
2 Some Examples of Dynamic Programming

We illustrate the method of dynamic programming and some useful ‘tricks’.

2.1 Example: managing spending and savings

An investor receives annual income from a building society of xt pounds in year t. He
consumes ut and adds xt − ut to his capital, 0 ≤ ut ≤ xt. The capital is invested at
interest rate θ × 100%, and so his income in year t + 1 increases to

xt+1 = a(xt, ut) = xt + θ(xt − ut).

He desires to maximize his total consumption over h years, C =
∑h−1

t=0 ut.

Solution. In the notation we have been using, c(xt, ut, t) = ut, Ch(xh) = 0. This is
a time-homogeneous model, in which neither costs nor dynamics depend on t. It is
easiest to work in terms of ‘time to go’, s = h − t. Let Fs(x) denote the maximal
reward obtainable, starting in state x and when there is time s to go. The dynamic
programming equation is

Fs(x) = max
0≤u≤x

[u + Fs−1(x + θ(x − u))] ,

where F0(x) = 0, (since no more can be obtained once time h is reached.) Here, x and
u are generic values for xs and us.

We can substitute backwards and soon guess the form of the solution. First,

F1(x) = max
0≤u≤x

[u + F0(u + θ(x − u))] = max
0≤u≤x

[u + 0] = x .

Next,
F2(x) = max

0≤u≤x
[u + F1(x + θ(x − u))] = max

0≤u≤x
[u + x + θ(x − u)] .

Since u + x + θ(x − u) linear in u, its maximum occurs at u = 0 or u = x, and so

F2(x) = max[(1 + θ)x, 2x] = max[1 + θ, 2]x = ρ2x .

This motivates the guess Fs−1(x) = ρs−1x. Trying this, we find

Fs(x) = max
0≤u≤x

[u + ρs−1(x + θ(x − u))] = max[(1 + θ)ρs−1, 1 + ρs−1]x = ρsx .

Thus our guess is verified and Fs(x) = ρsx, where ρs obeys the recursion implicit in
the above, and i.e., ρs = ρs−1 + max[θρs−1, 1]. This gives

ρs =

{
s s ≤ s∗

(1 + θ)s−s∗

s∗ s ≥ s∗
,

where s∗ is the least integer such that s∗ ≥ 1/θ, i.e., s∗ = ⌈1/θ⌉. The optimal strategy
is to invest the whole of the income in years 0, . . . , h− s∗ − 1, (to build up capital) and
then consume the whole of the income in years h − s∗, . . . , h − 1.

5

There are several things worth remembering from this example. (i) It is often useful
to frame things in terms of time to go, s. (ii) Although the form of the dynamic
programming equation can sometimes look messy, try working backwards from F0(x)
(which is known). Often a pattern will emerge from which we can piece together a
solution. (iii) When the dynamics are linear, the optimal control lies at an extreme
point of the set of feasible controls. This form of policy, which either consumes nothing
or consumes everything, is known as bang-bang control.

2.2 Example: exercising a stock option

The owner of a call option has the option to buy a share at fixed ‘striking price’ p.
The option must be exercised by day h. If he exercises the option on day t and then
immediately sells the share at the current price xt, he can make a profit of xt − p.
Suppose the price sequence obeys the equation xt+1 = xt + ǫt, where the ǫt are i.i.d.
random variables for which E|ǫ| < ∞. The aim is to exercise the option optimally.

Let Fs(x) be the value function (maximal expected profit) when the share price is x
and there are s days to go. Show that (i) Fs(x) is non-decreasing in s, (ii) Fs(x)− x is
non-increasing in x and (iii) Fs(x) is continuous in x. Deduce that the optimal policy
can be characterised as follows.

There exists a non-decreasing sequence {as} such that an optimal policy is to exercise
the option the first time that x ≥ as, where x is the current price and s is the number
of days to go before expiry of the option.

Solution. The state variable at time t is, strictly speaking, xt plus a variable which
indicates whether the option has been exercised or not. However, it is only the latter
case which is of interest, so x is the effective state variable. Since dynamic programming
makes its calculations backwards, from the termination point, it is often advantageous
to write things in terms of the time to go, s = h − t. So if we let Fs(x) be the value
function (maximal expected profit) with s days to go then

F0(x) = max{x − p, 0},

and so the dynamic programming equation is

Fs(x) = max{x − p, E[Fs−1(x + ǫ)]}, s = 1, 2, . . .

Note that the expectation operator comes outside, not inside, Fs−1(·).
One can use induction to show (i), (ii) and (iii). For example, (i) is obvious, since

increasing s means we have more time over which to exercise the option. However, for
a formal proof

F1(x) = max{x − p, E[F0(x + ǫ)]} ≥ max{x − p, 0} = F0(x).

Now suppose, inductively, that Fs−1 ≥ Fs−2. Then

Fs(x) = max{x − p, E[Fs−1(x + ǫ)]} ≥ max{x − p, E[Fs−2(x + ǫ)]} = Fs−1(x),

6

whence Fs is non-decreasing in s. Similarly, an inductive proof of (ii) follows from

Fs(x) − x
︸ ︷︷ ︸

= max{−p, E[Fs−1(x + ǫ) − (x + ǫ)
︸ ︷︷ ︸

] + E(ǫ)},

since the left hand underbraced term inherits the non-increasing character of the right
hand underbraced term. Thus the optimal policy can be characterized as stated. For
from (ii), (iii) and the fact that Fs(x) ≥ x−p it follows that there exists an as such that
Fs(x) is greater that x− p if x < as and equals x− p if x ≥ as. It follows from (i) that
as is non-decreasing in s. The constant as is the smallest x for which Fs(x) = x − p.

2.3 Example: accepting the best offer

We are to interview h candidates for a job. At the end of each interview we must either
hire or reject the candidate we have just seen, and may not change this decision later.
Candidates are seen in random order and can be ranked against those seen previously.
The aim is to maximize the probability of choosing the candidate of greatest rank.

Solution. Let Wt be the history of observations up to time t, i.e., after we have
interviewed the t th candidate. All that matters are the value of t and whether the t th
candidate is better than all her predecessors: let xt = 1 if this is true and xt = 0 if it
is not. In the case xt = 1, the probability she is the best of all h candidates is

P (best of h | best of first t) =
P (best of h)

P (best of first t)
=

1/h

1/t
=

t

h
.

Now the fact that the tth candidate is the best of the t candidates seen so far places
no restriction on the relative ranks of the first t − 1 candidates; thus xt = 1 and Wt−1

are statistically independent and we have

P (xt = 1 | Wt−1) =
P (Wt−1 | xt = 1)

P (Wt−1)
P (xt = 1) = P (xt = 1) =

1

t
.

Let F (t − 1) be the probability that under an optimal policy we select the best candi-
date, given that we have passed over the first t − 1 candidates.Dynamic programming
gives

F (t − 1) =
t − 1

t
F (t) +

1

t
max

(
t

h
, F (t)

)

= max

(
t − 1

t
F (t) +

1

h
, F (0, t)

)

The first term deals with what happens when the tth candidate is not the best so far;
we should certainly pass over her. The second term deals with what happens when it
is. In that case we have a choice: accept that candidate (which will turn out to be best
with probability t/h, or pass over that candidate).

These imply F (t − 1) ≥ F (t) for all t ≤ h. Therefore, since t/h and F (t) are
respectively increasing and non-increasing in t, it must be that for small t we have

7

F (t) > t/h and for large t we have F (t) ≤ t/h. Let t0 be the smallest t such that
F (t) ≤ t/h. Then

F (t − 1) =







F (t0) , t < t0 ,

t − 1

t
F (t) +

1

h
, t ≥ t0 .

Solving the second of these backwards from the point t = h, F (h) = 0, we obtain

F (t − 1)

t − 1
=

1

h(t − 1)
+

F (t)

t
= · · · =

1

h(t − 1)
+

1

ht
+ · · · + 1

h(h − 1)
,

whence

F (t − 1) =
t − 1

h

h−1∑

τ=t−1

1

τ
, t ≥ t0 .

Since we require F (t0) ≤ t0/h, it must be that t0 is the smallest integer satisfying

h−1∑

τ=t0

1

τ
≤ 1 .

For large h the sum on the left above is about log(h/t0), so log(h/t0) ≈ 1 and we find
t0 ≈ h/e. The optimal policy is to interview ≈ h/e candidates, but without selecting
any of these, and then select the first one thereafter that is the best of all those seen
so far. The probability of success is F (t0) ∼ t0/h ∼ 1/e = 0.3679. It is surprising that
the probability of success is so large for arbitrarily large h.

There are a couple lessons in this example. (i) It is often useful to try to establish
the fact that terms over which a maximum is being taken are monotone in opposite
directions, as we did with t/h and F (t). (ii) A typical approach is to first determine
the form of the solution, then find the optimal cost (reward) function by backward
recursion from the terminal point, where its value is known.

8

