
OPTIMIZATION AND CONTROL
Richard Weber

Contents

DYNAMIC PROGRAMMING 1

1 Dynamic Programming 1

1.1 Control as optimization over time . 1

1.2 The principle of optimality . 1

1.3 Example: the shortest path problem . 1

1.4 The optimality equation . 2

1.5 Markov decision processes . 4

2 Examples of Dynamic Programming 5

2.1 Example: managing spending and savings 5

2.2 Example: exercising a stock option . 6

2.3 Example: secretary problem . 7

3 Dynamic Programming over the Infinite Horizon 9

3.1 Discounted costs . 9

3.2 Example: job scheduling . 9

3.3 The infinite-horizon case . 10

3.4 The optimality equation in the infinite-horizon case 11

3.5 Example: selling an asset . 12

4 Positive Programming 13

4.1 Example: possible lack of an optimal policy. 13

4.2 Characterization of the optimal policy 13

4.3 Example: optimal gambling . 14

4.4 Value iteration . 14

4.5 Example: pharmaceutical trials . 16

5 Negative Programming 17

5.1 Stationary policies . 17

5.2 Characterization of the optimal policy 17

5.3 Optimal stopping over a finite horizon 18

5.4 Example: optimal parking . 18

5.5 Optimal stopping over the infinite horizon 19

i

6 Bandit Processes and Gittins Index 21
6.1 Multi-armed bandit problem . 21
6.2 Gittins index theorem . 22
6.3 Calibration . 23
6.4 Proof of the Gittins index theorem . 23
6.5 Calculation of the Gittins index . 24

6.6 Forward induction policies . 24

7 Average-cost Programming 25
7.1 Average-cost optimization . 25
7.2 Example: admission control at a queue 26

7.3 Value iteration bounds . 27
7.4 Policy improvement . 27

LQG SYSTEMS 29

8 LQ Regulation 29
8.1 The LQ regulation model . 29
8.2 The Riccati recursion . 31
8.3 White noise disturbances . 31
8.4 LQ regulation in continuous-time . 32

9 Controllability 33
9.1 Controllability . 33
9.2 Controllability in continuous-time . 35
9.3 Example: broom balancing . 35
9.4 Example: satellite in a plane orbit . 36

10 Stabilizability and Observability 37
10.1 Linearization of nonlinear models . 37
10.2 Stabilizability . 37
10.3 Example: pendulum . 38
10.4 Infinite-horizon LQ regulation . 38

10.5 The [A,B,C] system . 39

11 Kalman Filter and Certainty Equivalence 41
11.1 Observability in continuous-time . 41
11.2 Example: observation of population . 41
11.3 Example: satellite in planar orbit . 41

11.4 Imperfect state observation with noise 42
11.5 The Kalman filter . 43
11.6 Certainty equivalence . 44

CONTINUOUS-TIME MODELS 45

ii

12 Dynamic Programming in Continuous Time 45
12.1 The optimality equation . 45
12.2 Example: LQ regulation . 46
12.3 Example: estate planning . 46
12.4 Example: harvesting . 47

13 Pontryagin’s Maximum Principle 49
13.1 Heuristic derivation . 49
13.2 Example: bringing a particle to rest in minimal time 50
13.3 Connection with Lagrangian multipliers 51
13.4 Example: use of the transversality conditions 52

14 Applications of the Maximum Principle 53
14.1 Problems with terminal conditions . 53
14.2 Example: monopolist . 54
14.3 Example: insects as optimizers . 54
14.4 Example: rocket thrust optimization . 55

15 Controlled Markov Jump Processes 57
15.1 The dynamic programming equation . 57
15.2 The case of a discrete state space . 57
15.3 Uniformization in the infinite horizon case 58
15.4 Example: admission control at a queue 59

16 Controlled Diffusion Processes 61
16.1 Diffusion processes and controlled diffusion processes 61
16.2 Example: noisy LQ regulation in continuous time 62
16.3 Example: a noisy second order system 62
16.4 Example: passage to a stopping set . 63

Schedules

The first 7 lectures are devoted to dynamic programming in discrete-time and
cover both finite and infinite-horizon problems; discounted-cost, positive, negative and
average-cost programming; the time-homogeneous Markov case; stopping problems;
value iteration and policy improvement.

The next 4 lectures are devoted to the LQG model (linear systems, quadratic
costs) and cover the important ideas of controllability and observability; the Ricatti
equation; imperfect observation, certainly equivalence and the Kalman filter.

The final 5 lectures are devoted to continuous-time models and include treatment
of Pontryagin’s maximum principle and the Hamiltonian; Markov decision processes on
a countable state space and controlled diffusion processes.

Each of the 16 lectures is designed to be a somewhat self-contained unit. Examples
and applications are important in this course, so there are worked examples in the
lectures.

iii

Examples sheets

There are three examples sheets, corresponding to the thirds of the course. There are
two or three questions for each lecture, some theoretical and some of a problem nature.
Each question is marked to indicate the lecture with which it is associated.

Lecture Notes and Handouts

There are printed lecture notes for the course and other occasional handouts. There
are sheets summarising notation and what you are expected to know for the exams.

The notes include a list of keywords and I will be drawing your attention to these as
we go along. If you have a good grasp of the meaning of each of these keywords, then
you will be well on your way to understanding the important concepts of the course.

WWW pages

Notes for the course, and other information are on the web at
http://www.statslab.cam.ac.uk/~rrw1/oc/index.html.

Books

The following books are recommended.

D. P. Bertsekas, Dynamic Programming, Prentice Hall, 1987.
D. P. Bertsekas, Dynamic Programming and Optimal Control,
Volumes I and II, Prentice Hall, 1995.
L. M. Hocking, Optimal Control: An introduction to the theory and applications, Oxford
1991.
S. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, 1983.
P. Whittle, Optimization Over Time. Volumes I and II, Wiley, 1982-83.

Ross’s book is probably the easiest to read. However, it only covers Part I of the
course. Whittle’s book is good for Part II and Hocking’s book is good for Part III. The
recent book by Bertsekas is useful for all parts. Many other books address the topics of
the course and a collection can be found in Sections 3B and 3D of the DPMMS library.
Notation differs from book to book. My notation will be closest to that of Whittle’s
books and consistent throughout. For example, I will always denote a minimal cost
function by F (·) (whereas, in the recommended books you will find F , V , φ, J and
many others symbols used for this quantity.)

iv

1 Dynamic Programming

Idea of dynamic programming and the principle of optimality. Notation for state-
structured models. Feedback, open-loop, and closed-loop controls. Markov decision
processes. The the idea that it can be useful to model things in terms of time to go.

1.1 Control as optimization over time

Optimization is a key tool in modelling. Sometimes it is important to solve a problem
optimally. Other times either a near-optimal solution is good enough, or the real
problem does not have a single criterion by which a solution can be judged. However,
even when an optimal solution is not required it can be useful to test one’s thinking
by following an optimization approach. If the ‘optimal’ solution is ridiculous it may
suggest ways in which both modelling and thinking can be refined.

Control theory is concerned with dynamic systems and their optimization over
time. It accounts for the fact that a dynamic system may evolve stochastically and
that key variables may be unknown or imperfectly observed (as we see, for instance, in
the UK economy).

This contrasts with optimization models in the IB course (for linear programming
and network flow models), where things were static and nothing was either random
or hidden. It is the features of dynamic and stochastic evolution, and imperfect state
observation, that give rise to new types of optimization problem and which require new
ways of thinking.

We could spend an entire lecture discussing the importance of control theory and
tracing its development through the windmill, steam governor, and so on. Such ‘classic
control theory’ is largely concerned with the question of stability, and there is much of
this theory which we ignore, e.g., Nyquist criterion and dynamic lags.

1.2 The principle of optimality

A key idea is that optimization over time can often be regarded as ‘optimization in
stages’. We trade off our desire to obtain the lowest possible cost at the present stage
against the implication this would have for costs at future stages. The best action
minimizes the sum of the cost incurred at the current stage and the least total cost
that can be incurred from all subsequent stages, consequent on this decision. This is
known as the Principle of Optimality.

Definition 1.1 (Principle of Optimality) From any point on an optimal trajectory,
the remaining trajectory is optimal for the problem initiated at that point.

1.3 Example: the shortest path problem

Consider the ‘stagecoach problem’ in which a traveler wishes to minimize the length
of a journey from town A to town J by first traveling to one of B, C or D and then

1

onwards to one of E, F or G then onwards to one of H or I and the finally to J. Thus
there are 4 ‘stages’. The arcs are marked with distances between towns.

A

B

C

D

E

F

G

H

I

J

1

1

2

2

3

3

3

3
3

3

4

4

4

4

4

4

5

6

6

7

Road system for stagecoach problem

Solution. Let F (X) be the minimal distance required to reach J from X. Then clearly,
F (J) = 0, F (H) = 3 and F (I) = 4.

F (F) = min[6 + F (H), 3 + F (I)] = 7 ,

and so on. Recursively, we obtain F (A) = 11 and simultaneously an optimal route, i.e.
A→D→F→I→J (although it is not unique).

The study of dynamic programming dates from Richard Bellman, who wrote the
first book on the subject (1957) and gave it its name. A very large number of problems
can be treated this way.

1.4 The optimality equation

The optimality equation in the general case. In discrete-time t takes integer
values, say t = 0, 1, Suppose ut is a control variable whose value is to be chosen at
time t. Let Ut−1 = (u0, . . . , ut−1) denote the partial sequence of controls (or decisions)
taken over the first t stages. Suppose the cost up to the time horizon h is given by

C = G(Uh−1) = G(u0, u1, . . . , uh−1) .

Then the principle of optimality is expressed in the following theorem.

Theorem 1.1 (The principle of optimality) Define the functions

G(Ut−1, t) = inf
ut,ut+1,...,uh−1

G(Uh−1) .

Then these obey the recursion

G(Ut−1, t) = inf
ut

G(Ut, t+ 1) t < h ,

with terminal evaluation G(Uh−1, h) = G(Uh−1).

2

The proof is immediate from the definition of G(Ut−1, t), i.e.

G(Ut−1, t) = inf
ut

inf
ut+1,...,uh−1

G(u0, . . . , ut−1, ut , ut+1, . . . , uh−1) .

The state structured case. The control variable ut is chosen on the basis of knowing
Ut−1 = (u0, . . . , ut−1), (which determines everything else). But a more economical
representation of the past history is often sufficient. For example, we may not need to
know the entire path that has been followed up to time t, but only the place to which
it has taken us. The idea of a state variable x ∈ R

d is that its value at t, denoted xt,
is calculable from known quantities and obeys a plant equation (or law of motion)

xt+1 = a(xt, ut, t) .

Suppose we wish to minimize a separable cost function of the form

C =
h−1∑

t=0

c(xt, ut, t) +Ch(xh) , (1.1)

by choice of controls {u0, . . . , uh−1}. Define the cost from time t onwards as,

Ct =

h−1∑

τ=t

c(xτ , uτ , τ) +Ch(xh) , (1.2)

and the minimal cost from time t onwards as an optimization over {ut, . . . , uh−1}
conditional on xt = x,

F (x, t) = inf
ut,...,uh−1

Ct .

Here F (x, t) is the minimal future cost from time t onward, given that the state is x at
time t. Then by an inductive proof, one can show as in Theorem 1.1 that

F (x, t) = inf
u
[c(x, u, t) + F (a(x, u, t), t+ 1)] , t < h , (1.3)

with terminal condition F (x, h) = Ch(x). Here x is a generic value of xt. The mini-
mizing u in (1.3) is the optimal control u(x, t) and values of x0, . . . , xt−1 are irrelevant.
The optimality equation (1.3) is also called the dynamic programming equation
(DP) or Bellman equation.

The DP equation defines an optimal control problem in what is called feedback or
closed loop form, with ut = u(xt, t). This is in contrast to the open loop formulation
in which {u0, . . . , uh−1} are to be determined all at once at time 0. A policy (or
strategy) is a rule for choosing the value of the control variable under all possible
circumstances as a function of the perceived circumstances. To summarise:

(i) The optimal ut is a function only of xt and t, i.e. ut = u(xt, t).

(ii) The DP equation expresses the optimal ut in closed loop form. It is optimal
whatever the past control policy may have been.

3

(iii) The DP equation is a backward recursion in time (from which we get the optimum
at h− 1, then h− 2 and so on.) The later policy is decided first.

‘Life must be lived forward and understood backwards.’ (Kierkegaard)

1.5 Markov decision processes

Consider now stochastic evolution. Let Xt = (x0, . . . , xt) and Ut = (u0, . . . , ut) denote
the x and u histories at time t. As above, state structure is characterised by the fact
that the evolution of the process is described by a state variable x, having value xt at
time t, with the following properties.

(a) Markov dynamics: (i.e. the stochastic version of the plant equation.)

P (xt+1|Xt, Ut) = P (xt+1|xt, ut) .

(b) Separable (or decomposible) cost function, (i.e. cost given by (1.1)).

These assumptions define state structure. For the moment we also require the following:

(c) Perfect state observation: The current value of the state is observable. That is, xt

is known when choosing ut. So, letting Wt denote the observed history at time t,
we assume Wt = (Xt, Ut−1). Note that C is determined by Wh, so we might write
C = C(Wh).

These assumptions define what is known as a discrete-time Markov decision pro-
cess (MDP). As above, the cost from time t onwards is given by (1.2). Denote the
minimal expected cost from time t onwards by

F (Wt) = inf
π

Eπ[Ct|Wt] ,

where π denotes a policy, i.e. a rule for choosing the controls u0, . . . , uh−1. We can
assert the following theorem.

Theorem 1.2 F (Wt) is a function of xt and t alone, say F (xt, t). It obeys the opti-
mality equation

F (xt, t) = inf
ut

{c(xt, ut, t) + E[F (xt+1, t+ 1)|xt, ut]} , t < h , (1.4)

with terminal condition
F (xh, h) = Ch(xh) .

Moreover, a minimizing value of ut in (1.4) (which is also only a function xt and t) is
optimal.

Proof. The value of F (Wh) is Ch(xh), so the asserted reduction of F is valid at time
h. Assume it is valid at time t+ 1. The DP equation is then

F (Wt) = inf
ut

{c(xt, ut, t) + E[F (xt+1, t+ 1)|Xt, Ut]} . (1.5)

But, by assumption (a), the right-hand side of (1.5) reduces to the right-hand member
of (1.4). All the assertions then follow.

4

2 Examples of Dynamic Programming

Illustrations of dynamic programming and some useful ‘tricks’.

2.1 Example: managing spending and savings

An investor receives annual income from a building society of xt pounds in year t. He
consumes ut and adds xt − ut to his capital, 0 ≤ ut ≤ xt. The capital is invested at
interest rate θ × 100%, and so his income in year t+ 1 increases to

xt+1 = a(xt, ut) = xt + θ(xt − ut). (2.1)

He desires to maximize his total consumption over h years,

C =

h−1∑

t=0

c(xt, ut, t) +Ch(xh) =

h−1∑

t=0

ut

The plant equation (2.1) specifies a Markov decision process (MDP). When
we add to this the aim of maximizing the performance measure C we have what is
called a Markov decision problem. For both we use the abbreviation MDP. In the
notation we have been using, c(xt, ut, t) = ut, Ch(xh) = 0. This is termed a time-
homogeneous model because neither costs nor dynamics depend on t.

Solution. It is easiest to work in terms of ‘time to go’, s = h− t. Let Fs(x) denote
the maximal reward obtainable, starting in state x when there is time s to go. The
dynamic programming equation is

Fs(x) = max
0≤u≤x

[u+ Fs−1(x+ θ(x− u))] ,

where F0(x) = 0, (since no more can be obtained once time h is reached.) Here, x and
u are generic values for xs and us.

We can substitute backwards and soon guess the form of the solution. First,

F1(x) = max
0≤u≤x

[u+ F0(u + θ(x− u))] = max
0≤u≤x

[u+ 0] = x .

Next,
F2(x) = max

0≤u≤x
[u+ F1(x+ θ(x− u))] = max

0≤u≤x
[u+ x+ θ(x− u)] .

Since u+ x+ θ(x− u) linear in u, its maximum occurs at u = 0 or u = x, and so

F2(x) = max[(1 + θ)x, 2x] = max[1 + θ, 2]x = ρ2x .

This motivates the guess Fs−1(x) = ρs−1x. Trying this, we find

Fs(x) = max
0≤u≤x

[u+ ρs−1(x+ θ(x − u))] = max[(1 + θ)ρs−1, 1 + ρs−1]x = ρsx .

5

Thus our guess is verified and Fs(x) = ρsx, where ρs obeys the recursion implicit in
the above, and i.e. ρs = ρs−1 +max[θρs−1, 1]. This gives

ρs =

{
s s ≤ s∗

(1 + θ)s−s∗s∗ s ≥ s∗
,

where s∗ is the least integer such that s∗ ≥ 1/θ, i.e. s∗ = ⌈1/θ⌉. The optimal strategy
is to invest the whole of the income in years 0, . . . , h− s∗ − 1, (to build up capital) and
then consume the whole of the income in years h− s∗, . . . , h− 1.

There are several things worth learning from this example. (i) It is often useful
to frame things in terms of time to go, s. (ii) Although the form of the dynamic
programming equation can sometimes look messy, try working backwards from F0(x)
(which is known). Often a pattern will emerge from which you can piece together a
solution. (iii) When the dynamics are linear, the optimal control lies at an extreme
point of the set of feasible controls. This form of policy, which either consumes nothing
or consumes everything, is known as bang-bang control.

2.2 Example: exercising a stock option

The owner of a call option has the option to buy a share at fixed ‘striking price’ p.
The option must be exercised by day h. If she exercises the option on day t and then
immediately sells the share at the current price xt, she can make a profit of xt − p.
Suppose the price sequence obeys the equation xt+1 = xt + ǫt, where the ǫt are i.i.d.
random variables for which E|ǫ| < ∞. The aim is to exercise the option optimally.

Let Fs(x) be the value function (maximal expected profit) when the share price is
x and there are s days to go. Show that (i) Fs(x) is non-decreasing in s, (ii) Fs(x)− x
is non-increasing in x and (iii) Fs(x) is continuous in x. Deduce that the optimal policy
can be characterised as follows.

There exists a non-decreasing sequence {as} such that an optimal policy is to exercise
the option the first time that x ≥ as, where x is the current price and s is the number
of days to go before expiry of the option.

Solution. The state variable at time t is, strictly speaking, xt plus a variable which
indicates whether the option has been exercised or not. However, it is only the latter
case which is of interest, so x is the effective state variable. Since dynamic programming
makes its calculations backwards, from the termination point, it is often advantageous
to write things in terms of the time to go, s = h − t. So if we let Fs(x) be the value
function (maximal expected profit) with s days to go then

F0(x) = max{x− p, 0},

and so the dynamic programming equation is

Fs(x) = max{x− p,E[Fs−1(x+ ǫ)]}, s = 1, 2, . . .

Note that the expectation operator comes outside, not inside, Fs−1(·).

6

One can use induction to show (i), (ii) and (iii). For example, (i) is obvious, since
increasing s means we have more time over which to exercise the option. However, for
a formal proof

F1(x) = max{x− p,E[F0(x+ ǫ)]} ≥ max{x− p, 0} = F0(x).

Now suppose, inductively, that Fs−1 ≥ Fs−2. Then

Fs(x) = max{x− p,E[Fs−1(x+ ǫ)]} ≥ max{x− p,E[Fs−2(x+ ǫ)]} = Fs−1(x),

whence Fs is non-decreasing in s. Similarly, an inductive proof of (ii) follows from

Fs(x)− x
︸ ︷︷ ︸

= max{−p,E[Fs−1(x+ ǫ)− (x + ǫ)
︸ ︷︷ ︸

] + E(ǫ)},

since the left hand underbraced term inherits the non-increasing character of the right
hand underbraced term. Thus the optimal policy can be characterized as stated. For
from (ii), (iii) and the fact that Fs(x) ≥ x−p it follows that there exists an as such that
Fs(x) is greater that x− p if x < as and equals x− p if x ≥ as. It follows from (i) that
as is non-decreasing in s. The constant as is the smallest x for which Fs(x) = x− p.

2.3 Example: secretary problem

We are to interview h candidates for a job. At the end of each interview we must either
hire or reject the candidate we have just seen, and may not change this decision later.
Candidates are seen in random order and can be ranked against those seen previously.
The aim is to maximize the probability of choosing the candidate of greatest rank.

Solution. Let Wt be the history of observations up to time t, i.e. after we have
interviewed the t th candidate. All that matters are the value of t and whether the t th
candidate is better than all her predecessors: let xt = 1 if this is true and xt = 0 if it
is not. In the case xt = 1, the probability she is the best of all h candidates is

P (best of h|best of first t) = P (best of h)

P (best of first t)
=

1/h

1/t
=

t

h
.

Now the fact that the tth candidate is the best of the t candidates seen so far places
no restriction on the relative ranks of the first t− 1 candidates; thus xt = 1 and Wt−1

are statistically independent and we have

P (xt = 1|Wt−1) =
P (Wt−1|xt = 1)

P (Wt−1)
P (xt = 1) = P (xt = 1) =

1

t
.

Let F (t − 1) be the probability that under an optimal policy we select the best
candidate, given that we have passed over the first t − 1 candidates. Dynamic
programming gives

F (t− 1) =
t− 1

t
F (t) +

1

t
max

(
t

h
, F (t)

)

= max

(
t− 1

t
F (t) +

1

h
, F (t)

)

7

The first term deals with what happens when the tth candidate is not the best so far;
we should certainly pass over her. The second term deals with what happens when it
is. In that case we have a choice: accept that candidate (which will turn out to be best
with probability t/h, or pass over that candidate).

These imply F (t − 1) ≥ F (t) for all t ≤ h. Therefore, since t/h and F (t) are
respectively increasing and non-increasing in t, it must be that for small t we have
F (t) > t/h and for large t we have F (t) ≤ t/h. Let t0 be the smallest t such that
F (t) ≤ t/h. Then

F (t− 1) =







F (t0) , t < t0 ,

t− 1

t
F (t) +

1

h
, t ≥ t0 .

Solving the second of these backwards from the point t = h, F (h) = 0, we obtain

F (t− 1)

t− 1
=

1

h(t− 1)
+

F (t)

t
= · · · = 1

h(t− 1)
+

1

ht
+ · · ·+ 1

h(h− 1)
,

whence

F (t− 1) =
t− 1

h

h−1∑

τ=t−1

1

τ
, t ≥ t0 .

Since we require F (t0) ≤ t0/h, it must be that t0 is the smallest integer satisfying

h−1∑

τ=t0

1

τ
≤ 1 .

For large h the sum on the left above is about log(h/t0), so log(h/t0) ≈ 1 and
we find t0 ≈ h/e. The optimal policy is to interview ≈ h/e candidates, but without
selecting any of these, and then select the first candidate thereafter that is the best of
all those seen so far. The probability of success is F (t0) ∼ t0/h ∼ 1/e = 0.3679. It is
surprising that the probability of success is so large for arbitrarily large h.

There are a couple things to learn from this example. (i) It is often useful to try
to establish the fact that terms over which a maximum is being taken are monotone
in opposite directions, as we did with t/h and F (t). (ii) A typical approach is to first
determine the form of the solution, then find the optimal cost (reward) function by
backward recursion from the terminal point, where its value is known.

8

3 Dynamic Programming over the Infinite Horizon

Cases of discounted, negative and positive dynamic programming. Validity of the
optimality equation for an infinite horizon problem.

3.1 Discounted costs

For a discount factor, β ∈ (0, 1], the discounted-cost criterion is defined as

C =

h−1∑

t=0

βtc(xt, ut, t) + βhCh(xh) . (3.1)

This simplifies things mathematically, particularly when we want to consider an
infinite horizon. If costs are uniformly bounded, say |c(x, u)| < B, and discounting is
strict (β < 1) then the infinite horizon cost is bounded by B/(1 − β). In economic
language, if there is an interest rate of r% per unit time, then a unit amount of money
at time t is worth ρ = 1 + r/100 at time t + 1. Equivalently, a unit amount at time
t + 1 has present value β = 1/ρ. The function, F (x, t), which expresses the minimal
present value at time t of expected-cost from time t up to h is

F (x, t) = inf
ut,...,uh−1

E

[
h−1∑

τ=t

βτ−tc(xτ , uτ , τ) + βh−tCh(xh)

∣
∣
∣
∣
∣
xt = x

]

. (3.2)

The DP equation is now

F (x, t) = inf
u

[c(x, u, t) + βEF (a(x, u, t), t + 1)] , t < h , (3.3)

where F (x, h) = Ch(x).

3.2 Example: job scheduling

A collection of n jobs is to be processed in arbitrary order by a single machine. Job i
has processing time pi and when it completes a reward ri is obtained. Find the order
of processing that maximizes the sum of the discounted rewards.

Solution. Here we take ‘time-to-go k’ as the point at which the n− k th job has just
been completed and there remains a set of k uncompleted jobs, say Sk. The dynamic
programming equation is

Fk(Sk) = max
i∈Sk

[riβ
pi + βpiFk−1(Sk − {i})] .

Obviously F0(∅) = 0. Applying the method of dynamic programming we first find
F1({i}) = riβ

pi . Then, working backwards, we find

F2({i, j}) = max[riβ
pi + βpi+pjrj , rjβ

pj + βpj+piri] .

There will be 2n equations to evaluate, but with perseverance we can determine
Fn({1, 2, . . . , n}). However, there is a simpler way.

9

An interchange argument. Suppose that jobs are scheduled in the order
i1, . . . , ik, i, j, ik+3, . . . , in. Compare the reward of this schedule to one in which the
order of jobs i and j are reversed: i1, . . . , ik, j, i, ik+3, . . . , in. The rewards under the
two schedules are respectively

R1 + βT+piri + βT+pi+pjrj +R2 and R1 + βT+pj rj + βT+pj+piri +R2 ,

where T = pi1 + · · ·+ pik , and R1 and R2 are respectively the sum of the rewards due
to the jobs coming before and after jobs i, j; these are the same under both schedules.
The reward of the first schedule is greater if riβ

pi/(1− βpi) > rjβ
pj/(1− βpj). Hence

a schedule can be optimal only if the jobs are taken in decreasing order of the indices
riβ

pi/(1− βpi). This type of reasoning is known as an interchange argument.
There are a couple points to note. (i) An interchange argument can be useful

for solving a decision problem about a system that evolves in stages. Although such
problems can be solved by dynamic programming, an interchange argument – when it
works – is usually easier. (ii) The decision points need not be equally spaced in time.
Here they are the points at which a number of jobs have been completed.

3.3 The infinite-horizon case

In the finite-horizon case the value function is obtained simply from (3.3) by the back-
ward recursion from the terminal point. However, when the horizon is infinite there is
no terminal point and so the validity of the optimality equation is no longer obvious.

Let us consider the time-homogeneous Markov case, in which costs and dynamics
do not depend on t, i.e. c(x, u, t) = c(x, u). Suppose also that there is no terminal cost,
i.e. Ch(x) = 0. Define the s-horizon cost under policy π as

Fs(π, x) = Eπ

[
s−1∑

t=0

βtc(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

,

where Eπ denotes expectation over the path of the process under policy π. If we take
the infimum with respect to π we have the infimal s-horizon cost

Fs(x) = inf
π

Fs(π, x).

Clearly, this always exists and satisfies the optimality equation

Fs(x) = inf
u

{c(x, u) + βE[Fs−1(x1)|x0 = x, u0 = u]} , (3.4)

with terminal condition F0(x) = 0.
The infinite-horizon cost under policy π is also quite naturally defined as

F (π, x) = lim
s→∞

Fs(π, x). (3.5)

This limit need not exist, but it will do so under any of the following scenarios.

10

D (discounted programming): 0 < β < 1, and |c(x, u)| < B for all x, u.

N (negative programming): 0 < β ≤ 1 and c(x, u) ≥ 0 for all x, u.

P (positive programming): 0 < β ≤ 1 and c(x, u) ≤ 0 for all x, u.

Notice that the names ‘negative’ and ‘positive’ appear to be the wrong way around
with respect to the sign of c(x, u). However, the names make sense if we think of
equivalent problems of maximizing rewards. Maximizing positive rewards (P) is the
same thing as minimizing negative costs. Maximizing negative rewards (N) is the same
thing as minimizing positive costs. In cases N and P we usually take β = 1.

The existence of the limit (possibly infinite) in (3.5) is assured in cases N and P
by monotone convergence, and in case D because the total cost occurring after the sth
step is bounded by βsB/(1− β).

3.4 The optimality equation in the infinite-horizon case

The infimal infinite-horizon cost is defined as

F (x) = inf
π

F (π, x) = inf
π

lim
s→∞

Fs(π, x) . (3.6)

The following theorem justifies our writing an optimality equation.

Theorem 3.1 Suppose D, N, or P holds. Then F (x) satisfies the optimality equation

F (x) = inf
u
{c(x, u) + βE[F (x1)|x0 = x, u0 = u)]} . (3.7)

Proof. We first prove that ‘≥’ holds in (3.7). Suppose π is a policy, which chooses
u0 = u when x0 = x. Then

Fs(π, x) = c(x, u) + βE[Fs−1(π, x1)|x0 = x, u0 = u] . (3.8)

Either D, N or P is sufficient to allow us to takes limits on both sides of (3.8) and
interchange the order of limit and expectation. In cases N and P this is because of
monotone convergence. Infinity is allowed as a possible limiting value. We obtain

F (π, x) = c(x, u) + βE[F (π, x1)|x0 = x, u0 = u]

≥ c(x, u) + βE[F (x1)|x0 = x, u0 = u]

≥ inf
u
{c(x, u) + βE[F (x1)|x0 = x, u0 = u]} .

Minimizing the left hand side over π gives ‘≥’.

To prove ‘≤’, fix x and consider a policy π that having chosen u0 and reached state
x1 then follows a policy π1 which is suboptimal by less than ǫ from that point, i.e.
F (π1, x1) ≤ F (x1)+ ǫ. Note that such a policy must exist, by definition of F , although
π1 will depend on x1. We have

11

F (x) ≤ F (π, x)

= c(x, u0) + βE[F (π1, x1)|x0 = x, u0]

≤ c(x, u0) + βE[F (x1) + ǫ|x0 = x, u0]

≤ c(x, u0) + βE[F (x1)|x0 = x, u0] + βǫ .

Minimizing the right hand side over u0 and recalling ǫ is arbitrary gives ‘≤’.

3.5 Example: selling an asset

A spectulator owns a rare collection of tulip bulbs and each day has one opportunity to
sell it, which he may either accept or reject. The potential sale prices are independently
and identically distributed with probability density function g(x), x ≥ 0. Each day
there is a probability 1−β that the market for tulip bulbs will collapse, making his bulb
collection completely worthless. Find the policy that maximizes his expected return
and express it as the unique root of an equation. Show that if β > 1/2, g(x) = 2/x3,
x ≥ 1, then he should sell the first time the sale price is at least

√

β/(1− β).

Solution. There are only two states, depending on whether he has sold the collection
or not. Let these be 0 and 1 respectively. The optimality equation is

F (1) =

∫ ∞

y=0

max[y, βF (1)] g(y) dy

= βF (1) +

∫ ∞

y=0

max[y − βF (1), 0] g(y) dy

= βF (1) +

∫ ∞

y=βF (1)

[y − βF (1)] g(y) dy

Hence

(1− β)F (1) =

∫ ∞

y=βF (1)

[y − βF (1)] g(y) dy . (3.9)

That this equation has a unique root, F (1) = F ∗, follows from the fact that left and
right hand sides are increasing and decreasing in F (1) respectively. Thus he should sell
when he can get at least βF ∗. His maximal reward is F ∗.

Consider the case g(y) = 2/y3, y ≥ 1. The left hand side of (3.9) is less that the
right hand side at F (1) = 1 provided β > 1/2. In this case the root is greater than 1
and we compute it as

(1− β)F (1) = 2/βF (1)− βF (1)/[βF (1)]2 ,

and thus F ∗ = 1/
√

β(1− β) and βF ∗ =
√

β/(1− β).
If β ≤ 1/2 he should sell at any price.
Notice that discounting arises in this problem because at each stage there is a

probability 1 − β that a ‘catastrophe’ will occur that brings things to a sudden end.
This characterization of a manner in which discounting can arise is often quite useful.

12

4 Positive Programming

Special theory for maximizing positive rewards, (noting that there may be no optimal
policy but that if a policy has a value function that satisfies the optimality equation
then it is optimal). Value iteration.

4.1 Example: possible lack of an optimal policy.

Positive programming concerns minimizing non-positive costs, c(x, u) ≤ 0, or maximiz-
ing non-negative rewards, r(x, u) ≥ 0. The following example shows that there may be
no optimal policy.

Suppose the possible states are the non-negative integers and in state x we have a
choice of either moving to state x + 1 and receiving no reward, or moving to state 0,
obtaining reward 1 − 1/i, and then remaining in state 0 thereafter and obtaining no
further reward. The optimality equations is

F (x) = max{1− 1/x, F (x+ 1)} x > 0 .

Clearly F (x) = 1, x > 0, but the policy that chooses the maximizing action in the
optimality equation always moves on to state x+1 and hence has zero reward. Clearly,
there is no policy that actually achieves a reward of 1.

4.2 Characterization of the optimal policy

The following theorem provides a necessary and sufficient condition for a policy to be
optimal: namely, its value function must satisfy the optimality equation. This theorem
also holds for the case of strict discounting and bounded costs.

Theorem 4.1 Suppose D or P holds and π is a policy whose value function F (π, x)
satisfies the optimality equation

F (π, x) = sup
u
{r(x, u) + βE[F (π, x1)|x0 = x, u0 = u]} .

Then π is optimal.

Proof. Let π′ be any policy and suppose it takes ut(x) = ft(x). Since F (π, x) satisfies
the optimality equation,

F (π, x) ≥ r(x, f0(x)) + βEπ′ [F (π, x1)|x0 = x, u0 = f0(x)] .

By repeated substitution of this into itself, we find

F (π, x) ≥ Eπ′

[
s−1∑

t=0

βtr(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

+ βsEπ′ [F (π, xs)|x0 = x] . (4.1)

In case P we can drop the final term on the right hand side of (4.1) (because it is
non-negative) and then let s → ∞; in case D we can let s → ∞ directly, observing that
this term tends to zero. Either way, we have F (π, x) ≥ F (π′, x).

13

4.3 Example: optimal gambling

A gambler has i pounds and wants to increase this to N . At each stage she can bet any
fraction of her capital, say j ≤ i. Either she wins, with probability p, and now has i+ j
pounds, or she loses, with probability q = 1 − p, and has i − j pounds. Let the state
space be {0, 1, . . . , N}. The game stops upon reaching state 0 or N . The only non-zero
reward is 1, upon reaching state N . Suppose p ≥ 1/2. Prove that the timid strategy,
of always betting only 1 pound, maximizes the probability of the gambler attaining N
pounds.

Solution. The optimality equation is

F (i) = max
j,j≤i

{pF (i+ j) + qF (i− j)} .

To show that the timid strategy is optimal we need to find its value function, say
G(i), and show that it is a solution to the optimality equation. We have G(i) =
pG(i+ 1) + qG(i− 1), with G(0) = 0, G(N) = 1. This recurrence gives

G(i) =







1− (q/p)i

1− (q/p)N
p > 1/2,

i

N
p = 1/2.

If p = 1/2, then G(i) = i/N clearly satisfies the optimality equation. If p > 1/2 we
simply have to verify that

G(i) =
1− (q/p)i

1− (q/p)N
= max

j:j≤i

{

p

[
1− (q/p)i+j

1− (q/p)N

]

+ q

[
1− (q/p)i−j

1− (q/p)N

] }

.

It is a simple exercise to show that j = 1 maximizes the right hand side.

4.4 Value iteration

The infimal cost function F can be approximated by successive approximation or
value iteration. This is important and practical method of computing F . Let us
define

F∞(x) = lim
s→∞

Fs(x) = lim
s→∞

inf
π

Fs(π, x) . (4.2)

This exists (by monotone convergence under N or P, or by the fact that under D the
cost incurred after time s is vanishingly small.)

Notice that (4.2) reverses the order of lims→∞ and infπ in (3.6). The following
theorem states that we can interchange the order of these operations and that therefore
Fs(x) → F (x). However, in case N we need an additional assumption:

F (finite actions): There are only finitely many possible values of u in each state.

Theorem 4.2 Suppose that D or P holds, or N and F hold. Then F∞(x) = F (x).

14

Proof. First we prove ‘≤’. Given any π̄,

F∞(x) = lim
s→∞

Fs(x) = lim
s→∞

inf
π

Fs(π, x) ≤ lim
s→∞

Fs(π̄, x) = F (π̄, x).

Taking the infimum over π̄ gives F∞(x) ≤ F (x).
Now we prove ‘≥’. In the positive case, c(x, u) ≤ 0, so Fs(x) ≥ F (x). Now let

s → ∞. In the discounted case, with |c(x, u)| < B, imagine subtracting B > 0 from
every cost. This reduces the infinite-horizon cost under any policy by exactly B/(1−β)
and F (x) and F∞(x) also decrease by this amount. All costs are now negative, so the
result we have just proved applies. [Alternatively, note that

Fs(x)− βsB/(1− β) ≤ F (x) ≤ Fs(x) + βsB/(1− β)

(can you see why?) and hence lims→∞ Fs(x) = F (x).]
In the negative case,

F∞(x) = lim
s→∞

min
u

{c(x, u) + E[Fs−1(x1)|x0 = x, u0 = u]}

= min
u

{c(x, u) + lim
s→∞

E[Fs−1(x1)|x0 = x, u0 = u]}

= min
u

{c(x, u) + E[F∞(x1)|x0 = x, u0 = u]}, (4.3)

where the first equality follows because the minimum is over a finite number of terms
and the second equality follows by Lebesgue monotone convergence (since Fs(x) in-
creases in s). Let π be the policy that chooses the minimizing action on the right hand
side of (4.3). This implies, by substitution of (4.3) into itself, and using the fact that
N implies F∞ ≥ 0,

F∞(x) = Eπ

[
s−1∑

t=0

c(xt, ut) + F∞(xs)

∣
∣
∣
∣
∣
x0 = x

]

≥ Eπ

[
s−1∑

t=0

c(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

.

Letting s → ∞ gives F∞(x) ≥ F (π, x) ≥ F (x).

15

4.5 Example: pharmaceutical trials

A doctor has two drugs available to treat a disease. One is well-established drug and is
known to work for a given patient with probability p, independently of its success for
other patients. The new drug is untested and has an unknown probability of success θ,
which the doctor believes to be uniformly distributed over [0, 1]. He treats one patient
per day and must choose which drug to use. Suppose he has observed s successes and f
failures with the new drug. Let F (s, f) be the maximal expected-discounted number of
future patients who are successfully treated if he chooses between the drugs optimally
from this point onwards. For example, if he uses only the established drug, the expected-
discounted number of patients successfully treated is p + βp + β2p + · · · = p/(1 − β).
The posterior distribution of θ is

f(θ|s, f) = (s+ f + 1)!

s!f !
θs(1− θ)f , 0 ≤ θ ≤ 1,

and the posterior mean is θ̄(s, f) = (s+ 1)/(s+ f + 2). The optimality equation is

F (s, f) = max

[
p

1− β
,

s+ 1

s+ f + 2
(1 + βF (s+ 1, f)) +

f + 1

s+ f + 2
βF (s, f + 1)

]

.

It is not possible to give a nice expression for F , but we can find an approximate
numerical solution. If s + f is very large, say 300, then θ̄(s, f) = (s + 1)/(s + f + 2)
is a good approximation to θ. Thus we can take F (s, f) ≈ (1 − β)−1 max[p, θ̄(s, f)],
s+ f = 300 and work backwards. For β = 0.95, one obtains the following table.

s 0 1 2 3 4 5f
0 .7614 .8381 .8736 .8948 .9092 .9197
1 .5601 .6810 .7443 .7845 .8128 .8340
2 .4334 .5621 .6392 .6903 .7281 .7568
3 .3477 .4753 .5556 .6133 .6563 .6899
4 .2877 .4094 .4898 .5493 .5957 .6326

These numbers are the greatest values of p for which it is worth continuing with
at least one more trial of the new drug. For example, with s = 3, f = 3 it is worth
continuing with the new drug when p = 0.6 < 0.6133. At this point the probability
that the new drug will successfully treat the next patient is 0.5 and so the doctor
should actually prescribe the drug that is least likely to cure! This example shows the
difference between a myopic policy, which aims to maximize immediate reward, and
an optimal policy, which forgets immediate reward in order to gain information and
possibly greater rewards later on. Notice that it is worth using the new drug at least
once if p < 0.7614, even though at its first use the new drug will only be successful
with probability 0.5.

16

5 Negative Programming

The special theory of minimizing positive costs, (noting that the action that extremizes
the right hand side of the optimality equation gives an optimal policy). Stopping
problems and their solution.

5.1 Stationary policies

A Markov policy is a policy that specifies the control at time t to be simply a function
of the state and time. In the proof of Theorem 4.1 we used ut = ft(xt) to specify the
control at time t. This is a convenient notation for a Markov policy, and we can write
π = (f0, f1, . . .) to denote such a policy. If in addition the policy does not depend on
time and is non-randomzing in its choice of action then it is said to be a stationary
deterministic Markov policy, and we write π = (f, f, . . .) = f∞.

5.2 Characterization of the optimal policy

Negative programming is about minimizing non-negative costs, c(x, u) ≥ 0. The fol-
lowing theorem gives a necessary and sufficient condition for a stationary policy to be
optimal: namely, it must choose the optimal u on the right hand side of the optimality
equation. Note that in the statement of this theorem we are requiring that the infimum
over u is attained as a minimum over u.

Theorem 5.1 Suppose D or N holds. Suppose π = f∞ is the stationary Markov policy
such that

c(x, f(x)) + βE[F (x1)|x0 = x, u0 = f(x)]

= min
u

[c(x, u) + βE[F (x1)|x0 = x, u0 = u] .

Then F (π, x) = F (x), and π is optimal.

Proof. Suppose this policy is π = f∞. Then by substituting the optimality equation
into itself and using the fact that π specifies the minimizing control at each stage,

F (x) = Eπ

[
s−1∑

t=0

βtc(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

+ βsEπ [F (xs)|x0 = x] . (5.1)

In case N we can drop the final term on the right hand side of (5.1) (because it is
non-negative) and then let s → ∞; in case D we can let s → ∞ directly, observing that
this term tends to zero. Either way, we have F (x) ≥ F (π, x).

A corollary is that if assumption F holds then an optimal policy exists. Neither
Theorem 5.1 or this corollary are true for positive programming (c.f., the example in
Section 4.1).

17

5.3 Optimal stopping over a finite horizon

One way that the total-expected cost can be finite is if it is possible to enter a state
from which no further costs are incurred. Suppose u has just two possible values: u = 0
(stop), and u = 1 (continue). Suppose there is a termination state, say 0, that is entered
upon choosing the stopping action. Once this state is entered the system stays in that
state and no further cost is incurred thereafter. We let c(x, 0) = k(x) (stopping cost)
and c(x, 1) = c(x) (continuation cost).

Suppose that Fs(x) denotes the minimum total cost when we are constrained to stop
within the next s steps. This gives a finite-horizon problem with dynamic programming
equation

Fs(x) = min{k(x), c(x) + E[Fs−1(x1)|x0 = x, u0 = 1]} , (5.2)

with F0(x) = k(x), c(0) = 0.

Consider the set of states in which it is at least as good to stop now as to continue
one more step and then stop:

S = {x : k(x) ≤ c(x) + E[k(x1)|x0 = x, u0 = 1)]} .

Clearly, it cannot be optimal to stop if x 6∈ S, since in that case it would be strictly
better to continue one more step and then stop. The following theorem characterises
all finite-horizon optimal policies.

Theorem 5.2 Suppose S is closed (so that once the state enters S it remains in S.)
Then an optimal policy for all finite horizons is: stop if and only if x ∈ S.

Proof. The proof is by induction. If the horizon is s = 1, then obviously it is optimal
to stop only if x ∈ S. Suppose the theorem is true for a horizon of s− 1. As above, if
x 6∈ S then it is better to continue for more one step and stop rather than stop in state
x. If x ∈ S, then the fact that S is closed implies x1 ∈ S and so Fs−1(x1) = k(x1). But
then (5.2) gives Fs(x) = k(x). So we should stop if s ∈ S.

The optimal policy is known as a one-step look-ahead rule (OSLA).

5.4 Example: optimal parking

A driver is looking for a parking space on the way to his destination. Each parking
space is free with probability p independently of whether other parking spaces are free
or not. The driver cannot observe whether a parking space is free until he reaches it.
If he parks s spaces from the destination, he incurs cost s, s = 0, 1, If he passes
the destination without having parked the cost is D. Show that an optimal policy is
to park in the first free space that is no further than s∗ from the destination, where s∗

is the greatest integer s such that (Dp+ 1)qs ≥ 1.

Solution. When the driver is s spaces from the destination it only matters whether

18

the space is available (x = 1) or full (x = 0). The optimality equation gives

Fs(0) = qFs−1(0) + pFs−1(1),

Fs(1) = min

{
s, (take available space)
qFs−1(0) + pFs−1(1), (ignore available space)

where F0(0) = D, F0(1) = 0.
Suppose the driver adopts a policy of taking the first free space that is s or closer.

Let the cost under this policy be k(s), where

k(s) = ps+ qk(s− 1) ,

with k(0) = qD. The general solution is of the form k(s) = −q/p+ s + cqs. So after
substituting and using the boundary condition at s = 0, we have

k(s) = − q

p
+ s+

(

D +
1

p

)

qs+1, s = 0, 1,

It is better to stop now (at a distance s from the destination) than to go on and take
the first available space if s is in the stopping set

S = {s : s ≤ k(s− 1)} = {s : (Dp+ 1)qs ≥ 1} .

This set is closed (since s decreases) and so by Theorem 5.2 this stopping set describes
the optimal policy.

If the driver parks in the first available space past his destination and walk backs,
then D = 1 + qD, so D = 1/p and s∗ is the greatest integer such that 2qs ≥ 1.

5.5 Optimal stopping over the infinite horizon

Let us now consider the stopping problem over the infinite-horizon. As above, let Fs(x)
be the infimal cost given that we are required to stop by the sth step. Let F (x) be the
infimal cost when all that is required is that we stop eventually. Since less cost can be
incurred if we are allowed more time in which to stop, we have

Fs(x) ≥ Fs+1(x) ≥ F (x) .

Thus by monotone convergence Fs(x) tends to a limit, say F∞(x), and F∞(x) ≥ F (x).

Example: we can have F∞ > F

Consider the problem of stopping a symmetric random walk on the integers, where
c(x) = 0, k(x) = exp(−x). The policy of stopping immediately, π, has F (π, x) =
exp(−x), and this satisfies the infinite-horizon optimality equation,

F (x) = min{exp(−x), (1/2)F (x+ 1) + (1/2)F (x− 1)} .

19

However, π is not optimal. A symmetric random walk is recurrent, so we may wait until
reaching as large an integer as we like before stopping; hence F (x) = 0. Inductively,
one can see that Fs(x) = exp(−x). So F∞(x) > F (x).

(Note: Theorem 4.2 says that F∞ = F , but that is in a setting in which there is no
terminal cost and for different definitions of Fs and F than we take here.)

Example: Theorem 4.1 is not true for negative programming

Consider the above example, but now suppose one is allowed never to stop. Since
continuation costs are 0 the optimal policy for all finite horizons and the infinite horizon
is never to stop. So F (x) = 0 and this satisfies the optimality equation above. However,
F (π, x) = exp(−x) also satisfies the optimality equation and is the cost incurred by
stopping immediately. Thus it is not true (as for positive programming) that a policy
whose cost function satisfies the optimality equation is optimal.

The following lemma gives conditions under which the infimal finite-horizon cost
does converge to the infimal infinite-horizon cost.

Lemma 5.1 Suppose all costs are bounded as follows.

(a) K = sup
x

k(x) < ∞ (b) C = inf
x
c(x) > 0 . (5.3)

Then Fs(x) → F (x) as s → ∞.

Proof. Suppose π is an optimal policy for the infinite horizon problem and stops at the
random time τ . Then its cost is at least (s+ 1)CP (τ > s). However, since it would be
possible to stop at time 0 the cost is also no more than K, so

(s+ 1)CP (τ > s) ≤ F (x) ≤ K .

In the s-horizon problem we could follow π, but stop at time s if τ > s. This implies

F (x) ≤ Fs(x) ≤ F (x) +KP (τ > s) ≤ F (x) +
K2

(s+ 1)C
.

By letting s → ∞, we have F∞(x) = F (x).

Note that the problem posed here is identical to one in which we pay K at the start
and receive a terminal reward r(x) = K − k(x).

Theorem 5.3 Suppose S is closed and (5.3) holds. Then an optimal policy for the
infinite horizon is: stop if and only if x ∈ S.

Proof. By Theorem 5.2 we have for all finite s,

Fs(x)
= k(x) x ∈ S ,
< k(x) x 6∈ S .

Lemma 5.1 gives F (x) = F∞(x).

20

6 Bandit Processes and Gittins Index

The multi-armed bandit problem. Bandit process. Gittins index theorem.

6.1 Multi-armed bandit problem

A multi-armed bandit is a slot-machine with multiple arms. The arms differ in the
distributions of rewards that they pay when pulled. An important special case is when
arm i is a so-called Bernoulli bandit, with parameter pi. We have already met this
model in 4.5. Such an arm pays £1 with probability pi, and £0 with probability 1−pi;
this happens independently each time the arm is pulled. If there are n such arms, and
a gambler knows the values of p1, . . . , pn, then he maximizes his expected reward by
always pulling the arm of maximum pi. However, if he does not know these parameters,
then he must choose each successive arm on the basis of the information, updated in
a Bayesian manner on the basis of observing the rewards he has obtained on previous
pulls. The aim in the multi-armed bandit problem (MABP) is to maximize the
expected total discounted reward.

More generally, we consider a problem of controlling the evolution of n indepen-
dent reward-producing Markov processes decision processes. The action space of each
process contains just two controls, which cause the process to be either ‘continued’ or
‘frozen’. At each instant (in discrete time) exactly one of these so-called bandit pro-
cesses is continued (and reward from it obtained), while all the other bandit processes
are frozen. The continued process can change state; but frozen processes do not change
state. Reward is accrued only from the bandit process that is continued. This creates
what is termed a simple family of alternative bandit processes (SFAB). The word
‘simple’ is present to say that all the n bandit processes are available at all times.

Let it denote the bandit process that is continued at time t under some policy π.
In the language of Markov decision problems, we wish to find the value function:

F (x) = sup
π

E

[
∞∑

t=0

rit(xit(t))β
t

∣
∣
∣
∣
∣
x(0) = x

]

,

where the supremum is taken over all policies π that are realizable (or non-anticipatory),
in the sense that it depends only on the problem data and x(t), not on any information
which will become known only after time t.

Setup in this way, we have an infinite-horizon discounted-reward Markov decision
problem. It therefore has a deterministic stationary Markov optimal policy. Its dynamic
programming is

F (x) = max
i:i∈{1,...,n}






ri(x) + β

∑

y∈Ei

Pi(xi, y)F (x1, . . . , xi−1, y, xi+1, . . . , xn)






. (6.1)

21

6.2 Gittins index theorem

Remarkably, the problem posed by a SFAB (or a MABP) can be solved by an index
policy. That is, we can compute a number (called an index), separately for each bandit
process, such that the optimal policy is always to continue the bandit process having
the currently greatest index. We can illustrate the idea of an index policy with the
example from job scheduling that we previous met in §3.2.

Single machine scheduling. Suppose that n jobs are to be processed successively
on one machine. Job i has a known processing times ti, assumed to be a positive integer.
On completion of job i a positive reward ri is obtained. If job 1 is processed first, and job
2 is processed immediately after it, then the sum of discounted rewards obtained from
these two jobs is r1β

t1 + r2β
t1+t2 . If the processing order of the jobs is interchanged,

we obtain r2β
t2 +r1β

t1+t2 . A little algebra shows that the first ordering has the greater
reward if r1β

t1/(1− βt1) > r2β
t2/(1 − βt2). Using this idea, it is not hard to see that

the total discounted reward obtained from the n jobs is maximized by processing them
in decreasing order of indices, computed as νi = riβ

ti/(1− βti).

The appropriate index for the MABP is in the same spirit, but more complicated.
The key result for the MABP is the following, named after its originator, John Gittins.

Theorem 6.1 (Gittins Index Theorem) The problem posed by a SFABP, as setup
above, is solved by always coontiuing the process having the greatest Gittins index,
which is defined for bandit process i as

Gi(xi) = sup
τ

E
[
∑τ−1

t=0 βtri(xi(t))
∣
∣
∣ xi(0) = xi

]

E
[
∑τ−1

t=0 βt
∣
∣
∣ xi(0) = xi

] , (6.2)

where τ is a stopping time constrained to take a value in the set {1, 2, . . .}.

By a stopping time τ we mean a time that can be recognized when it occurs.
In fact, it can be shown that τ attains the supremum when τ = min{t : Gi(xi(t)) ≤
Gi(xi(0)), τ > 0}, that is, τ is the first time at which the process reaches a state in
which the Gittins index is no greater than it was initially.

Examining (6.2), we see that the Gittins index is the maximal possible quotient of
a numerator that is ‘expected total discounted reward over τ steps’, and denominator
that is ‘expected total discounted time over τ steps’, where τ is at least 1 step. Notice
that the Gittins index can be computed for all states of Bi as a function only of the
data ri(·) and Pi(· , ·). That is, it can be computed without knowing anything about
the other bandit processes.

In the job scheduling example just considered, the optimal stopping time on the
right hand side of (6.2) is τ = ti, the numerator is riβ

ti and the denominator is
1 + β + · · ·+ βti−1 = (1− βti)/(1− β). Thus, Gi = riβ

ti(1− β)/(1− βti) = (1− β)νi.

The Index Theorem above is due to Gittins and Jones, who had obtained it by
1970, and presented it in 1972. The solution of the MABP impressed many experts

22

as surprising and beautiful. Peter Whittle describes a colleague of high repute, asking
another colleague ‘What would you say if you were told that the multi-armed bandit
problem had been solved?’ The reply was ‘Sir, the multi-armed bandit problem is not
of such a nature that it can be solved’.

6.3 Calibration

An alternative characterization of Gi(xi) is

Gi(xi) = sup

{

λ :
λ

1− β
≤ sup

τ>0
E

[
τ−1∑

t=0

βtri(xi(t)) + βτ λ

1− β

∣
∣
∣ xi(0) = xi

]}

.

That is, we consider a simple family to two bandit processes: bandit process Bi and a
calibrating bandit process, say Λ, which pays out a known reward λ each time it
is continued. The Gittins index of Bi is the value of λ for which it is equally optimal
to continue either bandit process initially. Notice that once we decide to switch from
continuing Bi to continuing Λ, at time τ , then information about Bi does not change
and so it must be optimal to stick with continuing Λ ever after.

6.4 Proof of the Gittins index theorem

Various proofs have been found for the index theorem, all of which are useful in devel-
oping insight about this remarkable result. The following one is due to Weber (1992).

Proof of Theorem 6.1. We start by considering a problem in which only bandit process
Bi is available. Let us define the fair charge, γi(xi), as the maximum amount that a
gambler would be willing to pay for each further step of continuing Bi in order to be
permitted to continue it at least one more time, but then being free to quit whenever
he likes thereafter. This is

γi(xi) = sup

{

λ : 0 ≤ sup
τ>0

E

[
τ−1∑

t=0

βt
(

ri(xi(t))− λ
) ∣
∣
∣xi(0) = xi

]}

. (6.3)

We next define the prevailing charge for Bi at time t as gi(t) = mins≤t γi(xi(s)).
So gi(t) actually depends on xi(0), . . . , xi(t) (which we omit from its argument for
convenience). Note that gi(t) is a nonincreasing function of t and its value depends
only on the states through which bandit i evolves. The proof of the Index Theorem is
completed by verifying the following facts, each of which is almost immediate.

(i) If in the problem with n available bandit processes, B1, . . . , Bn, the gambler not
only collects rewards, but also must pay the prevailing charge of each bandit as
he continues it, then he cannot do better than break even (in terms of expected
value).

This is because he could only make a strictly positive profit (in expected value)
if this happens for at least one bandit. Yet the prevailing charge is always set so
that he can only just break even.

23

(ii) He maximizes the expected discounted sum of the prevailing charges that he pays
by always continuing the bandit with the greatest prevailing charge.

This is because the total discounted reward that can be obtained by interleaving
any n decreasing sequences is maximized by interleaving them in decreasing order.

(iii) Using this strategy he also breaks even; so this strategy, of continuing the bandit
with the greatest gi(xi), maximizes the expected discounted sum of the rewards
he can obtain from the bandit processes.

By simple algebra, one can check that γi(xi) = Gi(xi).

6.5 Calculation of the Gittins index

We now turn to the problem of computing the Gittins index value for each possible
state of a bandit process i. The input to this calculation is the data of ri(·) and Pi(·, ·).
If the state space of Bi is finite, say Ei = {1, . . . , ki}, then the Gittins indices can
be computed in an iterative fashion. First we find the state of greatest index, say 1
such that 1 = argmaxj ri(j). Having found this state we can next find the state of
second-greatest index. If this is state j, then Gi(j) is computed in (6.2) by taking τ to
be the first time that the state is not 1. This means that the second-best state is the
state j which maximizes

E[ri(j) + βri(1) + · · ·+ βτ−1ri(1)]

E[1 + β + · · ·+ βτ−1]
,

where τ is the time at which, having started at xi(0) = j, we have xi(τ) 6= 1. One
can continue in this manner, successively finding states and their Gittins indices, in
decreasing order of their indices. If Bi moves on a finite state space of size ki then its
Gittins indices (one for each of the ki states) can be computed in time O(k3i).

If the state space of a bandit process is infinite, as in the case of the Bernoulli
bandit, there may be no finite calculation by which to determine the Gittins indices for
all states. In this circumstance, we can approximate the Gittins index using something
like the value iteration algorithm. Essentially, one solves a problem of maximizing right
hand side of (6.2), subject to τ ≤ N , where N is large.

6.6 Forward induction policies

If we put τ = 1 on the right hand side of (6.2) then it evaluates to Eri(xi(t)). If we use
this as an index for choosing between projects, we have what is called a myopic policy
or one-step-look-ahead policy. We may view the Gittins index policy as generalizing
the idea of a one-step-look-ahead policy, since it looks-ahead by some optimal time τ ,
so as to maximize, on the right hand side of (6.2), a measure of the rate at which
reward can be accrued. This defines a so-called forward induction policy. Similarly,
one can define a forward induction policy for any Markov decision process. Neither the
one-step-look-ahead-policy or a forward induction policy need be optimal, but they can
provide guidance as to reasonable heuristics.

24

7 Average-cost Programming

Infinite-horizon average-cost case. Optimality equation for this case. Policy improve-
ment algorithm.

7.1 Average-cost optimization

It can happen that the undiscounted expected total cost is infinite, but the accumulation
of cost per unit time is finite. Suppose that for a stationary Markov policy π, the
following limit exists:

λ(π, x) = lim
t→∞

1

t
Eπ

[
t−1∑

s=0

c(xs, us)

∣
∣
∣
∣
∣
x0 = x

]

.

It is reasonable to expect that there is a well-defined notion of an optimal average-
cost function, λ(x) = infπ λ(π, x), and that under appropriate assumptions, λ(x) = λ
should not depend on x. Moreover, one would expect

Fs(x) = sλ+ φ(x) + ǫ(s, x) ,

where ǫ(s, x) → 0 as s → ∞. Here φ(x) + ǫ(s, x) reflects a transient due to the initial
state. Suppose that the state space and action space are finite. From the optimality
equation for the finite horizon problem we have

Fs(x) = min
u

{c(x, u) + E[Fs−1(x1)|x0 = x, u0 = u]} . (7.1)

So by substituting Fs(x) ∼ sλ+ φ(x) into (7.1), we obtain

sλ+ φ(x) ∼ min
u

{c(x, u) + E[(s− 1)λ+ φ(x1)|x0 = x, u0 = u]}

which suggests, what it is in fact, the average-cost optimality equation:

λ+ φ(x) = min
u

{c(x, u) + E[φ(x1)|x0 = x, u0 = u]} . (7.2)

Theorem 7.1 Let λ denote the minimal average-cost. Suppose there exists a constant
λ′ and bounded function φ such that for all x and u,

λ′ + φ(x) ≤ c(x, u) + E[φ(x1)|x0 = x, u0 = u] . (7.3)

Then λ′ ≤ λ. This also holds when ≤ is replaced by ≥ and the hypothesis is weakened
to: for each x there exists a u such that (7.3) holds when ≤ is replaced by ≥.

Proof. Suppose u is chosen by some policy π. By repeated substitution of (7.3) into
itself we have

φ(x) ≤ −tλ′ + Eπ

[
t−1∑

s=0

c(xs, us)

∣
∣
∣
∣
∣
x0 = x

]

+ Eπ [φ(xt)|x0 = x]

25

Divide this by t and let t → ∞ to obtain

0 ≤ −λ′ + lim
t→∞

1

t
Eπ

[
t−1∑

s=0

c(xs, us)

∣
∣
∣
∣
∣
x0 = x

]

,

where the final term on the right hand side is simply the average-cost under policy π.
Minimizing the right hand side over π gives the result. The claim for ≤ replaced by ≥
is proved similarly.

Theorem 7.2 Suppose there exists a constant λ and bounded function φ satisfying
(7.2). Then λ is the minimal average-cost and the optimal stationary policy is the one
that chooses the optimizing u on the right hand side of (7.2).

Proof. Equation (7.2) implies that (7.3) holds with equality when one takes π to be the
stationary policy that chooses the optimizing u on the right hand side of (7.2). Thus
π is optimal and λ is the minimal average-cost.

The average-cost optimal policy is found simply by looking for a bounded solution
to (7.2). Notice that if φ is a solution of (7.2) then so is φ+(a constant), because the
(a constant) will cancel from both sides of (7.2). Thus φ is undetermined up to an
additive constant. In searching for a solution to (7.2) we can therefore pick any state,
say x̄, and arbitrarily take φ(x̄) = 0.

7.2 Example: admission control at a queue

Each day a consultant is presented with the opportunity to take on a new job. The
jobs are independently distributed over n possible types and on a given day the offered
type is i with probability ai, i = 1, . . . , n. Jobs of type i pay Ri upon completion.
Once he has accepted a job he may accept no other job until that job is complete. The
probability that a job of type i takes k days is (1− pi)

k−1pi, k = 1, 2, Which jobs
should the consultant accept?

Solution. Let 0 and i denote the states in which he is free to accept a job, and in
which he is engaged upon a job of type i, respectively. Then (7.2) is

λ+ φ(0) =

n∑

i=1

aimax[φ(0), φ(i)],

λ+ φ(i) = (1− pi)φ(i) + pi[Ri + φ(0)], i = 1, . . . , n .

Taking φ(0) = 0, these have solution φ(i) = Ri − λ/pi, and hence

λ =

n∑

i=1

aimax[0, Ri − λ/pi] .

The left hand side is increasing in λ and the right hand side is decreasing λ. Hence
there is a root, say λ∗, and this is the maximal average-reward. The optimal policy
takes the form: accept only jobs for which piRi ≥ λ∗.

26

7.3 Value iteration bounds

Value iteration in the average-cost case is based upon the idea that Fs(x) − Fs−1(x)
approximates the minimal average-cost for large s.

Theorem 7.3 Define

ms = min
x

{Fs(x) − Fs−1(x)} , Ms = max
x

{Fs(x) − Fs−1(x)} . (7.4)

Then ms ≤ λ ≤ Ms, where λ is the minimal average-cost.

Proof. (*starred*) Suppose that the first step of a s-horizon optimal policy follows
Markov plan f . Then

Fs(x) = Fs−1(x) + [Fs(x)− Fs−1(x)] = c(x, f(x)) + E[Fs−1(x1)|x0 = x, u0 = f(x)] .

Hence

Fs−1(x) +ms ≤ c(x, u) + E[Fs−1(x1)|x0 = x, u0 = u] ,

for all x, u. Applying Theorem 7.1 with φ = Fs−1 and λ′ = ms, implies ms ≤ λ. The
bound λ ≤ Ms is established in a similar way.

This justifies the following value iteration algorithm. At termination the algo-
rithm provides a stationary policy that is within ǫ× 100% of optimal.

(0) Set F0(x) = 0, s = 1.
(1) Compute Fs from

Fs(x) = min
u

{c(x, u) + E[Fs−1(x1)|x0 = x, u0 = u]} .

(2) Compute ms and Ms from (7.4). Stop if Ms −ms ≤ ǫms. Otherwise set s := s+ 1
and goto step (1).

7.4 Policy improvement

Policy improvement is an effective method of improving stationary policies.

Policy improvement in the average-cost case.

In the average-cost case a policy improvement algorithm can be based on the following
observations. Suppose that for a policy π = f∞, we have that λ, φ is a solution to

λ+ φ(x) = c(x, f(x0)) + E[φ(x1)|x0 = x, u0 = f(x0)] ,

and suppose for some policy π1 = f∞
1 ,

λ+ φ(x) ≥ c(x, f1(x0)) + E[φ(x1)|x0 = x, u0 = f1(x0)] , (7.5)

27

with strict inequality for some x. Then following the lines of proof in Theorem 7.1

lim
t→∞

1

t
Eπ

[
t−1∑

s=0

c(xs, us)

∣
∣
∣
∣
∣
x0 = x

]

= λ ≥ lim
t→∞

1

t
Eπ1

[
t−1∑

s=0

c(xs, us)

∣
∣
∣
∣
∣
x0 = x

]

.

If there is no π1 for which (7.5) holds then π satisfies (7.2) and is optimal. This justifies
the following policy improvement algorithm

(0) Choose an arbitrary stationary policy π0. Set s = 1.
(1) For a given stationary policy πs−1 = f∞

s−1 determine φ, λ to solve

λ+ φ(x) = c(x, fs−1(x)) + E[φ(x1)|x0 = x, u0 = fs−1(x)] .

This gives a set of linear equations, and so is intrinsically easier to solve than (7.2).
(2) Now determine the policy πs = f∞

s from

c(x, fs(x)) + E[φ(x1)|x0 = x, u0 = fs(x)]

= min
u

{c(x, u) + E[φ(x1)|x0 = x, u0 = u]} ,

taking fs(x) = fs−1(x) whenever this is possible. By applications of Theorem 7.1,
this yields a strict improvement whenever possible. If πs = πs−1 then the algorithm
terminates and πs−1 is optimal. Otherwise, return to step (1) with s := s+ 1.

If both the action and state spaces are finite then there are only a finite number
of possible stationary policies and so the policy improvement algorithm will find an
optimal stationary policy in finitely many iterations. By contrast, the value iteration
algorithm can only obtain more and more accurate approximations of λ∗.

Policy improvement in the discounted-cost case.

In the case of strict discounting, the following theorem plays the role of Theorem 7.1.
The proof is similar, by repeated substitution of (7.6) into itself.

Theorem 7.4 Suppose there exists a bounded function G such that for all x and u,

G(x) ≤ c(x, u) + βE[G(x1)|x0 = x, u0 = u]. (7.6)

Then G ≤ F , where F is the minimal discounted-cost function. This also holds when
≤ is replaced by ≥ and the hypothesis is weakened to: for each x there exists a u such
that (7.6) holds when ≤ is replaced by ≥.

The policy improvement algorithm is similar. E.g., step (1) becomes

(1) For a given stationary policy πs−1 = f∞
s−1 determine G to solve

G(x) = c(x, fs−1(x)) + βE[G(x1)|x0 = x, u0 = fs−1(x)] .

28

8 LQ Regulation

LQ regulation model in discrete and continuous time. Riccati equation, and its validity
in the model with additive white noise.

8.1 The LQ regulation model

The elements needed to define a control optimization problem are specification of (i)
the dynamics of the process, (ii) which quantities are observable at a given time, and
(iii) an optimization criterion.

In the LQG model the plant equation and observation relations are linear, the
cost is quadratic, and the noise is Gaussian (jointly normal). The LQG model is
important because it has a complete theory and introduces some key concepts, such as
controllability, observability and the certainty-equivalence principle.

Begin with a model in which the state xt is fully observable and there is no noise.
The plant equation of the time-homogeneous [A,B, ·] system has the linear form

xt = Axt−1 +But−1 , (8.1)

where xt ∈ R
n, ut ∈ R

m, A is n× n and B is n×m. The cost function is

C =

h−1∑

t=0

c(xt, ut) +Ch(xh) , (8.2)

with one-step and terminal costs

c(x, u) = x⊤Rx+ u⊤Sx+ x⊤S⊤u+ u⊤Qu =

[
x
u

]⊤ [
R S⊤

S Q

] [
x
u

]

, (8.3)

Ch(x) = x⊤Πhx . (8.4)

All quadratic forms are non-negative definite, and Q is positive definite. There is no
loss of generality in assuming that R, Q and Πh are symmetric. This is a model for
regulation of (x, u) to the point (0, 0) (i.e. steering to a critical value).

To solve the optimality equation we shall need the following lemma.

Lemma 8.1 Suppose x, u are vectors. Consider a quadratic form

(
x
u

)⊤ (
Πxx Πxu

Πux Πuu

)(
x
u

)

.

Assume it is symmetric and Πuu > 0, i.e. positive definite. Then the minimum with
respect to u is achieved at

u = −Π−1
uuΠuxx,

and is equal to
x⊤

[
Πxx −ΠxuΠ

−1
uuΠux

]
x.

29

Proof. Suppose the quadratic form is minimized at u. Then

(
x

u+ h

)⊤ (
Πxx Πxu

Πux Πuu

)(
x

u+ h

)

= x⊤Πxxx+ 2x⊤Πxuu+ 2h⊤Πuxx+ 2h⊤Πuuu
︸ ︷︷ ︸

+u⊤Πuuu+ h⊤Πuuh .

To be stationary at u, the underbraced linear term in h⊤ must be zero, so

u = −Π−1
uuΠuxx ,

and the optimal value is x⊤
[
Πxx −ΠxuΠ

−1
uuΠux

]
x.

Theorem 8.1 Assume the structure of (8.1)–(8.4). Then the value function has the
quadratic form

F (x, t) = x⊤Πtx , t < h , (8.5)

and the optimal control has the linear form

ut = Ktxt , t < h .

The time-dependent matrix Πt satisfies the Riccati equation

Πt = fΠt+1 , t < h , (8.6)

where f is an operator having the action

fΠ = R+A⊤ΠA− (S⊤ +A⊤ΠB)(Q +B⊤ΠB)−1(S +B⊤ΠA) , (8.7)

and Πh has the value prescribed in (8.4). The m× n matrix Kt is given by

Kt = −(Q+B⊤Πt+1B)−1(S +B⊤Πt+1A) , t < h .

Proof. Assertion (8.5) is true at time h. Assume it is true at time t+ 1. Then

F (x, t) = inf
u

[
c(x, u) + (Ax+Bu)⊤Πt+1(Ax+Bu)

]

= inf
u

[(
x
u

)⊤ (
R +A⊤Πt+1A S⊤ +A⊤Πt+1B
S +B⊤Πt+1A Q+B⊤Πt+1B

)(
x
u

)]

By Lemma 8.1 the minimum is achieved by u = Ktx, and the form of f comes from
this also.

30

8.2 The Riccati recursion

The backward recursion (8.6)–(8.7) is called the Riccati equation. Note that

(i) S can be normalized to zero by choosing a new control u∗ = u+Q−1Sx, and setting
A∗ = A−BQ−1S, R∗ = R− S⊤Q−1S.

(ii) The optimally controlled process obeys xt+1 = Γtxt. Here Γt is called the gain
matrix and is given by

Γt = A+BKt = A−B(Q+B⊤Πt+1B)−1(S +B⊤Πt+1A) .

(iii) An equivalent expression for the Riccati equation is

fΠ = inf
K

[
R+K⊤S + S⊤K +K⊤QK + (A+BK)⊤Π(A +BK)

]
.

(iv) We might have carried out exactly the same analysis for a time-heterogeneous
model, in which the matrices A, B, Q, R, S are replaced by At, Bt, Qt, Rt, St.

(v) We do not give details, but comment that it is possible to analyse models in which

xt+1 = Axt +But + αt ,

for a known sequence of disturbances {αt}, or in which the cost function is

c(x, u) =

[
x− x̄t

u− ūt

]⊤ [
R S⊤

S Q

] [
x− x̄t

u− ūt

]

.

so that the aim is to track a sequence of values (x̄t, ūt), t = 0, . . . , h− 1.

8.3 White noise disturbances

Suppose the plant equation (8.1) is now

xt+1 = Axt +But + ǫt,

where ǫt ∈ R
n is vector white noise, defined by the properties Eǫ = 0, Eǫtǫ

⊤
t = N

and Eǫtǫ
⊤
s = 0, t 6= s. The DP equation is then

F (x, t) = inf
u

[

c(x, u) + Eǫ[(F (Ax +Bu+ ǫ, t+ 1)]

]

.

By definition F (x, h) = x⊤Πhx. Try a solution F (x, t) = x⊤Πtx + γt. This holds for
t = h. Suppose it is true for t+ 1, then

F (x, t) = inf
u

[
c(x, u) + E(Ax +Bu+ ǫ)⊤Πt+1(Ax+Bu+ ǫ) + γt+1

]

= inf
u

[
c(x, u) + E(Ax +Bu)⊤Πt+1(Ax +Bu)

]

+ 2E
[
ǫ⊤(Ax+Bu)

]
+ E

[
ǫ⊤Πt+1ǫ

]
+ γt+1

= inf
u

[· · ·] + 0 + tr(NΠt+1) + γt+1 .

31

Here we use the fact that

E
[
ǫ⊤Πǫ

]
= E




∑

ij

ǫiΠijǫj



 = E




∑

ij

ǫjǫiΠij



 =
∑

ij

NjiΠij = tr(NΠ) .

Thus (i) Πt follows the same Riccati equation as before, (ii) the optimal control is
ut = Ktxt, and (iii)

F (x, t) = x⊤Πtx+ γt = x⊤Πtx+

h∑

j=t+1

tr(NΠj) .

The final term can be viewed as the cost of correcting future noise. In the infinite
horizon limit of Πt → Π as t → ∞, we incur an average cost per unit time of tr(NΠ),
and a transient cost of x⊤Πx that is due to correcting the initial x.

8.4 LQ regulation in continuous-time

In continuous-time we take ẋ = Ax+Bu and

C =

∫ h

0

(
x
u

)⊤ (
R S⊤

S Q

)(
x
u

)

dt+ (x⊤Πx)h .

We can obtain the continuous-time solution from the discrete time solution by moving
forward in time in increments of ∆. Make the following replacements.

xt+1 → xt+∆, A → I +A∆, B → B∆, R, S, Q → R∆, S∆, Q∆ .

Then as before, F (x, t) = x⊤Πx, where Π obeys the Riccati equation

∂Π

∂t
+R +A⊤Π+ΠA− (S⊤ +ΠB)Q−1(S +B⊤Π) = 0 .

This is simpler than the discrete time version. The optimal control is

u(t) = K(t)x(t)

where

K(t) = −Q−1(S +B⊤Π) .

The optimally controlled plant equation is ẋ = Γ(t)x, where

Γ(t) = A+BK = A−BQ−1(S +B⊤Π) .

32

9 Controllability

Controllability in discrete and continuous time.

9.1 Controllability

Consider the [A,B, ·] system with plant equation xt+1 = Axt+ut. The controllability
question is: can we bring x to an arbitrary prescribed value by some u-sequence?

Definition 9.1 The system is r-controllable if one can bring it from an arbitrary
prescribed x0 to an arbitrary prescribed xr by some u-sequence u0, u1, . . . , ur−1. A
system of dimension n is controllable if it is r-controllable for some r

Example 9.1 If B is square and non-singular then the system is 1-controllable, for

x1 = Ax0 +Bu0 where u0 = B−1(x1 −Ax0) .

Example 9.2 Consider the case, (n = 2, m = 1),

xt =

(
a11 0
a21 a22

)

xt−1 +

(
1
0

)

ut−1.

This system is not 1-controllable. But

x2 −A2x0 = Bu1 +ABu0 =

(
1 a11
0 a21

)(
u1

u0

)

.

So it is 2-controllable if and only if a21 6= 0.

More generally, by substituting the plant equation into itself, we see that we must
find u0, u1, . . . , ur−1 to satisfy

∆ = xr −Arx0 = Bur−1 +ABur−2 + · · ·+Ar−1Bu0, (9.1)

for arbitrary ∆. In providing conditions for controllability we shall need to make use
of the following theorem.

Theorem 9.1 (The Cayley-Hamilton theorem) Any n× n matrix A satisfies its
own characteristic equation. So that if

det(λI −A) =

n∑

j=0

ajλ
n−j

then
n∑

j=0

ajA
n−j = 0. (9.2)

33

The implication is that I, A,A2, . . . , An−1 contains basis for Ar, r = 0, 1,
Proof. (*starred*) Define

Φ(z) =

∞∑

j=0

(Az)j = (I −Az)−1 =
adj(I −Az)

det(I −Az)
.

Then

det(I −Az)Φ(z) =

n∑

j=0

ajz
jΦ(z) = adj(I −Az),

which implies (9.2) since the coefficient of zn must be zero.
We are now in a position to characterise controllability.

Theorem 9.2 (i) The system [A,B, ·] is r-controllable if and only if the matrix

Mr =
[
B AB A2B · · · Ar−1B

]

has rank n, or (ii) equivalently, if and only if the n× n matrix

MrM
⊤
r =

r−1∑

j=0

Aj(BB⊤)(A⊤)j

is nonsingular (or, equivalently, positive definite.) (iii) If the system is r-controllable
then it is s-controllable for s ≥ min(n, r), and (iv) a control transferring x0 to xr with

minimal cost
∑r−1

t=0 u⊤
t ut is

ut = B⊤(A⊤)r−t−1(MrM
⊤
r)−1(xr −Arx0), t = 0, . . . , r − 1.

Proof. (i) The system (9.1) has a solution for arbitrary ∆ if and only if Mr has rank
n. (ii) MrM

⊤
r is singular if and only if there exists w such that MrM

⊤
r w = 0, and

MrM
⊤
r w = 0 ⇐⇒ w⊤MrM

⊤
r w = 0 ⇐⇒ M⊤

r w = 0.

(iii) The rank of Mr is non-decreasing in r, so if it is r-controllable, then it is s-
controllable for s ≥ r. But the rank is constant for r ≥ n by the Cayley-Hamilton
theorem. (iv) Consider the Lagrangian

r−1∑

t=0

u⊤
t ut + λ⊤(∆−

r−1∑

t=0

Ar−t−1But),

giving

ut =
1

2
B⊤(A⊤)r−t−1λ.

Now we can determine λ from (9.1).

34

9.2 Controllability in continuous-time

Theorem 9.3 (i) The n dimensional system [A,B, ·] is controllable if and only if the
matrix Mn has rank n, or (ii) equivalently, if and only if

G(t) =

∫ t

0

eAsBB⊤eA
⊤s ds,

is positive definite for all t > 0. (iii) If the system is controllable then a control that

achieves the transfer from x(0) to x(t) with minimal control cost
∫ t

0
u⊤
s usds is

u(s) = B⊤eA
⊤(t−s)G(t)−1(x(t)− eAtx(0)).

Note that there is now no notion of r-controllability. However, G(t) ↓ 0 as t ↓ 0, so
the transfer becomes more difficult and costly as t ↓ 0.

9.3 Example: broom balancing

Consider the problem of balancing a broom in an upright position on your hand. By
Newton’s laws, the system obeys m(ü cos θ + Lθ̈) = mg sin θ. For small θ we have
cos θ ∼ 1 and θ ∼ sin θ = (x− u)/L, so with α = g/L the plant equation is

ẍ = α(x − u),

equivalently,
d

dt

(
x
ẋ

)

=

(
0 1
α 0

)(
x
ẋ

)

+

(
0
−α

)

u .

mg

Lθ̈

xx

θ

uu

L

ü cos θ

mg sin θ

Figure 1: Force diagram for broom balancing

Since
[
B AB

]
=

[
0 −α
−α 0

]

,

the system is controllable if θ is initially small.

35

9.4 Example: satellite in a plane orbit

Consider a satellite of unit mass in a planar orbit and take polar coordinates (r, θ).

r̈ = rθ̇2 − c

r2
+ ur, θ̈ = −2ṙθ̇

r
+

1

r
uθ ,

where ur and uθ are the radial and tangential components of thrust. If u = 0 then a
possible orbit (such that ṙ = θ̈ = 0) is with r = ρ and θ̇ = ω =

√

c/ρ3.
Recall that one reason for taking an interest in linear models is that they tell us

about controllability around an equilibrium point. Imagine there is a perturbing force.
Take coordinates of perturbation

x1 = r − ρ, x2 = ṙ, x3 = θ − ωt, x4 = θ̇ − ω.

Then, with n = 4, m = 2,

ẋ ∼







0 1 0 0
3ω2 0 0 2ωρ
0 0 0 1
0 −2ω/ρ 0 0







x+







0 0
1 0
0 0
0 1/ρ







(
ur

uθ

)

= Ax+Bu .

It is easy to check that M2 =
[
B AB

]
has rank 4 and that therefore the system is

controllable.
But suppose uθ = 0 (tangential thrust fails). Then

B =







0
1
0
0







M4 =
[
B AB A2B A3B

]
=







0 1 0 −ω2

1 0 −ω2 0
0 0 −2ω/ρ 0
0 −2ω/ρ 0 2ω3/ρ






.

Since (2ωρ, 0, 0, ρ2)M4 = 0, this is singular and has rank 3. The uncontrollable compo-
nent is the angular momentum, 2ωρδr + ρ2δθ̇ = δ(r2θ̇)|r=ρ,θ̇=ω.

On the other hand, if ur = 0 then the system is controllable. We can change the
radius by tangential braking or thrust.

36

10 Stabilizability and Observability

Stabilizability. LQ regulation problem over the infinite horizon. Observability.

10.1 Linearization of nonlinear models

Linear models are important because they arise naturally via the linearization of non-
linear models. Consider the state-structured nonlinear model:

ẋ = a(x, u).

Suppose x, u are perturbed from an equilibrium (x̄, ū) where a(x̄, ū) = 0. Let x′ = x− x̄
and u′ = u− ū and immediately drop the primes. The linearized version is

ẋ = Ax+Bu

where

A =
∂a

∂x

∣
∣
∣
∣
(x̄,ū)

, B =
∂a

∂u

∣
∣
∣
∣
(x̄,ū)

.

If x̄, ū is to be a stable equilibrium point then we must be able to choose a control that
can stabilise the system in the neighbourhood of (x̄, ū).

10.2 Stabilizability

Suppose we apply the stationary control u = Kx so that ẋ = Ax+Bu = (A+ BK)x.
So with Γ = A+BK, we have

ẋ = Γx, xt = eΓtx0, where eΓt =
∞∑

j=0

(Γt)j/j!

Similarly, in discrete-time, we have can take the stationary control, ut = Kxt, so
that xt = Axt−1 +But−1 = (A+BK)xt−1. Now xt = Γtx0.

We are interested in choosing Γ so that xt → 0 and t → ∞.

Definition 10.1
Γ is a stability matrix in the continuous-time sense if all its eigenvalues have

negative real part, and hence xt → 0 as t → ∞.

Γ is a stability matrix in the discrete-time sense if all its eigenvalues of lie strictly
inside the unit disc in the complex plane, |z| = 1, and hence xt → 0 as t → ∞.

The [A,B] system is said to stabilizable if there exists a K such that A+ BK is
a stability matrix.

Note that ut = Kxt is linear and Markov. In seeking controls such that xt → 0 it
is sufficient to consider only controls of this type since, as we see below, such controls
arise as optimal controls for the infinite-horizon LQ regulation problem.

37

10.3 Example: pendulum

Consider a pendulum of length L, unit mass bob and angle θ to the vertical. Suppose
we wish to stabilise θ to zero by application of a force u. Then

θ̈ = −(g/L) sin θ + u.

We change the state variable to x = (θ, θ̇) and write

d

dt

(
θ

θ̇

)

=

(

θ̇
−(g/L) sin θ + u

)

∼
(

θ̇
−(g/L)θ

)

+

(
0
u

)

=

(
0 1

−(g/L) 0

)(
θ

θ̇

)

+

(
0
1

)

u.

Suppose we try to stabilise with a control u = −Kθ = −Kx1. Then

A+BK =

(
0 1

−(g/L)−K 0

)

and this has eigenvalues ±
√

−(g/L)−K. So either −(g/L)−K > 0 and one eigenvalue
has a positive real part, in which case there is in fact instability, or −(g/L) −K < 0
and eigenvalues are purely imaginary, which means we will in general have oscillations.
So successful stabilization must be a function of θ̇ as well, (and this would come out of
solution to the LQ regulation problem.)

10.4 Infinite-horizon LQ regulation

Consider the time-homogeneous case and write the finite-horizon cost in terms of time
to go s. The terminal cost, when s = 0, is denoted F0(x) = x⊤Π0x. In all that follows
we take S = 0, without loss of generality.

Lemma 10.1 Suppose Π0 = 0, R ≥ 0, Q ≥ 0 and [A,B, ·] is controllable or stabiliz-
able. Then {Πs} has a finite limit Π.

Proof. Costs are non-negative, so Fs(x) is non-decreasing in s. Now Fs(x) = x⊤Πsx.
Thus x⊤Πsx is non-decreasing in s for every x. To show that x⊤Πsx is bounded we
use one of two arguments.

If the system is controllable then x⊤Πsx is bounded because there is a policy which,
for any x0 = x, will bring the state to zero in at most n steps and at finite cost and
can then hold it at zero with zero cost thereafter.

If the system is stabilizable then there is a K such that Γ = A+ BK is a stability
matrix and using ut = Kxt, we have

Fs(x) ≤ x⊤

[
∞∑

t=0

(Γ⊤)t(R +K⊤QK)Γt

]

x < ∞.

38

Hence in either case we have an upper bound and so x⊤Πsx tends to a limit for
every x. By considering x = ej , the vector with a unit in the jth place and zeros
elsewhere, we conclude that the jth element on the diagonal of Πs converges. Then
taking x = ej + ek it follows that the off diagonal elements of Πs also converge.

Both value iteration and policy improvement are effective ways to compute the
solution to an infinite-horizon LQ regulation problem. Policy improvement goes along
the lines developed in Lecture 7.

10.5 The [A,B,C] system

The notion of controllability rested on the assumption that the initial value of the
state was known. If, however, one must rely upon imperfect observations, then the
question arises whether the value of state (either in the past or in the present) can be
determined from these observations. The discrete-time system [A,B,C] is defined by
the plant equation and observation relation

xt = Axt−1 +But−1, (10.1)

yt = Cxt−1. (10.2)

y ∈ R
r is observed, but x is not. C is r × n. The observability question is: can we

infer x at a prescribed time by subsequent y values?

Definition 10.2 A system is said to be r-observable if x0 can be inferred from knowl-
edge of the observations y1, . . . , yr and relevant control values u0, . . . , ur−2 for any ini-
tial x0. An n-dimensional system is observable if it is r-observable for some r.

The notion of observability stands in dual relation to that of controllability; a duality
that indeed persists throughout the subject.

From (10.1) and (10.2) we can determine yt in terms of x0 and subsequent controls:

xt = Atx0 +

t−1∑

s=0

AsBut−s−1,

yt = Cxt−1 = C

[

At−1x0 +

t−2∑

s=0

AsBut−s−2

]

.

Thus, if we define the ‘reduced observation’

ỹt = yt − C

[
t−2∑

s=0

AsBut−s−2

]

,

then x0 is to be determined from the system of equations

ỹt = CAt−1x0, 1 ≤ t ≤ r. (10.3)

39

By hypothesis, these equations are mutually consistent, and so have a solution; the
question is whether this solution is unique. This is the reverse of the situation for
controllability, when the question was whether the equation for u had a solution at all,
unique or not. Note that an implication of the system definition is that the property
of observability depends only on the matrices A and C; not upon B at all.

Theorem 10.1 (i) The system [A, · , C] is r-observable if and only if the matrix

Nr =










C
CA
CA2

...
CAr−1










has rank n, or (ii) equivalently, if and only if the n× n matrix

N⊤
r Nr =

r−1∑

j=0

(A⊤)jC⊤CAj

is nonsingular. (iii) If the system is r-observable then it is s-observable for s ≥
min(n, r), and (iv) the determination of x0 can be expressed

x0 = (N⊤
r Nr)

−1
r∑

j=1

(A⊤)j−1C⊤ỹj. (10.4)

Proof. If the system has a solution for x0 (which is so by hypothesis) then this solution
must is unique if and only if the matrix Nr has rank n, whence assertion (i). Assertion
(iii) follows from (i). The equivalence of conditions (i) and (ii) can be verified directly
as in the case of controllability.

If we define the deviation ηt = ỹt −CAt−1x0 then the equation amounts to ηt = 0,
1 ≤ t ≤ r. If these equations were not consistent we could still define a ‘least-squares’
solution to them by minimizing any positive-definite quadratic form in these deviations
with respect to x0. In particular, we could minimize

∑r−1
t=0 η⊤t ηt. This minimization

gives (10.4). If equations (10.3) indeed have a solution (i.e. are mutually consistent,
as we suppose) and this is unique then expression (10.4) must equal this solution; the
actual value of x0. The criterion for uniqueness of the least-squares solution is that
N⊤

r Nr should be nonsingular, which is also condition (ii).

Note that we have again found it helpful to bring in an optimization criterion in
proving (iv); this time, not so much to construct one definite solution out of many, but
rather to construct a ‘best-fit’ solution where an exact solution might not have existed.
This approach lies close to the statistical approach necessary when observations are
corrupted by noise.

40

11 Kalman Filter and Certainty Equivalence

More about observability and the LQG model. Theory of the Kalman filter.
Many of the ideas we encounter in this lecture are unrelated to the special state

structure and are therefore worth noting as general observations about control with
imperfect information.

11.1 Observability in continuous-time

Theorem 11.1 (i) The n-dimensional continuous-time system [A, · , C] is observable
if and only if the matrix Nn has rank n, or (ii) equivalently, if and only if

H(t) =

∫ t

0

eA
⊤sC⊤CeAs ds

is positive definite for all t > 0. (iii) If the system is observable then the determination
of x(0) can be written

x(0) = H(t)−1

∫ t

0

eA
⊤sC⊤ỹ(s) ds,

where

ỹ(t) = y(t)−
∫ t

0

CAt−sBu(s) ds.

11.2 Example: observation of population

Consider two populations whose sizes are changing according to the equations

ẋ1 = λ1x1, ẋ2 = λ2x2.

Suppose we observe x1 + x2, so

A =

(
λ1 0
0 λ2

)

, C =
(
1 1

)
, N2 =

(
1 1
λ1 λ2

)

.

and so the individual populations are observable if λ1 6= λ2.

11.3 Example: satellite in planar orbit

Recall the linearised equation ẋ = Ax, for perturbations of the orbit of a satellite, (here
taking ρ = 1), where







x1

x2

x3

x4







=







r − ρ
ṙ

θ − ωt

θ̇ − ω







A =







0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0







.

41

By taking C =
[
0 0 1 0

]
we see that the system is observable on the basis of

angle measurements alone, but not observable for C̃ =
[
1 0 0 0

]
, i.e. on the basis

of radius movements alone.

N4 =







0 0 1 0
0 0 0 1
0 −2ω 0 0

−6ω3 0 0 −4ω2







Ñ4 =







1 0 0 0
0 1 0 0

3ω2 0 0 2ω
0 −ω2 0 0







11.4 Imperfect state observation with noise

The full LQG model, whose description has been deferred until now, assumes linear
dynamics, quadratic costs and Gaussian noise. Imperfect observation is the most im-
portant point. The model is

xt = Axt−1 +But−1 + ǫt, (11.1)

yt = Cxt−1 + ηt, (11.2)

where ǫt is process noise, yt is the observation at time t and ηt is the observation noise.
The state observations are degraded in that we observe only Cxt−1. Assume

cov

(
ǫ
η

)

= E

(
ǫ
η

)(
ǫ
η

)⊤

=

(
N L
L⊤ M

)

and that x0 ∼ N(x̂0, V0). Let Wt = (Yt, Ut−1) = (y1, . . . , yt;u0, . . . , ut−1) denote the
observed history up to time t. Of course we assume that t, A, B, C, N , L, M , x̂0 and
V0 are also known; Wt denotes what might be different if the process were rerun.

Lemma 11.1 Suppose x and y are jointly normal with zero means and covariance
matrix

cov

[
x
y

]

=

[
Vxx Vxy

Vyx Vyy

]

.

Then the distribution of x conditional on y is Gaussian, with

E(x|y) = VxyV
−1
yy y , (11.3)

and
cov(x|y) = Vxx − VxyV

−1
yy Vyx . (11.4)

Proof. Both y and x− VxyV
−1
yy y are linear functions of x and y and therefore they are

Gaussian. From E
[
(x− VxyV

−1
yy y)y⊤

]
= 0 it follows that they are uncorrelated and

this implies they are independent. Hence the distribution of x − VxyV
−1
yy y conditional

on y is identical with its unconditional distribution, and this is Gaussian with zero
mean and the covariance matrix given by (11.4)

The estimate of x in terms of y defined as x̂ = Hy = VxyV
−1
yy y is known as the

linear least squares estimate of x in terms of y. Even without the assumption that

42

x and y are jointly normal, this linear function of y has a smaller covariance matrix
than any other unbiased estimate for x that is a linear function of y. In the Gaussian
case, it is also the maximum likelihood estimator.

11.5 The Kalman filter

Notice that both xt and yt can be written as a linear functions of the unknown noise
and the known values of u0, . . . , ut−1. Thus the distribution of xt conditional on Wt =
(Yt, Ut−1) must be normal, with some mean x̂t and covariance matrix Vt. The following
theorem describes recursive updating relations for these two quantities.

Theorem 11.2 (The Kalman filter) Suppose that conditional on W0, the initial
state x0 is distributed N(x̂0, V0) and the state and observations obey the recursions of
the LQG model (11.1)–(11.2). Then conditional on Wt, the current state is distributed
N(x̂t, Vt). The conditional mean and variance obey the updating recursions

x̂t = Ax̂t−1 +But−1 +Ht(yt − Cx̂t−1) , (11.5)

Vt = N +AVt−1A
⊤ − (L+AVt−1C

⊤)(M + CVt−1C
⊤)−1(L⊤ + CVt−1A

⊤) , (11.6)

where

Ht = (L +AVt−1C
⊤)(M + CVt−1C

⊤)−1. (11.7)

Proof. The proof is by induction on t. Consider the moment when ut−1 has been
determined but yt has not yet observed. The distribution of (xt, yt) conditional on
(Wt−1, ut−1) is jointly normal with means

E(xt|Wt−1, ut−1) = Ax̂t−1 +But−1 ,

E(yt|Wt−1, ut−1) = Cx̂t−1 .

Let ∆t−1 = x̂t−1 − xt−1, which by an inductive hypothesis is N(0, Vt−1). Consider the
innovations

ξt = xt − E(xt|Wt−1, ut−1) = xt − (Ax̂t−1 +But−1) = ǫt −A∆t−1 ,

ζt = yt − E(yt|Wt−1, ut−1) = yt − Cx̂t−1 = ηt − C∆t−1 .

Conditional on (Wt−1, ut−1), these quantities are normally distributed with zero means
and covariance matrix

cov

[
ǫt −A∆t−1

ηt − C∆t−1

]

=

[
N +AVt−1A

⊤ L+AVt−1C
⊤

L⊤ + CVt−1A
⊤ M + CVt−1C

⊤

]

=

[
Vξξ Vξζ

Vζξ Vζζ

]

.

Thus it follows from Lemma 11.1 that the distribution of ξt conditional on knowing
(Wt−1, ut−1, ζt), (which is equivalent to knowing Wt), is normal with mean VξζV

−1
ζζ ζt

and covariance matrix Vξξ − VξζV
−1
ζζ Vζξ. These give (11.5)–(11.7).

43

11.6 Certainty equivalence

We say that a quantity a is policy-independent if Eπ(a|W0) is independent of π.

Theorem 11.3 Suppose LQG model assumptions hold. Then (i)

F (Wt) = x̂⊤
t Πtx̂t + · · · (11.8)

where x̂t is the linear least squares estimate of xt whose evolution is determined by the
Kalman filter in Theorem 11.2 and ‘+ · · · ’ indicates terms that are policy independent;
(ii) the optimal control is given by

ut = Ktx̂t,

where Πt and Kt are the same matrices as in the full information case of Theorem 8.1.

It is important to grasp the remarkable fact that (ii) asserts: the optimal control
ut is exactly the same as it would be if all unknowns were known and took values equal
to their linear least square estimates (equivalently, their conditional means) based upon
observations up to time t. This is the idea known as certainty equivalence. As we
have seen in the previous section, the distribution of the estimation error x̂t − xt does
not depend on Ut−1. The fact that the problems of optimal estimation and optimal
control can be decoupled in this way is known as the separation principle.

Proof. The proof is by backward induction. Suppose (11.8) holds at t. Recall that

x̂t = Ax̂t−1 +But−1 +Htζt , ∆t−1 = x̂t−1 − xt−1.

Then with a quadratic cost of the form c(x, u) = x⊤Rx+ 2u⊤Sx+ u⊤Qu, we have

F (Wt−1) = min
ut−1

E [c(xt−1, ut−1) + x̂tΠtx̂t + · · · |Wt−1, ut−1]

= min
ut−1

E [c(x̂t−1 −∆t−1, ut−1)

+ (Ax̂t−1 + But−1 +Htζt)
⊤Πt(Ax̂t−1 +But−1 +Htζt)|Wt−1, ut−1

]

= min
ut−1

[
c(x̂t−1, ut−1) + (Ax̂t−1 +But−1)

⊤Πt(Ax̂t−1 +But−1)
]
+ · · · ,

where we use the fact that conditional on Wt−1, ut−1, both ∆t−1 and ζt have zero
means and are policy independent. This ensures that when we expand the quadratics
in powers of ∆t−1 and Htζt the expected value of the linear terms in these quantities
are zero and the expected value of the quadratic terms (represented by + · · ·) are policy
independent.

44

12 Dynamic Programming in Continuous Time

The HJB equation for dynamic programming in continuous time.

12.1 The optimality equation

In continuous time the plant equation is,

ẋ = a(x, u, t) .

Let us consider a discounted cost of

C =

∫ T

0

e−αtc(x, u, t) dt+ e−αTC(x(T), T) .

The discount factor over δ is e−αδ = 1− αδ + o(δ). So the optimality equation is,

F (x, t) = inf
u

[
c(x, u, t)δ + e−αδF (x+ a(x, u, t)δ, t+ δ) + o(δ)

]
.

By considering the term that multiplies δ in the Taylor series expansion we obtain,

inf
u

[

c(x, u, t)− αF +
∂F

∂t
+

∂F

∂x
a(x, u, t)

]

= 0 , t < T, (12.1)

with F (x, T) = C(x, T). In the undiscounted case, we simply put α = 0.

The DP equation (12.1) is called theHamilton Jacobi Bellman equation (HJB).
Its heuristic derivation we have given above is justified by the following theorem.

Theorem 12.1 Suppose a policy π, using a control u, has a value function F which
satisfies the HJB equation (12.1) for all values of x and t. Then π is optimal.

Proof. Consider any other policy, using control v, say. Then along the trajectory
defined by ẋ = a(x, v, t) we have

− d

dt
e−αtF (x, t) = e−αt

[

c(x, v, t)−
(

c(x, v, t) − αF +
∂F

∂t
+

∂F

∂x
a(x, v, t)

)]

≤ e−αtc(x, v, t) .

Integrating this inequality along the v path, from x(0) to x(T), gives

F (x(0), 0)− e−αTC(x(T), T) ≤
∫ T

t=0

e−αtc(x, v, t) dt .

Thus the v path incurs a cost of at least F (x(0), 0), and hence π is optimal.

45

12.2 Example: LQ regulation

The undiscounted continuous time DP equation for the LQ regulation problem is

0 = inf
u

[
x⊤Rx+ u⊤Qu+ Ft + F⊤

x (Ax+Bu)
]
.

Suppose we try a solution of the form F (x, t) = x⊤Π(t)x, where Π(t) is a symmetric ma-
trix. Then Fx = 2Π(t)x and the optimizing u is u = − 1

2Q
−1B⊤Fx = −Q−1B⊤Π(t)x.

Therefore the DP equation is satisfied with this u if

0 = x⊤

[

R+ΠA+A⊤Π−ΠBQ−1B⊤Π+
dΠ

dt

]

x ,

where we use the fact that 2x⊤ΠAx = x⊤ΠAx + x⊤A⊤Πx. Hence we have a solution
to the HJB equation if Π(t) satisfies the Riccati differential equation of Section 8.4.

12.3 Example: estate planning

A man is considering his lifetime plan of investment and expenditure. He has an
initial level of savings x(0) and no other income other than that which he obtains
from investment at a fixed interest rate. His total capital is therefore governed by the
equation

ẋ(t) = βx(t) − u(t) ,

where β > 0 and u is his rate of expenditure. He wishes to maximize
∫ T

0

e−αt
√

u(t) dt,

for a given T . Find his optimal policy.

Solution. The optimality equation is

0 = sup
u

[√
u− αF +

∂F

∂t
+

∂F

∂x
(βx − u)

]

.

Suppose we try a solution of the form F (x, t) = f(t)
√
x. For this to work we need

0 = sup
u

[√
u− αf

√
x+ f ′√x+

f

2
√
x
(βx − u)

]

.

By d[]/du = 0, the optimizing u is u = x/f2 and the optimized value is

(
√
x/f)

[
1

2
− (α− 1

2β)f
2 + ff ′

]

. (12.2)

We have a solution if we can choose f to make the bracketed term in (12.2) equal to 0.
We have the boundary condition F (x, T) = 0, which imposes f(T) = 0. Thus we find

f(t)2 =
1− e−(2α−β)(T−t)

2α− β
.

We have found a policy whose value function F (x, t) satisfies the HJB equation. So by
Theorem 12.1 it is optimal. In closed loop form the optimal policy is u = x/f2.

46

12.4 Example: harvesting

A fish population of size x obeys the plant equation,

ẋ = a(x, u) =

{
a(x) − u x > 0,
a(x) x = 0.

The function a(x) reflects the facts that the population can grow when it is small, but
is subject to environmental limitations when it is large. It is desired to maximize the

discounted total harvest
∫ T

0 ue−αt dt.

Solution. The DP equation (with discounting) is

sup
u

[

u− αF +
∂F

∂t
+

∂F

∂x
[a(x)− u]

]

= 0 , t < T .

Hence u occurs linearly with the maximization and so we have a bang-bang optimal
control of the form

u =





0
undetermined

umax



 for Fx





>
=
<



 1,

where umax is the largest practicable fishing rate.
Suppose F (x, t) → F (x) as T → ∞, and ∂F/∂t → 0. Then

sup
u

[

u− αF +
∂F

∂x
[a(x) − u]

]

= 0 . (12.3)

Let us make a guess that F (x) is concave, and then deduce that

u =





0
undetermined, but effectively a(x̄)

umax



 for x





<
=
>



 x̄. (12.4)

Clearly, x̄ is the operating point. We suppose

ẋ =

{
a(x) > 0, x < x̄
a(x)− umax < 0, x > x̄.

We say that there is chattering about the point x̄, in the sense that u switches between
its maximum and minimum values either side of x̄, effectively taking the value a(x̄) at
x̄. To determine x̄ we note that

F (x̄) =

∫ ∞

0

e−αta(x̄)dt = a(x̄)/α . (12.5)

So from (12.3) and (12.5) we have

Fx(x) =
αF (x) − u(x)

a(x)− u(x)
→ 1 as x ր x̄ or x ց x̄ . (12.6)

47

For F to be concave, Fxx must be negative if it exists. So we must have

Fxx =
αFx

a(x)− u
−
(

αF − u

a(x)− u

)(
a′(x)

a(x)− u

)

=

(
αF − u

a(x)− u

)(
α− a′(x)

a(x)− u

)

≃ α− a′(x)

a(x)− u(x)

where the last line follows because (12.6) holds in a neighbourhood of x̄. It is required
that Fxx be negative. But the denominator changes sign at x̄, so the numerator must
do so also, and therefore we must have a′(x̄) = α. Choosing this as our x̄, we have that
F (x) is concave, as we conjectured from the start.

We now have the complete solution. The control in (12.4) has a value function F
which satisfies the HJB equation.

xx̄

a(x)

umax

α = a′(x̄)

u = a(x̄)

Growth rate a(x) subject to environment pressures

Notice that there is a sacrifice of long term yield for immediate return. If the initial
population is greater than x̄ then the optimal policy is to overfish at umax until we reach
the new x̄ and then fish at rate u = a(x̄). As α ր a′(0), x̄ ց 0. So for sufficiently large
α it is optimal to wipe out the fish population.

48

13 Pontryagin’s Maximum Principle

Pontryagin’s maximum principle. Examples of its use.

13.1 Heuristic derivation

Pontryagin’s maximum principle (PMP) states a necessary condition that must
hold on an optimal trajectory. It is a calculation for a fixed initial value of the state,
x(0). In comparison, the DP approach is a calculation for a general initial value of the
state. PMP can be used as both a computational and analytic technique (and in the
second case can solve the problem for general initial value.)

Consider first a time-invariant formulation, with plant equation ẋ = a(x, u), instan-
taneous cost c(x, u), stopping set S and terminal cost K(x). The value function F (x)
obeys the DP equation (without discounting)

inf
u∈U

[

c(x, u) +
∂F

∂x
a(x, u)

]

= 0 , (13.1)

outside S, with terminal condition

F (x) = K(x) , x ∈ S . (13.2)

Define the adjoint variable

λ = −Fx (13.3)

This is a column n-vector, and is to be regarded as a function of time on the path. The
proof that Fx exists in the required sense is actually a tricky technical matter. Also
define the Hamiltonian

H(x, u, λ) = λ⊤a(x, u)− c(x, u) , (13.4)

a scalar, defined at each point of the path as a function of the current x, u and λ.)

Theorem 13.1 (PMP) Suppose u(t) and x(t) represent the optimal control and state
trajectory. Then there exists an adjoint trajectory λ(t) such that together u(t), x(t) and
λ(t) satisfy

ẋ = Hλ, [= a(x, u)] (13.5)

λ̇ = −Hx, [= −λ⊤ax + cx] (13.6)

and for all t, 0 ≤ t ≤ T , and all feasible controls v,

H(x(t), v, λ(t)) ≤ H(x(t), u(t), λ(t)) , (13.7)

i.e. the optimal control u(t) is the value of v maximizing H((x(t), v, λ(t)).

49

‘Proof.’ Our heuristic proof is based upon the DP equation; this is the most direct and
enlightening way to derive conclusions that may be expected to hold in general.

Assertion (13.5) is immediate, and (13.7) follows from the fact that the minimizing
value of u in (13.1) is optimal. We can write (13.1) in incremental form as

F (x) = inf
u
[c(x, u)δ + F (x+ a(x, u)δ)] + o(δ) .

Using the chain rule to differentiate with respect to xi yields

−λi(t) =
∂c

∂xi
δ − λi(t+ δ)−

∑

j

∂aj
∂xi

λj(t+ δ) + o(δ)

whence (13.6) follows.
Notice that (13.5) and (13.6) each give n equations. Condition (13.7) gives a further

m equations (since it requires stationarity with respect to variation of them components
of u.) So in principle these equations, if nonsingular, are sufficient to determine the
2n+m functions u(t), x(t) and λ(t).

One can make other assertions, including specification of end-conditions (the so-
called transversality conditions.)

Theorem 13.2 (i) H = 0 on the optimal path. (ii) The sole initial condition is spec-
ification of the initial x. The terminal condition

(λ+Kx)
⊤σ = 0 (13.8)

holds at the terminal x for all σ such that x+ ǫσ is within o(ǫ) of the termination point
of a possible optimal trajectory for all sufficiently small positive ǫ.

‘Proof.’ Assertion (i) follows from (13.1), and the first assertion of (ii) is evident. We
have the terminal condition (13.2), from whence it follows that (Fx −Kx)

⊤σ = 0 for
all x, σ such that x and x+ ǫσ lie in S for all small enough positive ǫ. However, we are
only interested in points where an optimal trajectory makes it first entry to S and at
these points (13.3) holds. Thus we must have (13.8).

13.2 Example: bringing a particle to rest in minimal time

A particle with given initial position and velocity x1(0), x2(0) is to be brought to rest
at position 0 in minimal time. This is to be done using the control force u, such that
|u| ≤ 1, with dynamics of ẋ1 = x2 and ẋ2 = u. That is,

d

dt

(
x1

x2

)

=

(
0 1
0 0

)(
x1

x2

)

+

(
0
1

)

u (13.9)

and we wish to minimize

C =

∫ T

0

1 dt

50

where T is the first time at which x = (0, 0). The Hamiltonian is

H = λ1x2 + λ2u− 1 ,

which is maximized by u = sign(λ2). The adjoint variables satisfy λ̇i = −∂H/∂xi, so

λ̇1 = 0, λ̇2 = −λ1. (13.10)

The terminal x must be 0, so in (13.8) we can only take σ = 0 and so (13.8) provides
no additional information for this problem. However, if at termination λ1 = α, λ2 = β,
then in terms of time to go we can compute

λ1 = α, λ2 = β + αs.

These reveal the form of the solution: there is at most one change of sign of λ2 on the
optimal path; u is maximal in one direction and then possibly maximal in the other.

Appealing to the fact that H = 0 at termination (when x2 = 0), we conclude that
|β| = 1. We now consider the case β = 1. The case β = −1 is similar.

If β = 1, α ≥ 0 then λ2 = 1 + αs ≥ 0 for all s ≥ 0 and

u = 1, x2 = −s, x1 = s2/2.

In this case the optimal trajectory lies on the parabola x1 = x2
2/2, x1 ≥ 0, x2 ≤ 0. This

is half of the switching locus x1 = ±x2
2/2.

If β = 1, α < 0 then u = −1 or u = 1 as the time to go is greater or less than
s0 = 1/|α|. In this case,

u = −1, x2 = (s− 2s0), x1 = 2s0s− 1
2s

2 − s20 , s ≥ s0 ,
u = 1, x2 = −s, x1 = 1

2s
2, s ≤ s0 .

The control rule expressed as a function of s is open-loop, but in terms of (x1, x2) and
the switching locus, it is closed-loop.

Notice that the path is sensitive to the initial conditions, in that the optimal path
is very different for two points just either side of the switching locus.

13.3 Connection with Lagrangian multipliers

An alternative way to understand the maximum principle is to think of λ as a La-
grangian multiplier for the constraint ẋ = a(x, u). Consider the Lagrangian form

L =

∫ T

0

[
−c− λ⊤(ẋ− a)

]
dt−K(x(T)) ,

to be maximized with respect to the (x, u, λ) path. Here x(t) first enters a stopping set
S at t = T . We integrate λ⊤ẋ by parts to obtain

L = −λ(T)⊤x(T) + λ(0)⊤x(0) +

∫ T

0

[

λ̇⊤x+ λ⊤a− c
]

dt−K(x(T)) .

51

x1

x2

u = 1

u = −1
switching locus

Figure 2: Optimal trajectories for the problem

The integrand must be stationary with respect to x(t) and hence λ̇ = −Hx, i.e. (13.6).
The expression must also be stationary with respect to ǫ > 0, x(T)+ ǫσ ∈ S and hence
(λ(T) +Kx(x(T)))

⊤σ = 0, i.e. (13.8). It is good to have this alternative view, but the
treatment is less immediate and less easy to rigorise.

13.4 Example: use of the transversality conditions

If the terminal time is constrained then (as we see in the next lecture) we no longer
have Theorem 13.2 (i), i.e. that H is maximized to 0, but the other claims of Theorems
13.1 and 13.2 continue to hold.

Consider the a problem with the dynamics (13.9), but with u unconstrained, x(0) =
(0, 0) and cost function

C = 1
2

∫ T

0

u(t)2 dt− x1(T)

where T is fixed and given. Here K(x) = −x1(T) and the Hamiltonian is

H(x, u, λ) = λ1x2 + λ2u− 1

2
u2,

which is maximized at u(t) = λ2(t). Now λ̇i = −∂H/∂xi gives

λ̇1 = 0, λ̇2 = −λ1.

In the terminal condition, (λ +Kx)
⊤σ = 0, σ is arbitrary and so we also have

λ1(T)− 1 = 0, λ2(T) = 0.

Thus the solution must be λ1(t) = 1 and λ2(t) = T − t. Hence the optimal applied
force is u(t) = T − t, which decreases linearly with time and reaches zero at T .

52

14 Applications of the Maximum Principle

Terminal conditions and the maximum principle. Examples of typical arguments for
synthesizing a solution to an optimal control problem by use of the maximum principle.

14.1 Problems with terminal conditions

Suppose a, c, S and K are all t-dependent. The DP equation for F (x, t) is now be

inf
u
[c+ Ft + Fxa] = Ft − sup

u
[λ⊤a− c] = 0 , (14.1)

outside a stopping set S, with F (x, t) = K(x, t) for (x, t) in S. However, we can reduce
this to a formally time-invariant case by augmenting the state variable x by the variable
t. We then have the augmented variables

x →
[
x
t

]

a →
[
a
1

]

λ →
[
λ
λ0

]

.

We keep the same definition (13.4) as before, that H = λ⊤a − c, and take λ0 = −Ft.
It now follows from (14.1) that on the optimal trajectory

H(x, u, λ) is maximized to − λ0 .

Theorem 13.1 still holds, as can be verified. However, to (13.6) we can now add

λ̇0 = −Ht = ct − λat . (14.2)

and transversality condition

(λ+Kx)
⊤σ + (λ0 +Kt)τ = 0 , (14.3)

which must hold at the termination point (x, t) if (x + ǫσ, t + ǫτ) is within o(ǫ) of the
termination point of an optimal trajectory for all small enough positive ǫ. We can now
understand what to do with various types of terminal condition.

If the stopping rule specifies only a fixed terminal time T then τ must be zero and
σ is unconstrained, so that (14.3) becomes λ(T) = −Kx. The problem in Section 13.4
is like this.

If there is a free terminal time then τ is unconstrained and so (14.3) gives
−λ0(T) = KT . An example of this case appears in Section 14.2 below.

If the system is time-homogeneous, in that a and c are independent of t, but the
terminal cost K(x, T) depends on T , then (14.2) implies that λ0 is constant and so the
maximized value of H is constant on the optimal orbit. The problem in Section 13.2

could have been solved this way by replacing C =
∫ T

0 1 dt by C = K(x, T) = T . We
would deduce from the transversality condition that since τ is unconstrained, λ0 =
−KT = −1. Thus H = λ1x2 + λ2u is maximized to 1 at all points of the optimal
trajectory.

53

14.2 Example: monopolist

Miss Prout holds the entire remaining stock of Cambridge elderberry wine for the
vintage year 1959. If she releases it at rate u (in continuous time) she realises a unit
price p(u) = (1 − u/2), for 0 ≤ u ≤ 2 and p(u) = 0 for u ≥ 2. She holds an amount x
at time 0 and wishes to release it in a way that maximizes her total discounted return,
∫ T

0
e−αtup(u) dt, (where T is unconstrained.)

Solution. The plant equation is ẋ = −u and the Hamiltonian is

H(x, u, λ) = e−αtup(u)− λu = e−αtu(1− u/2)− λu .

Note that K = 0. Maximizing with respect to u and using λ̇ = −Hx gives

u = 1− λeαt , λ̇ = 0 , t ≥ 0 ,

so λ is constant. The terminal time is unconstrained so the transversality condition
gives λ0(T) = −KT = 0. Therefore, since H is maximized to −λ0(T) = 0 at T , we
have u(T) = 0 and hence

λ = e−αT , u = 1− e−α(T−t) , t ≤ T ,

where T is then the time at which all wine has been sold, and so

x =

∫ T

0

u dt = T −
(
1− e−αT

)
/α .

Thus u is implicitly a function of x, through T . The optimal value function is

F (x) =

∫ T

0

(u− u2/2)e−αt dt =
1

2

∫ T

0

(
e−αt − eαt−2αT

)
dt =

(
1− e−αT

)2

2α
.

14.3 Example: insects as optimizers

A colony of insects consists of workers and queens, of numbers w(t) and q(t) at time t.
If a time-dependent proportion u(t) of the colony’s effort is put into producing workers,
(0 ≤ u(t) ≤ 1, then w, q obey the equations

ẇ = auw − bw, q̇ = c(1− u)w ,

where a, b, c are constants, with a > b. The function u is to be chosen to maximize the
number of queens at the end of the season. Show that the optimal policy is to produce
only workers up to some moment, and produce only queens thereafter.

Solution. The Hamiltonian is

H = λ1(auw − bw) + λ2c(1− u)w .

54

The adjoint equations and transversality conditions (with K = −q) give

−λ̇0 = Ht = 0

−λ̇1 = Hw = λ1(au− b) + λ2c(1− u)

−λ̇2 = Hq = 0

,
λ1(T) = −Kw = 0
λ2(T) = −Kq = 1

,

and hence λ0(t) is constant and λ2(t) = 1 for all t. Therefore H is maximized by

u =
0
1

as λ1a− c
≤
≥ 0 .

At T , this implies u(T) = 0. If t is a little less than T , λ1 is small and u = 0 so the
equation for λ1 is

λ̇1 = λ1b− c. (14.4)

As long as λ1 is small, λ̇1 < 0. Therefore as the remaining time s increases, λ1(s)
increases, until such point that λ1a − c ≥ 0. The optimal control becomes u = 1 and
then λ̇1 = −λ1(a−b) < 0, which implies that λ1(s) continues to increase as s increases,
right back to the start. So there is no further switch in u.

The point at which the single switch occurs is found by integrating (14.4) from t to
T , to give λ1(t) = (c/b)(1− e−(T−t)b) and so the switch occurs where λ1a− c = 0, i.e.
(a/b)(1− e−(T−t)b) = 1, or

tswitch = T + (1/b) log(1− b/a).

Experimental evidence suggests that social insects do closely follow this policy and
adopt a switch time that is nearly optimal for their natural environment.

14.4 Example: rocket thrust optimization

Regard a rocket as a point mass with position x, velocity v and mass m. Mass is
changed only by expansion of matter in the jet. Suppose the jet has vector velocity k
relative to the rocket and the rocket is subject to external force f . Then the condition
of momentum conservation yields

(m− δm)(v + δv) + (v − k)δm−mv = fδt ,

and this gives the so-called ‘rocket equation’,

mv̇ = kṁ+ f .

Suppose the jet speed |k| = 1/b is fixed, but the direction and the rate of expulsion
of mass can be varied. Then the control is the thrust vector u = kṁ, subject to |u| ≤ 1,
say. Find the control that maximizes the height that the rocket reaches.

Solution. The plant equation (in R
3) is

ẋ = v

mv̇ = u+ f

ṁ = −b|u| .

55

We take dual variables p, q, r corresponding to x, v, m. Then

H = p⊤v +
q⊤(u + f)

m
− rb|u| − c ,

(where if the costs are purely terminal c = 0), and u must maximize

q⊤u

m
− br|u|.

The optimal u is in the direction of q so u = |u|q/|q| and |u| maximizes

|u|
(|q|
m

− br

)

.

Thus we have that the optimal thrust should be

maximal
intermediate

null
as

(|q|
m

− rb

) >
=
<

0 .

The control is bang/bang and p, q, r are determined from the dual equations.
If the rocket is launched vertically then f = −mg and the dual equations give ṗ = 0,

q̇ = −p and ṙ = qu/m2 > 0. Suppose we want to maximize the height that the rocket
attains. Let m0 be the mass of the rocket structure, so that the maximum height has
been reached if m = m0 and v ≤ 0. Since K = −x at termination, the transversality
conditions give p(T) = 1, q(T) = 0. Thus p(s) = 1, q(s) = s, and |u| must maximize
|u| (s/m− br). One can check that (d/ds)(s/m− rb) > 0, and hence we should use full
thrust from launch up to some time, and thereafter coast to maximum height on zero
thrust.

56

15 Controlled Markov Jump Processes

Control problems in a continuous-time stochastic setting. Markov jump processes when
the state space is discrete.

15.1 The dynamic programming equation

The DP equation in incremental form is

F (x, t) = inf
u
{c(x, u)δt+ E[F (x(t + δt), t+ δt)|x(t) = x , u(t) = u)]}.

If appropriate limits exist then this can be written in the limit δt ↓ 0 as

inf
u
[c(x, u) + Ft(x, t) + Λ(u)F (x, t)] = 0 .

Here Λ(u) is the operator defined by

Λ(u)φ(x) = lim
δt↓0

[
E[φ(x(t + δt))|x(t) = x, u(t) = u]− φ(x)

δt

]

(15.1)

or

Λ(u)φ(x) = lim
δt↓0

E

[
φ(x(t + δt))− φ(x)

δt

∣
∣
∣
∣
x(t) = x, u(t) = u

]

the conditional expectation of the ‘rate of change’ of φ(x) along the path. The operator
Λ converts a scalar function of state, φ(x), to another such function, Λφ(x). However, its
action depends upon the control u, so we write it as Λ(u). It is called the infinitesimal
generator of the controlled Markov process. Equation (15.1) is equivalent to

E[φ(x(t + δt)|x(t) = x, u(t) = u] = φ(x) + Λ(u)φ(x)δt + o(δt) .

This equation takes radically different forms depending upon whether the state space
is discrete or continuous. Both are important, and we examine their forms in turn,
beginning with a discrete state space.

15.2 The case of a discrete state space

Suppose that x can take only values in a discrete set, labelled by an integer j, say, and
that the transition intensity

λjk(u) = lim
δt↓0

1

δt
P (x(t + δt) = k|x(t) = j, u(t) = u)

is defined for all u and j 6= k. Then

E
[
φ(x(t + δt))|x(t) = j, u(t) = u

]

=
∑

k 6=j

λjk(u)φ(k)δt +



1−
∑

k 6=j

λjk(u)δt



φ(j) + o(δt) ,

57

whence it follows that

Λ(u)φ(j) =
∑

k

λjk(u)[φ(k) − φ(j)]

and the DP equation becomes

inf
u

[

c(j, u) + Ft(j, t) +
∑

k

λjk(u)[F (k, t)− F (j, t)]

]

= 0 . (15.2)

This is the optimality equation for a Markov jump process.

15.3 Uniformization in the infinite horizon case

In this section we explain how (in the infinite horizon case) the continuous-time DP
equation (15.2) can be rewritten to look like a discrete-time DP equation. Once this
is done then all the ideas of Lectures 1–7 can be applied. In the discounted cost case
(15.2) undergoes the usual modification to

inf
u

[

c(j, u)− αF (j, t) + Ft(j, t) +
∑

k

λjk(u)[F (k, t)− F (j, t)]

]

= 0.

In the infinite horizon case, everything becomes independent of time and we have

inf
u

[

c(j, u)− αF (j) +
∑

k

λjk(u)[F (k)− F (j)]

]

= 0. (15.3)

Suppose we can choose a B large enough that it is possible to define

λjj(u) = B −
∑

k 6=j

λjk(u) ≥ 0 ,

for all j and u. By adding (B + α)F (j) to both sides of (15.3), the DP equation can
be written

(B + α)F (j) = inf
u

[

c(j, u) +
∑

k

λjk(u)F (k)

]

,

Finally, dividing by B + α, this can be written as

F (j) = inf
u

[

c̄(j, u) + β
∑

k

pjk(u)F (k)

]

, (15.4)

where

c̄(j, u) =
c(j, u)

B + α
, β =

B

B + α
, pjk(u) =

λjk(u)

B
and

∑

k

pjk(u) = 1 .

58

This makes the dynamic programming equation look like a case of discounted dynamic
programming in discrete time, or of negative programming if α = 0. All the results
we have for those cases can now be used (e.g., value iteration, OSLA rules, etc.) The
trick of using a large B to make the reduction from a continuous to a discrete time
formulation is called uniformization.

In the undiscounted case we could try a solution to (15.2) of the form F (j, t) =
−γt+ φ(j). Substituting this in (15.2), we see that this gives a solution provided,

0 = inf
u

[

c(j, u)− γ +
∑

k

λjk(u)[φ(k)− φ(j)]

]

.

By adding Bφ(j) to both sides of the above, then dividing by B, setting γ̄ = γ/B, and
making the other substitutions above (but with α = 0), this is equivalent to

φ(j) + γ̄ = inf
u

[

c̄(j, u) +
∑

k

pjk(u)φ(k)

]

, (15.5)

which has the same form as the discrete-time average-cost optimality equation of Lec-
ture 7. The theorems and techniques of that lecture can now be applied.

15.4 Example: admission control at a queue

Consider a queue of varying size 0, 1, . . . , with constant service rate µ and arrival rate
u, where u is controllable between 0 and a maximum value λ. Let c(x, u) = ax− Ru.
This corresponds to paying a cost a per unit time for each customer in the queue and
receiving a reward R at the point that each new customer is admitted (and therefore
incurring reward at rate Ru when the arrival rate is u). Let us take B = λ + µ, and
without loss of generality assume B = 1. The average cost optimality equation from
(15.5) is

φ(0) + γ = inf
u
[−Ru+ uφ(1) + (µ+ λ− u)φ(0)] ,

= inf
u
[u{−R+ φ(1)− φ(0)}+ (µ+ λ)φ(0)] ,

φ(x) + γ = inf
u
[ax−Ru+ uφ(x + 1) + µφ(x − 1) + (λ− u)φ(x)] ,

= inf
u
[ax+ u{−R+ φ(x+ 1)− φ(x)} + µφ(x − 1) + λφ(x)] , x > 0 .

Thus u should be chosen to be 0 or 1 as −R+ φ(x+ 1)− φ(x) is positive or negative.
Let us consider what happens under the policy that take u = λ for all x. The

relative costs for this policy, say f , are given by

f(x) + γ = ax−Rλ+ λf(x+ 1) + µf(x− 1) , x > 0 .

The solution to the homogeneous part of this recursion is of the form f(x) =
d11

x + d2(µ/λ)
x. Assuming λ < µ and we desire a solution for f that does not grow

59

exponentially, we take d2 = 0 and so the solution is effectively the solution to the
inhomogeneous part, i.e.

f(x) =
ax(x + 1)

2(µ− λ)
, γ =

aλ

µ− λ
− λR ,

Applying the idea of policy improvement, we conclude that a better policy is to take
u = 0 (i.e. don’t admit a customer) if −R+ f(x+ 1)− f(x) > 0, i.e. if

(x + 1)a

µ− λ
−R > 0 .

Further policy improvement would probably be needed to reach the optimal policy.
However, this policy already exhibits an interesting property: it rejects customers for
smaller queue length x than does a policy which rejects a customer if and only if

(x + 1)a

µ
−R > 0 .

This second policy is optimal if one is purely concerned with whether or not an in-
dividual customer that joins when there are x customers in front of him will show a
profit on the basis of the difference between the reward R and his expected holding
cost (x+1)a/µ. This example exhibits the difference between individual optimality
(which is myopic) and social optimality. The socially optimal policy is more reluc-
tant to admit customers because it anticipates that more customers are on the way;
thus it feels less badly about forgoing the profit on a customer that presents himself
now, recognizing that admitting such a customer can cause customers who are admitted
after him to suffer greater delay. As expected, the policies are nearly the same if the
arrival rate λ is small.

60

16 Controlled Diffusion Processes

Brief introduction to controlled continuous-time stochastic models with a continuous
state space, i.e. controlled diffusion processes.

16.1 Diffusion processes and controlled diffusion processes

The Wiener process {B(t)}, is a scalar process for which B(0) = 0, the increments
in B over disjoint time intervals are statistically independent and B(t) is normally
distributed with zero mean and variance t. (‘B’ stands for Brownian motion.) This
specification is internally consistent because, for example,

B(t) = B(t1) + [B(t)−B(t1)]

and for 0 ≤ t1 ≤ t the two terms on the right-hand side are independent normal
variables of zero mean and with variance t1 and t− t1 respectively.

If δB is the increment of B in a time interval of length δt then

E(δB) = 0 , E[(δB)2] = δt , E[(δB)j] = o(δt) , for j > 2 ,

where the expectation is one conditional on the past of the process. Note that since

E[(δB/δt)2] = O
[
(δt)−1

]
→ ∞ ,

the formal derivative ǫ = dB/dt (continuous-time ‘white noise’) does not exist in a
mean-square sense, but expectations such as

E

[{∫

α(t)ǫ(t)dt

}2
]

= E

[{∫

α(t)dB(t)

}2
]

=

∫

α(t)2dt

make sense if the integral is convergent.
Now consider a stochastic differential equation

δx = a(x, u)δt+ g(x, u)δB ,

which we shall write formally as

ẋ = a(x, u) + g(x, u)ǫ .

This, as a Markov process, has an infinitesimal generator with action

Λ(u)φ(x) = lim
δt↓0

E

[
φ(x(t + δt))− φ(x)

δt

∣
∣
∣
∣
x(t) = x, u(t) = u

]

= φxa+
1

2
φxxg

2

= φxa+
1

2
Nφxx ,

61

where N(x, u) = g(x, u)2. So this controlled diffusion process has DP equation

inf
u

[

c+ Ft + Fxa+
1

2
NFxx

]

= 0 , (16.1)

and in the vector case

inf
u

[

c+ Ft + Fxa+
1

2
tr(NFxx)

]

= 0 .

16.2 Example: noisy LQ regulation in continuous time

The dynamic programming equation is

inf
u

[

x⊤Rx+ u⊤Qu+ Ft + F⊤
x (Ax+Bu) +

1

2
tr(NFxx)

]

= 0 .

In analogy with the discrete and deterministic continuous cases that we have considered
previously, we try a solution of the form,

F (x, t) = x⊤Π(t)x+ γ(t) .

This leads to the same Riccati equation as in Section 12.2,

0 = x⊤

[

R+ΠA+A⊤Π−ΠBQ−1B⊤Π+
dΠ

dt

]

x ,

and also, as in Section 8.3,

dγ

dt
+ tr(NΠ(t)) = 0, giving γ(t) =

∫ T

t

tr(NΠ(τ)) dτ .

16.3 Example: a noisy second order system

Consider a special case of LQ regulation:

minimize
u

E

[

x(T)2 +

∫ T

0

u(t)2 dt

]

where for 0 ≤ t ≤ T ,

ẋ(t) = y(t) and ẏ(t) = u(t) + ǫ(t) ,

u(t) is the control variable, and ǫ(t) is Gaussian white noise,

Note that if we define z(t) = x(t) + (T − t)y(t) then

ż = ẋ− y + (T − t)ẏ = (T − t)u+ (T − t)ǫ(t)

62

where z(T) = x(T). Hence the problem can be posed only in terms of scalars u and z.
Recalling what we know about LQ models, let us conjecture that the optimality

equation is of a form

V (z, t) = z2Pt + γt . (16.2)

We could use (16.1). But let us argue from scratch. For (16.2) to work we will need

z2Pt + γt = min
u

{
u2δ + E

[
(z + żδ)2Pt+δ + γt+δ

]}

= min
u

{
u2δ +

[
z2 + 2(T − t)zuδ + (T − t)2δ

]
Pt+δ + γt+δ

}
+ o(δ)

The optimizing u is

u = −(T − t)Pt+δz .

Substituting this and letting δ → 0 we have

−z2Ṗt − γ̇t = −z2(T − t)2P 2
t + (T − t)2Pt .

Thus

−γ̇t = (T − t)2Pt

and

Ṗt = (T − t)2P 2
t .

Using the boundary condition PT = 1, we find that the solution to the above differential
equation is

Pt =
(
1 + 1

3 (T − t)3
)−1

,

and the optimal control is

u(t) = −(T − t)
(
1 + 1

3 (T − t)3
)−1

z(t) .

16.4 Example: passage to a stopping set

Consider a problem of movement on the unit interval 0 ≤ x ≤ 1 in continuous time,
ẋ = u+ ǫ, where ǫ is white noise of power v. The process terminates at time T when
x reaches one end or the other of the the interval. The cost is made up of an integral

term 1
2

∫ T

0 (L + Qu2)dt, penalising both control and time spent, and a terminal cost
which takes the value C0 or C1 according as termination takes place at 0 or 1.

Show that in the deterministic case v = 0 one should head straight for one of
the termination points at a constant rate and that the value function F (x) has a
piecewise linear form, with possibily a discontinuity at one of the boundary points if
that boundary point is the optimal target from no interior point of the interval.

Show, in the stochastic case, that the dynamic programming equation with the
control value optimized out can be linearised by a transformation F (x) = α logφ(x) for
a suitable constant α, and hence solve the problem.

63

Solution. In the deterministic case the optimality equation is

inf
u

[
L+Qu2

2
+ u

∂F

∂x

]

= 0, 0 < x < 1, (16.3)

with boundary conditions F (0) = C0, F (1) = C1. If one goes (from x) for x = 0 at
speed w one incurs a cost of C0 + (x/2w)(L +Qw2) with a minimum over w value of
C0 + x

√
LQ. Indeed (16.3) is solved by

F (x) = min
[

C0 + x
√

LQ,C1 + (1− x)
√

LQ
]

.

The minimizing option determines the target and the optimal w is
√

L/Q.
In the stochastic case

inf
u

[
L+Qu2

2
+ u

∂F

∂x
+

v

2

∂2F

∂x2

]

= 0.

So u = −Q−1Fx and

L−Q−1

(
∂F

∂x

)2

+ v
∂2F

∂x2
= 0 .

Make the transform F (x) = −Qv logφ(x) so φ(x) = e−F (x)/Qv. Then

Qv2
∂2φ

∂x2
− Lφ = 0 ,

with solution
φ(x) = k1 exp

(x

v

√

L/Q
)

+ k2 exp
(

−x

v

√

L/Q
)

.

We choose the constants k1, k2 to meet the two boundary conditions on F .

0 0.2 0.4 0.6 0.8
1

1

1.2

1.4

1.6

1.8

2.0

2.2

v = 1

v = 2

v = 0.5

v = 0.25

v = 0.125

F (x) against x for the passage to a stopping set

The figure shows the solution for L = 1, Q = 4, C0 = 1, C1 = 1.5 and v = 0.125,
0.25, 0.5, 1, 2 and the deterministic solution. Notice that noise actually reduces cost
by lessening the time until absorption at one or the other of the endpoints.

64

Index

adjoint variable, 49
average-cost, 25

bandit process, 21
bang-bang control, 6
Bellman equation, 3
Bernoulli bandit, 21
Brownian motion, 61

calibrating bandit process, 23
certainty equivalence, 44
chattering, 47
closed loop, 3
control theory, 1
control variable, 2
controllability, 33
controllable, 33
controlled diffusion process, 61, 62

decomposable cost, 4
diffusion process, 61
discounted programming, 11
discounted-cost criterion, 9
discrete-time, 2
dynamic programming equation, 3

fair charge, 23
feedback, 3
finite actions, 14
fixed terminal time, 53
forward induction policy, 24
free terminal time, 53

gain matrix, 31
Gaussian white noise, 62
Gittins index, 22

Hamilton Jacobi Bellman equation, 45
Hamiltonian, 49

index policy, 22
individual optimality, 60

infinitesimal generator, 57
innovations, 43
interchange argument, 10

linear least squares estimate, 42
LQG model, 29

Markov decision problem, 5
Markov decision process, 4, 5
Markov dynamics, 4
Markov jump process, 58
Markov policy, 17
multi-armed bandit, 21
multi-armed bandit problem, 21
myopic policy, 16, 24

negative programming, 11

observability, 39
observable, 39
one-step look-ahead rule, 18
one-step-look-ahead rule, 24
open loop, 3
optimality equation, 3
optimization over time, 1

perfect state observation, 4
plant equation, 3
policy, 3
policy improvement, 27
policy improvement algorithm, 28
Pontryagin’s maximum principle, 49
positive programming, 11
power, 63
prevailing charge, 23
principle of optimality, 1, 2

r-controllable, 33
r-observable, 39
regulation, 29
Riccati equation, 31

secretary problem, 7

65

separable cost function, 3
separation principle, 44
simple family of alternative bandit pro-

cesses, 21
social optimality, 60
stability matrix, 37
stabilizable, 37
state variable, 3
stationary deterministic Markov policy, 17
stochastic differential equation, 61
stopping problem, 18
stopping time, 22
successive approximation, 14
switching locus, 51

time horizon, 2
time to go, 5
time-homogeneous, 5, 10
transition intensity, 57
transversality conditions, 50

uniformization, 59

value function, 6
value iteration, 14
value iteration algorithm, 27
value iteration bounds, 27

white noise, 31
Wiener process, 61

66

