
Optimization and Control: Examples Sheet 1
Dynamic programming

1. [lecture 1] Given a sequence of matrix multiplications

M1M2 · · ·MkMk+1 · · ·Mh,

where each Mk is a matrix of dimension nk×nk+1, the order in which the multiplications
are done makes a difference. For example, if n1 = 1, n2 = 10, n3 = 1 and n4 =
10, the calculation (M1M2)M3 requires 20 scalar multiplications, but the calculation
M1(M2M3) requires 200 scalar multiplications (multiplying a m× n matrix by a n× k
matrix requires mnk scalar multiplications.) Let F (n1, n2, . . . , nh+1; h) be the minimal
number of scalar multiplications required. Explain why an optimality equation for F is

F (n1, n2, . . . , nk+1, k) = min
1<i<k+1

{ni−1nini+1 + F (n1, . . . , ni−1, ni+1, . . . , nk+1; k − 1)} ,

k = 1, . . . , h, and hence describe an algorithm for finding the optimal multiplication
order. Solve the problem for h = 3, n1 = 2, n2 = 10, n3 = 5 and n4 = 1.

Solve it also for h = 4, n1 = 2, n2 = 10, n3 = 1, n4 = 5 and n5 = 1. Show that the
amount of effort required to find the optimal order increases with h as (h − 1)!

2. [lecture 2] A deck of cards is thoroughly shuffled and placed face down on the table.
You turn over cards one by one, counting the numbers of reds and blacks you have seen
so far. Exactly once, whenever you like, you may bet that the next card you turn over
will be red. If you are correct you win £1000.

Let F (r, b) be the probability of winning to if you play optimally, beginning from a
point at which you have not yet bet and you know that exactly r red and b black cards
remain in the face down pack. Find F (26, 26) and your optimal strategy. How does
this answer compare with your intuition?

3. [lecture 2] A gambler has the opportunity to bet on a sequence on N coin tosses.
The probability of heads on the nth toss is known to be pn, n = 1, . . . , N . For the n
toss he may stake any non-negative amount not exceeding his current capital (which
is his initial capital plus his winnings to date) and call ‘heads’ or ‘tails’. If his call is
correct he retains his stake and wins an equal amount while if the call is incorrect he
loses his stake. Let X0 ≥ 0 denote his initial capital and XN his capital after the final
toss. Determine how the gambler should call and how much he should stake for each
toss in order to maximize E[log XN ].

4. [lecture 2] A man is standing in a queue waiting for service, with n people ahead
of him. He knows the utility of waiting out the queue, r, and the constant probability
p that the person at the head of the queue will complete service in the next unit of
time (independently of what happens in all other units of time). On the other hand he
incurs a cost c for every unit of time spent waiting for his own service to begin. The
problem is to determine the waiting policy that maximizes his expected return.
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Let Fn denote the expected return obtained by employing an optimal waiting policy
when there are n people ahead. Show that the optimality equation is

Fn = max[−c + pFn−1 + (1 − p)Fn, 0], n > 0, (1)

with F0 = r. Show that (1) can be re-written as

Fn = max [Fn−1 − c/p, 0] , n > 0. (2)

Hence prove inductively that Fn ≤ Fn−1. Why is this fact intuitive?
Show there exists an integer n∗ such that the form of the optimal policy is to wait

only if n ≤ n∗. Find expressions for Fn and n∗ in terms of r, c and p.
Give an alternative derivation of the optimal waiting policy, without recourse to

dynamic programming.

5. [lecture 2] (80114) The Greek adventurer Theseus is trapped in a room from which
lead n passages. Theseus knows that if he enters passage i (i = 1, . . . , n) one of three
fates will befall him: he will escape with probability pi, he will be killed with probability
qi, and with probability ri (= 1 − pi − qi) he will find the passage to be a dead end
and be forced to return to the room. The fates associated with different passages are
independent. Establish the order in which Theseus should attempt the passages if he
wishes to maximize his probability of eventual escape.

6. [lecture 2] Each morning a barrister has a meeting with his instructing solicitor. With
probability θ, independently of other mornings, he will be offered a new case, which he
may either decline or accept it. If he accepts it he will be paid R when it is complete.
However, for each day that the case is on his books he will incur a charge of c and so
it is expensive to have many cases outstanding. Following the meeting he spends the
rest of the day working on a single case, which he finishes by the end of the day with
probability p, p < 1/2. If he wishes he can hire a temporary assistant for the day, at
cost a, and by working on a case together they can finish it with probability 2p.

It is a reasonable to conjecture that the optimal policy is a ‘threshold policy’, i.e.,
C: There exist integers n(s) and m(s) such that it is optimal to accept a new case if

and only if x ≤ n(s) and to employ the assistant if and only if y ≥ m(s).
Let Gs(x) and Fs(y) be the maximal such profit he can obtain over s days, given

that his number of outstanding cases are x and y ∈ {x, x + 1} respectively, just before
and just after the meeting on the first day. By writing Gs in terms of Fs, and writing
Fs in terms of Gs−1, show that C is true provided both Fs(x) and Gs−1(x) are concave
functions of x.

Now suppose that C is true for all s ≤ t, and that Ft and Gt−1 are concave functions
of x. First show that for x > 0,

Gt(x + 1) − 2 Gt(x) + Gt(x − 1)

= (1 − θ)
{

Ft(x + 1) − 2Ft(x) + Ft(x − 1)
}

+ θ
{

max[Ft(x + 1), Ft(x + 2)] − 2 max[Ft(x), Ft(x + 1)] + max[Ft(x − 1), Ft(x)]
}

.
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Now, by considering the values of terms on the right have side of this expression,
separately in the three cases x + 1 ≤ n(t), x− 1 > n(t) and x− 1 ≤ n(t) < x + 1, show
that Gt is also concave and hence that it is also true that the optimal hiring policy is
of threshold form when the horizon is t + 1. (In a similar manner, one can next show
that Ft+1 is concave, and so inductively prove that C holds for all finite-horizons.)

7. [lecture 3] At the beginning of each day a certain machine can be either working or
broken. If it is broken then the whole day is spent repairing it, and this costs 8c in
labour and lost production. If the machine is working, then it may be run unattended
or attended, at costs of 0 or c respectively. In either case there is a chance that the
machine will breakdown and need repair the following day, with probabilities p and p′

respectively, where p′ < (7/8)p. Costs are discounted by factor β, 0 < β < 1, and
it is desired to minimize the total-expected discounted-cost over the infinite horizon.
Let F (0) and F (1) denote the minimal value of such cost, starting from a morning on
which the machine is broken or working respectively. Show that it is optimal to run the
machine unattended only if β ≤ 1/(7p− 8p′).

8. [lecture 3] Consider the following infinite-horizon discounted-cost optimality equation
for a Markov decision process with, 0 < β < 1, a finite state space, x ∈ {1, . . . , N}, and
M actions available in each state, u ∈ {1, . . . , M}:

F (x) = min
u

[

c(x, u) + β
N

∑

x1=1

F (x1)P (x1 | x0 = x, u0 = u)

]

. (3)

Consider also the linear programming problem

LP: maximize
G(1),...,G(N)

N
∑

i=1

G(i)

with

G(x) ≤ c(x, u) + β
∑N

x1=1 G(x1)P (x1 | x0 = x, u0 = u), for all x, u.

Thus LP has N variables and N ×M constraints. Suppose F is a solution to (3). Show
that F is a feasible solution to LP. Suppose G is also a feasible solution to LP. Show
that for each x there exists a u such that,

F (x) − G(x) ≥ βE[F (x1) − G(x1) | x0 = x, u0 = u],

and hence that F ≥ G. Argue finally, that F is the unique optimal solution to LP.
What is the use of this result?

9. [lecture 4] (87318) A hunter receives a unit bounty for each member of an animal
population captured, but hunting costs him an amount c per unit time. The number r
of animals remaining uncaptured is known, and will not change by natural causes on the
relevant time scale. The probability, of a single capture in the next time unit, is λ(r),
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where λ is a known increasing function. The probability of more than one capture per
unit time is negligible. The hunter wishes to maximize his net expected profit. What
should be his stopping rule?

10. [lecture 5] (77115) Consider a burglar who loots some house every night. His
profit from successive crimes forms a sequence of independent random variables, each
having the exponential distribution with mean 1/λ. Each night there is a probability
q, 0 < q < 1, of his being caught and forced to return his whole profit. If he has the
choice, when should the burglar retire so as to maximize his total expected profit?

11. [lecture 6] (86418) A motorist has to travel an enormous distance along a newly
open motorway. Regulations insist that filling stations can be built only at sites at
distances 1, 2, . . . from his starting point. The probability that there is a filling station
at any particular point is p, independently of the situation at other sites. On a full
tank of petrol, the motorist’s car can travel a distance of exactly G units (where G is
an integer greater than 1), so that it can just reach site G when starting full at site 0.
The petrol gauge on the car is extremely accurate. Since he has to pay for the petrol
anyway, the motorist ignores its cost. Whenever he stops to fill his tank, he incurs an
‘annoyance’ cost A. If he arrives with an empty tank at a site with no filling station,
he incurs a ‘disaster’ cost D and has to have the tank filled by a motoring organization.
Prove that if the following condition holds:

(1 − qG)A < pqG−1D,

then the policy: ‘On seeing a filling station, stop and fill the tank’ minimizes the
expected long-run average cost. Calculate this cost when the policy is employed.

12. [lecture 6] (88318) Suppose that at time t a machine is in state x (where x is a
non-negative integer.) The machine costs cx to run until time t + 1. With probability
a = 1−b the machine is serviced and so goes to state 0 at time t+1. If it is not serviced
then the machine will be in states x or x + 1 at time t + 1 with respective probabilities
p and q = 1 − p. Costs are discounted by a factor β per unit time. Let F (x) be the
expected discounted cost over an infinite future for a machine starting from state x.
Show that F (x) has the linear form φ + θx and determine the coefficients φ, θ.

A maintenance engineer must divide his time between n such machines, the i the
machine having parameters ci, pi and state variable xi. Suppose he allocates his
time randomly, in that he services machine i with a probability ai at a given time,
independently of machines states or of the previous history,

∑

i ai = 1. The expected
cost starting from state variables xi under this policy will be

∑

i Fi(xi) =
∑

i(φi +θixi)
if one neglects the coupling of machine-states introduced by the fact that the engineer
can only be in one place at once. Consider one application of the policy improvement
algorithm. Show that under the improved policy the engineer should next service the
machine whose label i maximizes ci(xi + qi)/(1 − βbi).
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