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1. Consider a scalar deterministic linear system, xt = Axt−1+But−1, with cost function
∑h−1

t=0 Qu
2
t+x

2
h.

Show from first principles (i.e., not simply by substituting values into the Riccati equation), that in
terms of the time to go s, Π−1s obeys a linear recurrence and that

Πs =

[
B2

Q(A2 − 1)
+

(
1− B2

Q(A2 − 1)

)
A−2s

]−1
.

Under what conditions does Πs tend to a limit as s→∞? What are the limiting forms of Πs and Γs?

2. Consider the controlled system xt+1 = xt+ut+3εt+1, where the εt are independent N(0, 1) variables.
The instantaneous cost at time t is x2t + 2u2t . Assuming that xt is observable at time t, show that
the optimal control under steady-state (stationary) conditions is ut = −(1/2)xt, and that when this
control is used the average-cost incurred per unit time is 18.

Suppose now that at time t one observes, not xt, but yt = xt−1 + 2ηt, where the ηt are again
independent N(0, 1) variables independent of the εt. The law of x̂t conditional on (y1, . . . , yt) is
Gaussian, with a mean that is a the linear function of x̂t, ut and yt+1 having minimum variance. Find
under steady-state conditions this linear function, and show that x̂t has steady-state variance 12.

Assuming stationary conditions, express the optimal control, ut, as a function of x̂t.

3. Miss Prout holds the entire remaining stock of Cambridge elderberry wine for the vintage year
1959. If she releases it at rate u (in continuous time) she realises a unit price p(u). She holds an
amount x at time 0 and wishes to release this in such a way as to maximize her total discounted
return,

∫∞
0
e−αtup(u) dt. Consider the particular case p(u) = u−γ, where the constant γ is positive

and less than one. Show that the value function is proportional to a power of x and determine the
optimal release rule in closed-loop form (i.e., as a function of the present stock level.)

[Hint: The answers are F (x) = (γ/α)γx1−γ, u = αx/γ. However, you should try to derive these
answers from the DP equation; not simply substitute them into the DP equation and check that they
work.]

4. Consider the optimal control problem:

minimize

∫ T

0

1
2
u(t)2 dt subject to ẋ1 = −x1 + x2 , ẋ2 = −2x2 + u ,

where u is unrestricted, x1(0) and x2(0) are known, T is given and x1(T ) and x2(T ) are to be made
to vanish. Rewrite the problem in terms of new variables, z1 = (x1 + x2)e

t and z2 = x2e
2t and then

show that the optimal control takes the form u = λ1e
t + λ2e

2t, for some constants λ1 and λ2. Find
equations for x1(0), x2(0) in terms of λ1, λ2, and T , which you could in principle solve for λ1, λ2 in
terms of x1(0), x2(0) and T .

Compare a linear feedback controller of the form u(t) = −k1x1(t) − k2x2(t), where k1 and k2 are
constants. Show that with this controller x1 and x2 cannot be made to vanish in finite time. Discuss
the choice of optimal control with a quadratic performance criterion as opposed to linear feedback
control, indicating which is likely to be more appropriate in given circumstances.
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5. A princess is jogging with speed r in the counterclockwise direction around a circular running
track of radius r, and so has a position whose horizontal and vertical components at time t are
(r cos t, r sin t), t ≥ 0. A monster who is initially located at the centre of the circle can move with
velocity u1 in the horizontal direction and u2 in the vertical direction, where both velocities have a
maximum magnitude of 1. The monster wishes to catch the princess in minimal time.

Analyse the monster’s problem using Pontryagin’s maximum principle. By considering feasible
values for the adjoint variables, show that whatever the value of r the monster should always set at
least one of |u1| or |u2| equal to 1. Show that if r = π/

√
8 then the monster catches the princess in

minimal time by adopting the uniquely optimal policy u1 = 1, u2 = 1. Is the optimal policy always
unique?

[Hint: Let x1 and x2 be the differences in the horizontal and vertical directions between the
positions of the monster and princess.]

6. In the neoclassical economic growth model, x is the existing capital per worker and u is consumption
of capital per worker. The plant equation is

ẋ = f(x)− γx− u, (3)

where f(x) is the production per worker, and −γx represents depreciation of capital and change in
the size of the workforce. We wish to choose u to maximize∫ T

t=0

e−αtg(u) dt,

where g(u) measures utility, is strictly increasing and concave, and T is prescribed. It is convenient
to take a Hamiltonian

H = e−αt [g(u) + λ(f(x)− γx− u)] ,

thereby including a discount factor in the definition of λ and expressing F in terms of present value.
Show that the optimal control satisfies g′(u) = λ (assuming the maximum is at a stationary point)

and
λ̇ = (α + γ − f ′)λ. (4)

Hence show that the optimal consumption obeys

u̇ =
1

σ(u)
[f ′(x)− α− γ], where σ(u) = −g

′′(u)

g′(u)
> 0. (5)

(σ is called the ‘elasticity of marginal utility.’)
Characterise an equilibrium solution, i.e., an x(0) = x̄ such that the optimal trajectory is x(t) = x̄,

t ≥ 0, and show that this x̄ is independent of g.

7. An aircraft flies in straight and level flight at height h, so that lift L balances weight mg. The
mass rate of fuel consumption is proportional to the drag, and may be taken as q = av2 + b(Lv)−2,
where a and b are constants and v is the speed. Thus

ṁ = −q = −av2 − b

(mgv)2
.
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Find a rule for determining v in terms of m if (i) the distance flown is to be maximized, (ii) the time
spent flying at height h (until fuel is exhausted) is to be maximized.[

Hint: Answers are (i) v =

(
3b

a(mg)2

)1/4

, and (ii) v =

(
b

a(mg)2

)1/4
]
.

8. In Zermelo’s navigation problem (proposed in 1931) a straight river has current c(y), where y is
the distance from the bank from which a boat is leaving. A boat is to cross the river at constant
speed v relative to the water, so that its position (x, y) satisfies ẋ = v cos θ + c(y), ẏ = v sin θ, where
θ is the heading angle indicated in the diagram.

T

P

x

c(y)
y

Figure 1: Zermelo’s navigation problem

(i) Suppose c(y) > v for all y and the boatman wishes to be carried downstream as little as possible
in crossing. Show that he should follow the heading

θ = cos−1(−v/c(y)).

(ii) Suppose the boatman wishes to reach a given point P on the opposite bank in minimal time.
Show that he should follow the heading

θ = cos−1
(

λ1v

1− λ1c(y)

)
,

where λ1 is a parameter chosen to make his path pass through the target point.
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