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Richard Weber
Problems Sheet 3

1. Consider again the problem from sheet 2.

At the beginning of each day a machine can be in either a working or broken state. If it is broken
then the whole day is spent repairing it, and this costs 8c in labour and lost production. If the
machine is working, then it may be run unattended or attended, at costs of 0 or ¢ respectively. In
either case there is a chance that the machine will breakdown and need repair the following day, with
probabilities p and p’ respectively, where p’ < (7/8)p.

Find the deterministic stationary Markov policy that minimizes the time average-cost.

2. A motorist has to travel an enormous distance along a newly open motorway. Regulations insist
that filling stations can be built only at sites at distances 1,2,... from his starting point. The
probability that there is a filling station at any particular point is p, independently of the situation
at other sites. On a full tank of petrol, the motorist’s car can travel a distance of exactly G units
(where G is an integer greater than 1), so that it can just reach site G when starting full at site 0.
The petrol gauge on the car is extremely accurate. Since he has to pay for the petrol anyway, the
motorist ignores its cost. Whenever he stops to fill his tank, he incurs an ‘annoyance’ cost A. If he
arrives with an empty tank at a site with no filling station, he incurs a ‘disaster’ cost D and has to
have the tank filled by a motoring organization. Prove that if the following condition holds:

(1—¢“)A < pg“'D,

then the policy: ‘On seeing a filling station, stop and fill the tank’ minimizes the expected long-run
average cost. Calculate this cost when the policy is employed.

3. Suppose that at time ¢ a machine is in state x (where x is a non-negative integer.) The machine
costs cx to run until time ¢ + 1. With probability a = 1 — b the machine is serviced and so goes
to state 0 at time ¢ + 1. If it is not serviced then the machine will be in states = or x + 1 at time
t + 1 with respective probabilities p and ¢ = 1 — p. Costs are discounted by a factor § per unit time.
Let F(z) be the expected discounted cost over an infinite future for a machine starting from state .
Show that F'(x) has the linear form ¢ + fz and determine the coefficients ¢, 6.

A maintenance engineer must divide his time between n such machines, the 7 the machine having
parameters ¢;, p; and state variable x;. Suppose he allocates his time randomly, in that he services
machine ¢ with a probability a; at a given time, independently of machines states or of the previous
history, > .a; = 1. The expected cost starting from state variables z; under this policy will be
> i Fi(z;) =Y . (¢i + 0iz;) if one neglects the coupling of machine-states introduced by the fact that
the engineer can only be in one place at once (a coupling which vanishes in continuous time.)

Consider one application of the policy improvement algorithm. Show that under the improved
policy the engineer should next service the machine whose label i maximizes ¢;(z; + ¢;)/(1 — 5b;).

4. Customers arrive at a queue as a Poisson process of rate A\. They are served at rate u = u(z),
where x denotes the current size of the queue. Suppose that cost is incurred as rate ax 4+ bu where



a, b > 0. The service rate u is the control variable. The dynamic programming equation in the infinite
horizon limit is then

v =inf {az + bu(e) + ALf(@ + 1)~ f(2)] + () Losol fz — 1) — f(@)]}

where v denotes the average rate at which cost is incurred under the optimal policy and where f(x)
denotes the extra cost associated with starting from state z. (Here 1,50 = 0if x =0, and 1,59 = 1 if
x=1,2,3,....) Give a brief justification of this equation.

Show that under the constraint that u is a fixed constant, independent of x, and greater that A
then, for some C', there is a solution of the form

a\ B az(x + 1)
u_/\—i—bu, f(m)—C+—2(u_)\).

’Y:

i.e., such that f(x) does not grow exponentially in x (which is needed to ensure that (1/t)E f(z;) — 0
as t — oo and hence, similarly as in the proof for a discrete time model, that v can be shown to be
the time-average cost.) What is the optimal constant service rate?

Suppose now that we allow u to vary with z, subject to the constraint m < u < M, where M > \.
What is the policy which results if we carry out one stage of policy improvement to the optimal
constant service policy?

5. Successive attempts are made to regulate the speed of a clock, but each deliberate change in setting
introduces also a random change whose size tends to increase with the size of the intended change.
Explicitly, let x,, be the error in the speed of the clock after n corrections. On the basis of the
observed value of x, one attempts to correct the speed by an amount u,,. The actual error in speed
then becomes

Tptl = Ty — Up + €Epg1

where, conditional on events up to the choice of u,, the variable €,,; is normally distributed with
zero mean and variance au?. If, after all attempts at regulation, one leaves the clock with an error
x, then there is a cost 2.

Suppose exactly s attempts are to be made to regulate the clock with initial error . Determine
the optimal policy and the minimal expected cost.

6. Consider the scalar-state control problem with plant equation z;,1; = x; +u; + ¢; and cost function
?:_01 u? + Dz?. Here current state is observable, the horizon point h is prescribed, and the distur-
bances ¢, are i.i.d. with zero mean and variance v. Show that the open-loop form of the optimal
control in the deterministic case v = 0 is u; = —Dx/(1 + hD) and that the closed-loop form of the
optimal control is u, = —Dx;/[1 + (h — t) D], whatever v.
Show that if the open-loop control is used in the stochastic case then a total expected cost D3 /(1+

hD) + hDwv is incurred, while use of the closed-loop control leads to a smaller expected cost of
9 h—1
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7. A one-dimensional model of the problem faced by a juggler trying to balance a light stick with a
weight on top is given by the equation

¥ = a(r) —u)

where x; is the horizontal displacement of the top of the stick from some fixed point and u is the
horizontal displacement of the bottom. (The stick is assumed to be nearly upright and stationary and
« > 0 is inversely proportional to the length.) Show that the juggler can control xz; by manipulating
u.

If he tries to balance n such weighted sticks on top of one another, the equations governing stick
k (k=2,...,n) are (provided the weights on the sticks get smaller fast enough as n increases)

.ifk = Oé(.?fk — xk—l)

Show that the n-stick system is controllable. [You may find it helpful to take the state vector as
(.j?l, Zy, iil'z, T2, ..., jj'n, l’n)—r. ]



