
Optimization and Control: Examples Sheet 2
LQG Models

1. [lecture 7] Consider a scalar deterministic linear system, xt = Axt−1 + But−1, with

cost function
∑h−1

t=0 Qu2
t +x2

h. Show from first principles (i.e., not simply by substituting
values into the Riccati equation), that in terms of the time to go s, Π−1

s obeys a linear
recurrence and that

Πs =

[

B2

Q(A2 − 1)
+

(

1 − B2

Q(A2 − 1)

)

A−2s

]−1

.

Under what conditions does Πs tend to a limit as s → ∞? Investigate the limiting
forms of Πs and Γs.

2. [lecture 7] (88117) Successive attempts are made to regulate the speed of a clock, but
each deliberate change in setting introduces also a random change whose size tends to
increase with the size of the intended change. Explicitly, let xn be the error in the speed
of the clock after n corrections. On the basis of the observed value of xn one attempts
to correct the speed by an amount un. The actual error in speed then becomes

xn+1 = xn − un + ǫn+1

where, conditional on events up to the choice of un, the variable ǫn+1 is normally
distributed with zero mean and variance αu2

n. If, after all attempts at regulation, one
leaves the clock with an error x, then there is a cost x2.

Suppose exactly s attempts are to be made to regulate the clock with initial error
x. Determine the optimal policy and the minimal expected cost.

3. [lecture 7] Consider the scalar-state control problem with plant equation xt+1 =

xt + ut + ǫt and cost function
∑h−1

t=0 u2
t + Dx2

h. Here current state is observable, the
horizon point h is prescribed, and the disturbances ǫt are i.i.d. with zero mean and
variance v. Show that the open-loop form of the optimal control in the deterministic
case v = 0 is ut = −Dx0/(1+hD) and that the closed-loop form of the optimal control
is ut = −Dxt/[1 + (h − t)D], whatever v.

Show that if the open-loop control is used in the stochastic case then a total expected
cost Dx2

0/(1 + hD) + hDv is incurred, while use of the closed-loop control leads to a
smaller expected cost of

F (x0, 0) =
Dx2

0

1 + hD
+ Dv

h−1
∑

s=0

1

1 + sD
.
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4. [lecture 7,11] (77314) Consider the real-valued system defined by

xn+1 = axn + ξnun (n = 0, 1, . . . ),

where ut is the control at time n and {ξn; n = 0, 1, . . .} is a sequence of independent
random variables with mean b and variance σ2. Suppose that the cost incurred at time
n is x2

n + u2
n, and that there are no terminal costs. Find the recursions satisfied by the

finite-horizon optimal cost function. Is the optimal control certainty-equivalent control?

[

Hint: The answer is Fs(x) = Πsx
2, where Πs = 1 +

a2Πs−1(1 + σ2Πs−1)

1 + (b2 + σ2)Πs−1
.

]

5. [lecture 8] Suppose that a discrete-time system with n-dimensional state variable x
has a plant equation which is linear in state, xt+1 = Atxt+b(ut, t), an instantaneous cost
c(ut, t) which is independent of state, and a terminal cost at time h that is a function
of d⊤xh, for a given vector d. Show that the value function takes the form F (x, t) =
φ(ξt, t), where ξt = d⊤zt is the ‘predicted miss distance’ and zt = Ah−1 · · ·Atxt is the
the value that xh would take if the system were uncontrolled from time t. Show that
the optimal control at time t is also a function of ξt and t alone.

6. [lecture 8] (83117) Consider the linear system

xt+1 = xt + vt

vt+1 = vt + ut + ǫt,

where the state is the pair of scalars (xt, vt), representing the position and velocity of
a body, {ut} is a sequence of control variables and {ǫt} is a sequence of independent
zero-mean disturbances, with variance N . The objective is to minimize the expected
value of

∑T−1
t=0 u2

t + P0x
2
T . Show that the optimal choice of ut from state (xt, vt) is

ut = −(s − 1)Ps(xt + svt),

where s = T − t and

P−1
s = P−1

0 + 1
6s(s − 1)(2s − 1).

[Hint: use what you learned from Example 5 to reduce this problem to LQ regulation
of a scalar quantity. Re-write the plant equation and cost in terms of this quantity and
in terms of time to go.]
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7. [lecture 8] (77129) A simple model of the rolling motion of a ship represents it as a
damped simple pendulum driven by wave motion. For small roll angles the equation is

θ̈ + 2γωθ̇ + ω2θ = ω2u,

where θ(t) is the roll angle and u(t) is the effective rolling torque from wave motion; ω
and γ are constants.

Show that θ and θ̇ can in principle be moved from any values to any other values in
an arbitrary short time by an appropriate u. State any theorems that you use.

8. [lecture8] (81117) A one-dimensional model of the problem faced by a juggler trying
to balance a light stick with a weight on top is given by the equation

ẍ1 = α(x1 − u)

where x1 is the horizontal displacement of the top of the stick from some fixed point
and u is the horizontal displacement of the bottom. (The stick is assumed to be nearly
upright and stationary and α > 0 is inversely proportional to the length.) Show that
the juggler can control x1 by manipulating u.

If he tries to balance n such weighted sticks on top of one another, the equations
governing stick k (k = 2, . . . , n) are (provided the weights on the sticks get smaller fast
enough as n increases)

ẍk = α(xk − xk−1)

Show that the n-stick system is controllable. [You may find it helpful to take the state
vector as (ẋ1, x1, ẋ2, x2, . . . , ẋn, xn)⊤. Example F. ]

9. [lecture 11] (87117) Consider the controlled system xt+1 = xt + ut + 3ǫt+1, where
the ǫt are independent N(0, 1) variables. The instantaneous cost at time t is x2

t + 2u2
t .

Assuming that xt is observable at time t, calculate the optimal control under steady-
state (stationary) conditions and find the expected cost per unit time incurred when
this control is used.

Suppose now that at time t one observes, not xt, but yt = xt−1 + 2ηt, where the ηt

are again independent N(0, 1) variables independent of the ǫt. Show that the law of x̂t

conditional on (y1, . . . , yt) has steady-state variance 12.
Determine the optimal control and a recursion for the optimal estimate of state

under stationary conditions.
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10. [lectures 9–11] (00414) Consider the system xt+1 = Axt + But, xt ∈ R
n, ut ∈ R

m,
and let

Ft(x0) = min
u0,...,ut−1

t−1
∑

s=0

x⊤
s Rxs + x⊤

t Π0xt, ,

where R is positive definite. Assuming that the optimal control is of the form us = Ksxs,
and Ft(x) = x⊤Πtx, show that

Πt = f(R, A, B, Πt−1) ≡ min
K

{

R + (A + BK)⊤Πt−1(A + BK)
}

.

Explain what is meant by saying the system is controllable.
State necessary and sufficient condition for controllability in terms of A and B.
Show that if the system is controllable and Π0 = 0, then Ft(x) is monotone increasing

in t and tends to the finite limit x⊤Πx, where Π = f(R, A, B, Π).
Suppose now that xt+1 = Axt + But + ǫt, where {ǫt} is noise, Eǫt = 0, Eǫtǫ

⊤
t = N ,

and ǫs and ǫt are independent for s 6= t. Moreover, x0 is known, but x1, x2, . . . cannot
be observed. Instead, we observe y1, y2, . . . ∈ R

r, where yt = Cxt−1. Consider the
estimate of xt given by

x̂t = Ax̂t−1 + But−1 − Ht(yt − Cx̂t−1)

where x̂0 = x0 and Ht is chosen to minimize, Vt, the covariance matrix of x̂t. Show
that x̂t is unbiased and that, with V0 = 0,

Vt = f(N, A⊤, C⊤, Vt−1) = min
H

{

N + (A + HC)Vt−1(A + HC)⊤
}

.

Hence, quoting a condition in terms of A and C for the noiseless system to be
observable, show that observability is a sufficient condition for Vt to tend to a finite
limit as t → ∞.
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