
12 Dynamic Programming in Continuous Time

We develop the HJB equation for dynamic programming in continuous time.

12.1 The optimality equation

In continuous time the plant equation is,

ẋ = a(x, u, t) .

Let us consider a discounted cost of

C =

∫ T

0

e−αtc(x, u, t) dt + e−αTC(x(T ), T ) .

The discount factor over δ is e−αδ = 1 − αδ + o(δ). So the optimality equation is,

F (x, t) = inf
u

[
c(x, u, t)δ + e−αδF (x + a(x, u, t)δ, t + δ) + o(δ)

]
.

By considering the term that multiplies δ in the Taylor series expansion we obtain,

inf
u

[

c(x, u, t) − αF +
∂F

∂t
+

∂F

∂x
a(x, u, t)

]

= 0 , t < T, (12.1)

with F (x, T ) = C(x, T ). In the undiscounted case, we simply put α = 0.

The DP equation (12.1) is called the Hamilton Jacobi Bellman equation (HJB).
Its heuristic derivation we have given above is justified by the following theorem.

Theorem 12.1 Suppose a policy π, using a control u, has a value function F which
satisfies the HJB equation (12.1) for all values of x and t. Then π is optimal.

Proof. Consider any other policy, using control v, say. Then along the trajectory
defined by ẋ = a(x, v, t) we have

− d

dt
e−αtF (x, t) = e−αt

[

c(x, v, t) −
(

c(x, v, t) − αF +
∂F

∂t
+

∂F

∂x
a(x, v, t)

)]

≤ e−αtc(x, v, t) .

Integrating this inequality along the v path, from x(0) to x(T ), gives

F (x(0), 0) − e−αTC(x(T ), T ) ≤
∫ T

t=0

e−αtc(x, v, t) dt .

Thus the v path incurs a cost of at least F (x(0), 0), and hence π is optimal.
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12.2 Example: LQ regulation

The undiscounted continuous time DP equation for the LQ regulation problem is

0 = inf
u

[
x⊤Rx + u⊤Qu + Ft + F⊤

x (Ax + Bu)
]

.

Suppose we try a solution of the form F (x, t) = x⊤Π(t)x, where Π(t) is a symmetric
matrix. Then Fx = 2Π(t)x and the optimizing u is u = − 1

2Q−1B⊤Fx = −Q−1B⊤Π(t)x.
Therefore the DP equation is satisfied with this u if

0 = x⊤

[

R + ΠA + A⊤Π − ΠBQ−1B⊤Π +
dΠ

dt

]

x ,

where we use the fact that 2x⊤ΠAx = x⊤ΠAx + x⊤A⊤Πx. Hence we have a solution
to the HJB equation if Π(t) satisfies the Riccati differential equation of Section 7.4.

12.3 Example: estate planning

A man is considering his lifetime plan of investment and expenditure. He has an initial
level of savings x(0) and no other income other than that which he obtains from invest-
ment at a fixed interest rate. His total capital is therefore governed by the equation

ẋ(t) = βx(t) − u(t) ,

where β > 0 and u is his rate of expenditure. He wishes to maximize

∫ T

0

e−αt
√

u(t)dt,

for a given T . Find his optimal policy.

Solution. The optimality equation is

0 = sup
u

[√
u − αF +

∂F

∂t
+

∂F

∂x
(βx − u)

]

.

Suppose we try a solution of the form F (x, t) = f(t)
√

x. For this to work we need

0 = sup
u

[√
u − αf

√
x + f ′

√
x +

f

2
√

x
(βx − u)

]

.

By d[ ]/du = 0, the optimizing u is u = x/f2 and the optimized value is

(
√

x/f)

[
1

2
− (α − 1

2β)f2 + ff ′

]

. (12.2)

We have a solution if we can choose f to make the bracketed term in (12.2) equal to 0.
We have the boundary condition F (x, T ) = 0, which imposes f(T ) = 0. Thus we find

f(t)2 =
1 − e−(2α−β)(T−t)

2α − β
.
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We have found a policy whose value function F (x, t) satisfies the HJB equation. So by
Theorem 12.1 it is optimal. In closed loop form the optimal policy is u = x/f2.

12.4 Example: harvesting

A fish population of size x obeys the plant equation,

ẋ = a(x, u) =

{
a(x) − u x > 0,
a(x) x = 0.

The function a(x) reflects the facts that the population can grow when it is small, but
is subject to environmental limitations when it is large. It is desired to maximize the

discounted total harvest
∫ T

0
ue−αt dt.

Solution. The DP equation (with discounting) is

sup
u

[

u − αF +
∂F

∂t
+

∂F

∂x
[a(x) − u]

]

= 0 , t < T .

Hence u occurs linearly with the maximization and so we have a bang-bang optimal
control of the form

u =





0
undetermined

umax



 for Fx





>
=
<



 1,

where umax is the largest practicable fishing rate.
Suppose F (x, t) → F (x) as T → ∞, and ∂F/∂t → 0. Then

sup
u

[

u − αF +
∂F

∂x
[a(x) − u]

]

= 0 . (12.3)

Let us make a guess that F (x) is concave, and then deduce that

u =





0
undetermined, but effectively a(x̄)

umax



 for x





<
=
>



 x̄. (12.4)

Clearly, x̄ is the operating point. We suppose

ẋ =

{
a(x) > 0, x < x̄
a(x) − umax < 0, x > x̄.

We say that there is chattering about the point x̄, in the sense that u switches between
its maximum and minimum values either side of x̄, effectively taking the value a(x̄) at
x̄. To determine x̄ we note that

F (x̄) =

∫ ∞

0

e−αta(x̄)dt = a(x̄)/α . (12.5)
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So from (12.3) and (12.5) we have

Fx(x) =
αF (x) − u(x)

a(x) − u(x)
→ 1 as x ր x̄ or x ց x̄ . (12.6)

For F to be concave, Fxx must be negative if it exists. So we must have

Fxx =
αFx

a(x) − u
−

(
αF − u

a(x) − u

) (
a′(x)

a(x) − u

)

=

(
αF − u

a(x) − u

) (
α − a′(x)

a(x) − u

)

≃ α − a′(x)

a(x) − u(x)

where the last line follows because (12.6) holds in a neighbourhood of x̄. It is required
that Fxx be negative. But the denominator changes sign at x̄, so the numerator must
do so also, and therefore we must have a′(x̄) = α. Choosing this as our x̄, we have that
F (x) is concave, as we conjectured from the start.

We now have the complete solution. The control in (12.4) has a value function F
which satisfies the HJB equation.

xx̄

a(x)

umax

α = a′(x̄)

u = a(x̄)

Growth rate a(x) subject to environment pressures

Notice that there is a sacrifice of long term yield for immediate return. If the initial
population is greater than x̄ then the optimal policy is to overfish at umax until we reach
the new x̄ and then fish at rate u = a(x̄). As α ր a′(0), x̄ ց 0. So for sufficiently large
α it is optimal to wipe out the fish population.
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