h.

Show from first principles (i.e., not simply by substituting values into the Riccati equation), that in
terms of the time to go s, Π−1s obeys a linear recurrence and that

Πs =

[
B2

Q(A2 − 1)
+

(
1− B2

Q(A2 − 1)

)
A−2s

]−1
.

Under what conditions does Πs tend to a limit as s→∞? What are the limiting forms of Πs and Γs?

10. Consider the linear system, (xt, vt) ∈ R2,

xt+1 = xt + vt

vt+1 = vt + ut + εt,

whose state represents the position and velocity of a body, {ut} is a sequence of control variables and
{εt} is a sequence of independent zero-mean disturbances, with variance N . We wish to minimize the
expected value of

∑T−1
t=0 u

2
t + P0x

2
T . Show that the optimal choice of ut from state (xt, vt) is

ut = −(s− 1)Ps(xt + svt),

where s = T − t and
P−1s = P−10 + 1

6
s(s− 1)(2s− 1).

[Hint: reduce this problem to LQ regulation of the scalar variable zt = xt + (T − t)vt. Re-write the
plant equation and cost in terms of this quantity and in terms of time to go. ]
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1. A one-dimensional model of the problem faced by a juggler trying to balance a light stick with a
weight on top is given by the equation

ẍ1 = α(x1 − u)

where x1 is the horizontal displacement of the top of the stick from some fixed point and u is the
horizontal displacement of the bottom. (The stick is assumed to be nearly upright and stationary and
α > 0 is inversely proportional to the length.) Show the juggler can control x1 by manipulating u.

If he tries to balance n such weighted sticks on top of one another, the equations governing stick
k (k = 2, . . . , n) are (provided the weights on the sticks get smaller fast enough as n increases)

ẍk = α(xk − xk−1)

Show that the n-stick system is controllable. [You may find it helpful to take the state vector as
(ẋ1, x1, ẋ2, x2, . . . , ẋn, xn)>.]

2. Consider the controlled system xt+1 = xt+ut+3εt+1, where the εt are independent N(0, 1) variables.
The instantaneous cost at time t is x2t + 2u2t . Assuming that xt is observable at time t, show that
the optimal control under steady-state (stationary) conditions is ut = −(1/2)xt, and that when this
control is used the average-cost incurred per unit time is 18.

Suppose now that at time t one observes, not xt, but yt = xt−1 + 2ηt, where the ηt are again
independent N(0, 1) variables independent of the εt. The law of x̂t+1 conditional on (y1, . . . , yt+1) is
Gaussian, with a mean that is a the linear function of x̂t, ut and yt+1 having minimum variance. Find
under steady-state conditions this linear function, and show that x̂t has steady-state variance 12.

Assuming stationary conditions, express the optimal control, ut, as a function of x̂t.

3. Consider the continuous-time system with scalar state variable, plant equation ẋ = u and cost func-
tion Q

∫ h
0
u2dt+ x(h)2. By writing the DP equation in infinitesimal form and taking the appropriate

limit, show that the value function satisfies

0 =
∂F

∂t
+ inf

u

[
Qu2 +

∂F

∂x
u

]
, s > 0.

Show that F and the optimal control with time s to go are

F =
Qx2

Q+ s
, u = − x

Q+ s
.

4. Miss Prout holds the entire remaining stock of Cambridge elderberry wine for the vintage year
1959. If she releases it at rate u (in continuous time) she realises a unit price p(u). She holds an
amount x at time 0 and wishes to release this in such a way as to maximize her total discounted
return,

∫∞
0
e−αtup(u) dt. Consider the particular case p(u) = u−γ, where the constant γ is positive

and less than one. Show that the value function is proportional to a power of x and determine the
optimal release rule in closed-loop form (i.e., as a function of the present stock level.)

[Hint: The answers are F (x) = (γ/α)γx1−γ, u = αx/γ. Try to derive these answers from the DP
equation; not simply substitute them into the DP equation and check that they work.]
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5. Let the vector x denote the Cartesian co-ordinates of a particle moving in Rd. When at position
x the particle moves with speed v(x) and in a direction that can be chosen. The equation of motion
is thus ẋ = v(x)u, where u is a unit vector to be chosen afresh at each position x. Let F (x) denote
the minimal time taken for the particle to reach a set D from a point x outside it. Show that after
minimizing over u the dynamic programming equation for F implies that |∇F (x)| = v(x)−1; i.e.,

d∑
j=1

(
∂F

∂xj

)2

= v(x)−2.

This is the eikonal equation of geometric optics; a short-wavelength form of the wave equation. How
is the optimal direction at a given point determined from F?

[Hint: Show that the DP equation is infu:|u|=1[1 + v(x)u>∇F ] = 0. Then use a Cauchy-Schwartz
inequality to show that the infimum is achieved by u = −∇F/|∇F |.]

6. Consider the optimal control problem:

minimize

∫ T

0

1
2
u(t)2 dt subject to ẋ1 = −x1 + x2 , ẋ2 = −2x2 + u ,

where u is unrestricted, x1(0) and x2(0) are known, T is given and x1(T ) and x2(T ) are to be made
to vanish. Rewrite the problem in terms of new variables, z1 = (x1 + x2)e

t and z2 = x2e
2t and then

show that the optimal control takes the form u = λ1e
t + λ2e

2t, for some constants λ1 and λ2. Find
equations for x1(0), x2(0) in terms of λ1, λ2, and T , which you could in principle solve for λ1, λ2 in
terms of x1(0), x2(0) and T .

Compare a linear feedback controller of the form u(t) = −k1x1(t) − k2x2(t), where k1 and k2 are
constants. Show that with this controller x1 and x2 cannot be made to vanish in finite time. Discuss
the choice of optimal control with a quadratic performance criterion as opposed to linear feedback
control, indicating which is likely to be more appropriate in given circumstances.

7. A princess is jogging with speed r in the counterclockwise direction around a circular running
track of radius r, and so has a position whose horizontal and vertical components at time t are
(r cos t, r sin t), t ≥ 0. A monster who is initially located at the centre of the circle can move with
velocity u1 in the horizontal direction and u2 in the vertical direction, where both velocities have a
maximum magnitude of 1. The monster wishes to catch the princess in minimal time.

Analyse the monster’s problem using Pontryagin’s maximum principle. By considering feasible
values for the adjoint variables, show that whatever the value of r the monster should always set at
least one of |u1| or |u2| equal to 1. Show that if r = π/

√
8 then the monster catches the princess in

minimal time by adopting the uniquely optimal policy u1 = 1, u2 = 1. Is the optimal policy always
unique?

[Hint: Let x1 and x2 be the differences in the horizontal and vertical directions between the
positions of the monster and princess.]

8. An aircraft flies in straight and level flight at height h, so that lift L balances weight mg. The
mass rate of fuel consumption is proportional to the drag, and may be taken as q = av2 + b(Lv)−2,
where a and b are constants and v is the speed. Thus

ṁ = −q = −av2 − b

(mgv)2
.
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Find a rule for determining v in terms of m if (i) the distance flown is to be maximized, (ii) the time
spent flying at height h (until fuel is exhausted) is to be maximized.[

Hint: Answers are (i) v =

(
3b

a(mg)2

)1/4

, and (ii) v =

(
b

a(mg)2

)1/4
]
.

9. In Zermelo’s navigation problem a straight river has current c(y), where y is the distance from the
bank from which a boat is leaving. A boat is to cross the river at constant speed v relative to the
water, so that its position (x, y) satisfies ẋ = v cos θ + c(y), ẏ = v sin θ, where θ is the heading angle
indicated in the diagram.

x

y

P

c(y)

θ

(i) Suppose c(y) > v for all y and the boatman wishes to be carried downstream as little as possible
in crossing. Show that he should follow the heading

θ = cos−1(−v/c(y)).

(ii) Suppose the boatman wishes to reach a given point P on the opposite bank in minimal time.
Show that he should follow the heading

θ = cos−1
(

λ1v

1− λ1c(y)

)
,

where λ1 is a parameter chosen to make his path pass through the target point.

10. In the neoclassical economic growth model, x is the existing capital per worker and u is consump-
tion of capital per worker. The plant equation is

ẋ = f(x)− γx− u, (5)

where f(x) is the production per worker, and −γx represents depreciation of capital and change in
the size of the workforce. We wish to choose u to maximize∫ T

t=0

e−αtg(u) dt,

where g(u) measures utility, is strictly increasing and concave, and T is prescribed. It is convenient
to take a Hamiltonian

H = e−αt [g(u) + λ(f(x)− γx− u)] ,

thereby including a discount factor in the definition of λ and expressing F in terms of present value.
Show that the optimal control satisfies g′(u) = λ (assuming the maximum is at a stationary point)

and
λ̇ = (α + γ − f ′)λ. (6)
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Hence show that the optimal consumption obeys

u̇ =
1

σ(u)
[f ′(x)− α− γ], where σ(u) = −g

′′(u)

g′(u)
> 0. (7)

(σ is called the ‘elasticity of marginal utility.’)
Characterise an equilibrium solution, i.e., an x(0) = x̄ such that the optimal trajectory is x(t) = x̄,

t ≥ 0, and show that this x̄ is independent of g.

11. This is a starred question, which might be interesting for discussion. It points up
the duality between the questions of controllability and observability.

Consider the system xt+1 = Axt +But, xt ∈ Rn, ut ∈ Rm, and let

Ft(x0) = min
u0,...,ut−1

t−1∑
s=0

x>s Rxs + x>t Π0xt, ,

where R is positive definite. Assuming that the optimal control is of the form us = Ksxs, and
Ft(x) = x>Πtx, show that

Πt = f(R,A,B,Πt−1) ≡ min
K

{
R + (A+BK)>Πt−1(A+BK)

}
.

Explain what is meant by saying the system is controllable.
State necessary and sufficient condition for controllability in terms of A and B.
Show that if the system is controllable and Π0 = 0, then Ft(x) is monotone increasing in t and

tends to the finite limit x>Πx, where Π = f(R,A,B,Π).
Suppose now that xt+1 = Axt + But + εt, where {εt} is noise, Eεt = 0, Eεtε

>
t = N , and εs and

εt are independent for s 6= t. Moreover, x0 is known, but x1, x2, . . . cannot be observed. Instead, we
observe y1, y2, . . . ∈ Rr, where yt = Cxt−1. Consider the estimate of xt given by

x̂t = Ax̂t−1 +But−1 −Ht(yt − Cx̂t−1)

where x̂0 = x0 and Ht is chosen to minimize, Vt, the covariance matrix of x̂t. Show that x̂t is unbiased
and that, with V0 = 0,

Vt = f(N,A>, C>, Vt−1) = min
H

{
N + (A+HC)Vt−1(A+HC)>

}
.

Hence, quoting a condition in terms of A and C for the noiseless system to be observable, show
that observability is a sufficient condition for Vt to tend to a finite limit as t→∞.
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