
Mathematics for Operations Research

Examples 1

1. SOLUTION. The Lagrangian is

L(x, λ) = −2x2
1 − x2

2 + x1x2 + 8x1 + 3x2 − λ(3x1 + x2 − 10) .

This has a stationary point where

−4x1 + x2 + 8 − 3λ = 0 and − 2x2 + x1 + 3 − λ = 0

The solution is

x1 =
19 − 7λ

7
and x2 =

20 − 7λ

7
.

Now choose λ so that

3x1 + x2 = 3

(

19 − 7λ

7

)

+
20 − 7λ

7
= 10 .

This gives λ = 1/4 and (x1, x2) = (69/28, 73/28). The second derivative matrix is

(

∂L2

∂xi∂xj

)

=

(

−4 1
1 −2

)

which is nonnegative definite, proving that the stationary point is a maximum.

2. SOLUTION.

x1 x2 x3 z1 z2 z3 a
z1 1 1 1 1 0 0 0 2
z2 2 1 0 0 1 0 0 3

a 2 1 3 0 0 −1 1 3
Phase I 0 0 0 0 0 0 1 0

−2 −1 −3 0 0 1 0 −3
Phase II 4 4 1 0 0 0 0 0

It is the second Phase I row that we use, where the objective function of a has been
written in terms on the nonbasic variables. Pivoting on the entry shown, we have

x1 x2 x3 z1 z2 z3 a
z1 1/3 2/3 0 1 0 1/3 −1/3 1
z2 2 1 0 0 1 0 0 3
a 2/3 1/3 1 0 0 −1/3 1/3 1

Phase I 0 0 0 0 0 0 1 0
Phase II 10/3 11/3 1 0 0 1/3 −1/3 −1

At this point, a has been minimized to 0. The bottom row is already nonnegative,

so no further interations are needed in Phase II. The optimal solution is (x, z) =

(0, 0, 1, 1, 0, 3).

1

3. SOLUTION.

(a) is true if the problem is nondegenerate. In that case the only way a variable can
leave the basis is if we pivot in its column. The entry that is in the bottom row of
the pivot column is always strictly positive. So when a basic variable leaves the basis
the value of the entry that appears in the bottom row of that variable’s column goes
from being 0 to being strictly negative. So this column cannot immediately be the
next pivot column.

However, if we have a degenerate problem such as maximize x1 + 10x2 subject to
x1 + x3 = 1, 3x2 + x1 + x4 = 4 and 2x2 + x1 + x5 = 3 we might go from (0, 0, 1, 4, 3)
to (1, 0, 0, 3, 2) to (1, 1, 0, 0, 0) to (0, 4/3, 1, 0, 1/3). Note that the variable x5 leaves
the basis and then immediately reenters.

(b) is false. Consider the problem maximize x2 +2x3 subject to x1 +x2 +x3 = 1. We
might start at x = (1, 0, 0), move to (0, 1, 0) and then to (0, 0, 1). In this example,
x2 enters the basis and then immediately leaves.

4. SOLUTION. We take the Phase I objective function: minimize
∑

yi. Suppose

y1 is the first artificial variable to leave. At that point, let us reset the Phase I

objective function to M1y1 + y2 + · · · + yℓ. Then the Phase I objective function row

gets an additional M1 added to the entry in the y1 column. We imagine taking M1

so large that, as further iterations proceed, this entry of the tableau never again

becomes negative. Recall that we only pivot in columns where the entry in the Phase

I objective row is negative. Hence y1 never reenters the basis. Note that if we can

minimize
∑

yi to 0 then we can also minimize M1y1 + y2 + · · · + yℓ to 0.

5. SOLUTION. Note that D is certainly feasible, since y = 0 is a feasible solution. If D
is bounded then D can be solved with the simplex algorithm (or by Lagrangian) meth-
ods; either of these implies that there exists by construction (or by existence of the
Lagrangian multipliers) an optimal (and feasible) solution to P . If D is unbounded
then there exists y such that y⊤b = −1 and y⊤A ≥ 0. But if there were a feasible x
for P such that Ax = b and x ≥ 0 we would have −1 = y⊤b = y⊤(Ax) = (y⊤A)x ≥ 0.
Hence P cannot be feasible.

Farkas lemma is simply the statement that either D is unbounded, i.e., (b), or D is

bounded, which is if and only if P is feasible, i.e. (a).

6. SOLUTION.

x1 x2 z1 z2 z3

−3 4 1 0 0 4
3 2 0 1 0 11
2 −1 0 0 1 5
1 2 0 0 0 0

2



x1 x2 z1 z2 z3

−3/4 1 1/4 0 0 1

9/2 0 −1/2 1 0 9

5/4 0 1/4 0 1 6
5/2 0 −1/2 0 0 −2

x1 x2 z1 z2 z3

0 1 1/6 1/6 0 5/2
1 0 −1/9 2/9 0 2
0 0 7/18 −5/18 1 7/2
0 0 −2/9 −5/9 0 −7

We now have the optimal solution, but it is not in integers. From the first row we
have the constraint

x2 + 1
6
z1 + 1

6
z2 = 5

2

This implies that an integer solution must satisfy x2 ≤ 2. We add this constraint to
get

x1 x2 z1 z2 z3 z4

0 1 1/6 1/6 0 0 5/2
1 0 −1/9 2/9 0 0 2
0 0 7/18 −5/18 1 0 7/2
0 1 0 0 0 1 2

0 0 −1/6 −1/6 0 1 −1/2

0 0 −2/9 −5/9 0 0 −7

x1 x2 z1 z2 z3 z4

0 1 0 0 0 1 2
1 0 0 1/3 0 −2/3 7/3
0 0 0 −2/3 1 7/3 7/3
0 0 1 1 0 −6 3
0 0 0 −1/3 0 −4/3 −19/3

The solution is not yet in integers. So we can use the constaint from the second row

x1 + 1
3
z2 − 2

3
z4 ≤ 7

3

to get x1 − z4 ≤ 2.

3

x1 x2 z1 z2 z3 z4 z5

0 1 0 0 0 1 0 2
1 0 0 1/3 0 −2/3 0 7/3
0 0 0 −2/3 1 7/3 0 7/3
0 0 1 1 0 −6 0 3
1 0 0 0 0 −1 1 2

0 0 0 −1/3 0 −1/3 1 −1/3

0 0 0 −1/3 0 −4/3 0 −19/3

x1 x2 z1 z2 z3 z4 z5

0 1 0 0 0 1 0 2
1 0 0 0 0 −1 1 2
0 0 0 0 1 3 −2 3
0 0 1 0 0 −7 3 2
0 0 0 1 0 1 −3 1
0 0 0 0 0 −1 −1 −6

So the solution is x1 = x2 = 2, with an optimum value of 6.

7. SOLUTION. Define xi = 0, 1 as Xi is true or false. Let x̄i = 1 − xi. Then the
satisfiability question is the same as asking whether there is a feasible solution to the
0–1 linear programming problem

maximize 0 subject to

xi, x̄i ∈ {0, 1}, xi + x̄i = 1, i = 1, . . . , 6

x1 + x̄2 + x6 ≥ 1

x̄2 + x̄4 ≥ 1

x3 + x5 + x6 ≥ 1

Now satifiability is in NP because given a certificate (which is just an assignment of

truth values to the X1, X2, X3, X4, X5, X6) we can check the truth of a clause in a

time that is linear in the size of the clause. Clearly, satifiability reduces to an instance

of 0–1 linear programming. Hence 0–1 linear programming is NP-complete.

8. SOLUTION. If G has a clique of size k, then in G′ these k nodes are such that
no pair of them has a joining edge. This means that all edges of G′ must have an
endpoint amongst the other n − k nodes, i.e., a vertex cover of size n − k.

Similarly, if G′ has a vertex cover of size n−k, then amongst the other k nodes there
cannot be any joining edges. Thus in G there are edges between every pair of these
nodes and they form a clique of size k.

Vertex Cover is in NP since if there exists a vertex cover of size n − k then a

certificate for it is a list of the n − k nodes in the cover. We must simply check that

4



every edge ends in at least one node of this set. Since there are at most n2 edges

we can check this fact in time O(n2(n − k)) time. Now Clique reduces to Vertex

Cover (by the result in the first two paragraphs), since calculation of G′ from G is a

polynomial time calculation, in fact, O(n2). Thus Vertex Cover is at least as hard

as Clique, which proves that Vertex Cover is NP-complete.

9. SOLUTION.

(a) If (z1, z2) is an edge then there is a clause equivalent to (z̄1 ∨ z2). This is
equivalent to (z2 ∨ z̄1). So there must be an edge (z̄2, z̄1).

(b) If there is an edge (z1, z2) then there is a clause equivalent to (z̄1 ∨ z2). So
z1 =T =⇒ z̄1 =F and so we must have z2 =T.

(c) If there is a z such that (i) is true then there is a path from z to z̄, so z cannot
be true, by (b). Similarly, the existence of a path from z̄ to z means that z̄
cannot be true. So the instance is unsatisfiable.

Now suppose that (i) is not true. Pick an unassigned variable x in some clause.
Assign x =T (making that clause true), and also assign T to all vertices that
can be reached along paths from x. Assign F to the negations of all variables so
assigned. Repeat until all variables are assigned. The algorithm is well-defined
in the sense that it never sets both a variable and its negation T, because if
there were a paths x → y and x → ȳ then there would be a path y → x̄, which
means there is a path x → x̄ and so x cannot have been assigned T, by (b).

Notice that we cannot end up with some clause (x ∨ y) in which x = y =F. If
there were such a clause then there exists the edge (x̄, y) and x̄ =T. Also there
exists the edge (ȳ, x) and ȳ=T. So at whatever step of the algorithm we first
set x̄ =T or ȳ =T, that must also have set y =T or x =T, respectively.

It follows that 2-SAT∈ P since we can determine whether or not (2) is true in

polynomial time.

10. SOLUTION.

(a) If there is a clique of size m we have found m variables one from each clause
no one of which is the complement of the other. By setting these variables true
we have satisfied all the clauses. Conversely, if the clauses are satisfiable then
one variable in each clause is true and none of these is the complement of the
other. Thus there are edges between the corresponding m vertices in G.

(b) The mapping of our instance of 3-SAT to the graph G can clearly be done in
polynomial time. It shows that 3-SAT is no harder than CDP. But 3-SAT is
NP-complete. So CDP must be NP-complete. If there were a polynomial time
algorithm for CDP then there would be one for 3-SAT.

11. SOLUTION. The Hirsch conjecture is easy to prove when d = 2. We simply need

to check that two vertices of a polygon of n sides are never further apart than a walk

along n − 2 edges. In fact, there walk need never be more than ⌊n/2⌋ edges.

5

12. SOLUTION. This question is straightforward and is really just to get you thinking.
The only slightly tricky bit is at the end. We might worry that if (1, 2, 3, 4) is
the optimum, and (2, 1, 4, 3) is second-best then we cannot get from (2, 1, 3, 4) to
(1, 2, 3, 4) is one step (since (2, 1, 4, 3) = {(1, 2), (3, 4)} is two cycles from (1, 2, 3, 4)).
However, (2, 1, 3, 4) cannot be second best, since both (1, 2, 4, 3) and (2, 1, 3, 4) must
be better than (2, 1, 4, 3).

The same is true for n = 5 since every permuation on {1, 2, 3, 4, 5} can be written as
the product of no more than 2 disjoint cycles.

The polytope of the transportation problem has also been studied. This has

m
∑

j=1

xij = si , for all i ;
n
∑

i=1

xij = dj , for all j ; xij ∈ {0, 1} , for all i, j.

It has been proved that the diameter is no more than 8(m + n − 1). If the Hirsch
conjecture is true then the diameter is no greater than m + n − 1.

The monotone Hirsch conjecture has been shown to be false in general. Howver,

might it be true for the transportation polytope? The general ‘strict monotone

Hirsch conjecture’ is still open. This says that it is possible to find a monotone

nondecreasing path from the vertex where c⊤x is minimized to the vertex where it is

maximized that is no longer than n − d steps.

R R Weber

6


