
13 Pontryagin’s Maximum Principle

We explain Pontryagin’s maximum principle and give some examples of its use.

13.1 Heuristic derivation

Pontryagin’s maximum principle (PMP) states a necessary condition that must
hold on an optimal trajectory. It is a calculation for a fixed initial value of the state,
x(0). In comparison, the DP approach is a calculation for a general initial value of the
state. PMP can be used as both a computational and analytic technique (and in the
second case can solve the problem for general initial value.)

Consider first a time-invariant formulation, with plant equation ẋ = a(x, u), instan-
taneous cost c(x, u), stopping set S and terminal cost K(x). The value function F (x)
obeys the DP equation (without discounting)

inf
u∈U

[

c(x, u) +
∂F

∂x
a(x, u)

]

= 0 , (13.1)

outside S, with terminal condition

F (x) = K(x) , x ∈ S . (13.2)

Define the adjoint variable
λ = −Fx (13.3)

This is a column n-vector, and is to be regarded as a function of time on the path. The
proof that Fx exists in the required sense is actually a tricky technical matter. Also
define the Hamiltonian

H(x, u, λ) = λ⊤a(x, u) − c(x, u) , (13.4)

a scalar, defined at each point of the path as a function of the current x, u and λ.)

Theorem 13.1 (PMP) Suppose u(t) and x(t) represent the optimal control and state
trajectory. Then there exists an adjoint trajectory λ(t) such that together u(t), x(t) and
λ(t) satisfy

ẋ = Hλ, [= a(x, u)] (13.5)

λ̇ = −Hx, [= −λ⊤ax + cx] (13.6)

and for all t, 0 ≤ t ≤ T , and all feasible controls v,

H(x(t), v, λ(t)) ≤ H(x(t), u(t), λ(t)) , (13.7)

i.e., the optimal control u(t) is the value of v maximizing H((x(t), v, λ(t)).
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‘Proof.’ Our heuristic proof is based upon the DP equation; this is the most direct and
enlightening way to derive conclusions that may be expected to hold in general.

Assertion (13.5) is immediate, and (13.7) follows from the fact that the minimizing
value of u in (13.1) is optimal. We can write (13.1) in incremental form as

F (x) = inf
u

[c(x, u)δ + F (x + a(x, u)δ)] + o(δ) .

Using the chain rule to differentiate with respect to xi yields

−λi(t) =
∂c

∂xi
δ − λi(t + δ) −

∑

j

∂aj

∂xi
λj(t + δ) + o(δ)

whence (13.6) follows.
Notice that (13.5) and (13.6) each give n equations. Condition (13.7) gives a further

m equations (since it requires stationarity with respect to variation of the m components
of u.) So in principle these equations, if nonsingular, are sufficient to determine the
2n + m functions u(t), x(t) and λ(t).

One can make other assertions, including specification of end-conditions (the so-
called transversality conditions.)

Theorem 13.2 (i) H = 0 on the optimal path. (ii) The sole initial condition is speci-
fication of the initial x. The terminal condition

(λ + Kx)⊤σ = 0 (13.8)

holds at the terminal x for all σ such that x+ ǫσ is within o(ǫ) of the termination point
of a possible optimal trajectory for all sufficiently small positive ǫ.

‘Proof.’ Assertion (i) follows from (13.1), and the first assertion of (ii) is evident. We
have the terminal condition (13.2), from whence it follows that (Fx − Kx)⊤σ = 0 for
all x, σ such that x and x + ǫσ lie in S for all small enough positive ǫ. However, we are
only interested in points where an optimal trajectory makes it first entry to S and at
these points (13.3) holds. Thus we must have (13.8).

13.2 Example: bringing a particle to rest in minimal time

A particle with given initial position and velocity x1(0), x2(0) is to be brought to rest
at position 0 in minimal time. This is to be done using the control force u, such that
|u| ≤ 1, with dynamics of ẋ1 = x2 and ẋ2 = u. That is,

d

dt

(
x1

x2

)

=

(
0 1
0 0

) (
x1

x2

)

+

(
0
1

)

u (13.9)

and we wish to minimize

C =

∫ T

0

1 dt
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where T is the first time at which x = (0, 0). The Hamiltonian is

H = λ1x2 + λ2u − 1 ,

which is maximized by u = sign(λ2). The adjoint variables satisfy λ̇i = −∂H/∂xi, so

λ̇1 = 0, λ̇2 = −λ1. (13.10)

The terminal x must be 0, so in (13.8) we can only take σ = 0 and so (13.8) provides
no additional information for this problem. However, if at termination λ1 = α, λ2 = β,
then in terms of time to go we can compute

λ1 = α, λ2 = β + αs.

These reveal the form of the solution: there is at most one change of sign of λ2 on the
optimal path; u is maximal in one direction and then possibly maximal in the other.

Appealing to the fact that H = 0 at termination (when x2 = 0), we conclude that
|β| = 1. We now consider the case β = 1. The case β = −1 is similar.

If β = 1, α ≥ 0 then λ2 = 1 + αs ≥ 0 for all s ≥ 0 and

u = 1, x2 = −s, x1 = s2/2.

In this case the optimal trajectory lies on the parabola x1 = x2
2/2, x1 ≥ 0, x2 ≤ 0. This

is half of the switching locus x1 = ±x2
2/2.

If β = 1, α < 0 then u = −1 or u = 1 as the time to go is greater or less than
s0 = 1/|α|. In this case,

u = −1, x2 = (s − 2s0), x1 = 2s0s − 1
2s2 − s2

0 , s ≥ s0 ,
u = 1, x2 = −s, x1 = 1

2s2, s ≤ s0 .

The control rule expressed as a function of s is open-loop, but in terms of (x1, x2) and
the switching locus, it is closed-loop.

Notice that the path is sensitive to the initial conditions, in that the optimal path
is very different for two points just either side of the switching locus.

13.3 Connection with Lagrangian multipliers

An alternative way to understand the maximum principle is to think of λ as a La-
grangian multiplier for the constraint ẋ = a(x, u). Consider the Lagrangian form

L =

∫ T

0

[
−c − λ⊤(ẋ − a)

]
dt − K(x(T )) ,

to be maximized with respect to the (x, u, λ) path. Here x(t) first enters a stopping set
S at t = T . We integrate λ⊤ẋ by parts to obtain

L = −λ(T )⊤x(T ) + λ(0)⊤x(0) +

∫ T

0

[

λ̇⊤x + λ⊤a − c
]

dt − K(x(T )) .
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Figure 2: Optimal trajectories for the problem

The integrand must be stationary with respect to x(t) and hence λ̇ = −Hx, i.e., (13.6).
The expression must also be stationary with respect to ǫ > 0, x(T ) + ǫσ ∈ S and hence
(λ(T ) + Kx(x(T )))⊤σ = 0, i.e., (13.8). It is good to have this alternative view, but the
treatment is less immediate and less easy to rigorise.

13.4 Example: use of the transversality conditions

If the terminal time is constrained then (as we see in the next lecture) we no longer
have Theorem 13.2 (i), i.e., that H is maximized to 0, but the other claims of Theorems
13.1 and 13.2 continue to hold.

Consider the a problem with the dynamics (13.9), but with u unconstrained, x(0) =
(0, 0) and cost function

C = 1
2

∫ T

0

u(t)2 dt − x1(T )

where T is fixed and given. Here K(x) = −x1(T ) and the Hamiltonian is

H(x, u, λ) = λ1x2 + λ2u − 1
2u2,

which is maximized at u(t) = λ2(t). Now λ̇i = −∂H/∂xi gives

λ̇1 = 0, λ̇2 = −λ1.

In the terminal condition, (λ + Kx)⊤σ = 0, σ is arbitrary and so we also have

λ1(T ) − 1 = 0, λ2(T ) = 0.

Thus the solution must be λ1(t) = 1 and λ2(t) = T − t. Hence the optimal applied force
is u(t) = T − t, which decreases linearly with time and reaches zero at T .
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