
Optimization and Control: Examples Sheet 3
Continuous-time Models

1. [lecture 12] Consider the continuous-time system with scalar state variable, plant

equation ẋ = u and cost function Q
∫ h

0 u2dt + x(h)2. By writing the DP equation
in infinitesimal form and taking the appropriate limit, show that the value function
satisfies

0 =
∂F

∂t
+ inf

u

[

Qu2 +
∂F

∂x
u

]

, s > 0.

Show that F and the optimal control with time s to go are

F =
Qx2

Q + s
, u = − x

Q + s
.

2. [lecture 12] Consider the ‘inertial’ system (generalising Example 1) in which the
two components of the state vector obey ẋ1 = x2 and ẋ2 = u and the cost function is

Q
∫ h

0 u2dt + x1(h)2. Show that the value function and optimal control are

Fs =
Q

Q + s3/3
(x1 + sx2)

2, u = − 1

Q + s3/3
s(x1 + sx2).

Note that this is consistent with the discrete-time assertion of the example on Examples
Sheet 2.

[

Hint: Guess a solution of the form Fs(x) = (x1 + sx2)
2πs.

]

3. [lecture 12] Miss Prout holds the entire remaining stock of Cambridge elderberry
wine for the vintage year 1959. If she releases it at rate u (in continuous time) she
realises a unit price p(u). She holds an amount x at time 0 and wishes to release this
in such a way as to maximize her total discounted return,

∫ ∞

0
e−αtup(u) dt. Consider

the particular case p(u) = u−γ , where the constant γ is positive and less than one.
Show that the value function is proportional to a power of x and determine the optimal
release rule in closed-loop form (i.e., as a function of the present stock level.)

[Hint: The answers are F (x) = (γ/α)γx1−γ , u = αx/γ. However, you should try
to derive these answers from the DP equation; not simply substitute them into the DP
equation and check that they work.]

4. [lecture 12] Let the vector x denote the Cartesian co-ordinates of a particle moving
in R

d. When at position x the particle moves with speed v(x) and in a direction that
can be chosen. The equation of motion is thus ẋ = v(x)u, where u is a unit vector to
be chosen afresh at each position x. Let F (x) denote the minimal time taken for the
particle to reach a set D from a point x outside it. Show that after minimizing over u
the dynamic programming equation for F implies that |∇F (x)| = v(x)−1; i.e.,

d
∑

j=1

(

∂F

∂xj

)2

= v(x)−2.
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This is the eikonal equation of geometric optics; a short-wavelength form of the wave
equation. How is the optimal direction at a given point determined from F?

[Hint: Show that the DP equation is infu:|u|=1[1 + v(x)u⊤∇F ] = 0. Then use a
Cauchy-Schwartz inequality to show that the infimum is achieved by u = −∇F/|∇F |.]

5. [lecture 13] Consider the optimal control problem:

minimize

∫ T

0

1
2u(t)2 dt subject to ẋ1 = −x1 + x2 , ẋ2 = −2x2 + u ,

where u is unrestricted, x1(0) and x2(0) are known, T is given and x1(T ) and x2(T ) are
to be made to vanish. Rewrite the problem in terms of new variables, z1 = (x1 + x2)e

t

and z2 = x2e
2t and then show that the optimal control takes the form u = λ1e

t +λ2e
2t,

for some constants λ1 and λ2. Find equations for x1(0), x2(0) in terms of λ1, λ2, and
T , which you could in principle solve for λ1, λ2 in terms of x1(0), x2(0) and T .

Compare a linear feedback controller of the form u(t) = −k1x1(t) − k2x2(t),
where k1 and k2 are constants. Show that with this controller x1 and x2 cannot be
made to vanish in finite time. Discuss the choice of optimal control with a quadratic
performance criterion as opposed to linear feedback control, indicating which is likely
to be more appropriate in given circumstances.

6. [lecture 13] A princess is jogging with speed r in the counterclockwise direction
around a circular running track of radius r, and so has a position whose horizontal and
vertical components at time t are (r cos t, r sin t), t ≥ 0. A monster who is initially
located at the centre of the circle can move with velocity u1 in the horizontal direction
and u2 in the vertical direction, where both velocities have a maximum magnitude of
1. The monster wishes to catch the princess in minimal time.

Analyse the monster’s problem using Pontryagin’s maximum principle. By consid-
ering feasible values for the adjoint variables, show that whatever the value of r the
monster should always set at least one of |u1| or |u2| equal to 1. Show that if r = π/

√
8

then the monster catches the princess in minimal time by adopting the uniquely optimal
policy u1 = 1, u2 = 1. Is the optimal policy always unique?

[Hint: Let x1 and x2 be the differences in the horizontal and vertical directions
between the positions of the monster and princess.]

7. [lecture 14] In the neoclassical economic growth model, x is the existing capital per
worker and u is consumption of capital per worker. The plant equation is

ẋ = f(x) − γx − u, (4)

where f(x) is the production per worker, and −γx represents depreciation of capital
and change in the size of the workforce. We wish to choose u to maximize

∫ T

t=0

e−αtg(u) dt,

10



where g(u) measures utility, is strictly increasing and concave, and T is prescribed. It
is convenient to take a Hamiltonian

H = e−αt [g(u) + λ(f(x) − γx − u)] ,

thereby including a discount factor in the definition of λ and expressing F in terms of
present value.

Show that the optimal control satisfies g′(u) = λ (assuming the maximum is at a
stationary point) and

λ̇ = (α + γ − f ′)λ. (5)

Hence show that the optimal consumption obeys

u̇ =
1

σ(u)
[f ′(x) − α − γ], where σ(u) = −g′′(u)

g′(u)
> 0. (6)

(σ is called the ‘elasticity of marginal utility.’)
Characterise an equilibrium solution, i.e., an x(0) = x̄ such that the optimal

trajectory is x(t) = x̄, t ≥ 0, and show that this x̄ is independent of g.

8. [lecture 14] An aircraft flies in straight and level flight at height h, so that lift L
balances weight mg. The mass rate of fuel consumption is proportional to the drag,
and may be taken as q = av2 +b(Lv)−2, where a and b are constants and v is the speed.
Thus

ṁ = −q = −av2 − b

(mgv)2
.

Find a rule for determining v in terms of m if (i) the distance flown is to be maximized,
(ii) the time spent flying at height h (until fuel is exhausted) is to be maximized.

[

Hint: Answers are (i) v =

(

3b

a(mg)2

)1/4

, and (ii) v =

(

b

a(mg)2

)1/4
]

.

9. [lecture 14] In what is known as Zermelo’s problem, a straight river has current c(y),
where y is the distance from the bank from which a boat is leaving. The boat then
crosses the river at constant speed v relative to the water, so that its position (x, y)
satisfies ẋ = v cos θ + c(y), ẏ = v sin θ, where θ is the heading angle indicated in the
diagram.
(i) Suppose c(y) > v for all y and the boatman wishes to be carried downstream as
little as possible in crossing. Show that he should follow the heading

θ = cos−1(−v/c(y)).

11

x

y

P

c(y)

θ

Figure 1: Zermelo’s problem

(ii) Suppose the boatman wishes to reach a given point P on the opposite bank in
minimal time. Show that he should follow the heading

θ = cos−1

(

λ1v

1 − λ1c(y)

)

,

where λ1 is a parameter chosen to make his path pass through the target point.

10. [lecture 15] Customers arrive at a queue as a Poisson process of rate λ. They are
served at rate u = u(x), where x denotes the current size of the queue. Suppose that
cost is incurred as rate ax+bu where a, b > 0. The service rate u is the control variable.
The dynamic programming equation in the infinite horizon limit is then

γ = inf
u

{ax + bu(x) + λ[f(x + 1) − f(x)] + u(x)1x>0[f(x − 1) − f(x)]}

where γ denotes the average rate at which cost is incurred under the optimal policy and
where f(x) denotes the extra cost associated with starting from state x. (Here 1x>0 = 0
if x = 0, and 1x>0 = 1 if x = 1, 2, 3, . . . .) Give a brief justification of this equation.

Show that under the constraint that u is a fixed constant, independent of x, and
greater that λ then, for some C, there is a solution of the form

γ =
aλ

u − λ
+ bu, f(x) = C +

ax(x + 1)

2(u − λ)
.

i.e., such that f(x) does not grow exponentially in x (which is needed to ensure that
(1/t)Ef(xt) → 0 as t → ∞ and hence, similarly as in the proof for a discrete time
model, that γ can be shown to be the time-average cost.) What is the optimal constant
service rate?

Suppose now that we allow u to vary with x, subject to the constraint m ≤ u ≤ M ,
where M > λ. What is the policy which results if we carry out one stage of policy
improvement to the optimal constant service policy?
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