
1 Lagrangian Methods

1.1 Lagrangian methods

Let P (b) denote the optimization problem

minimize f(x) , subject to h(x) = b, x ∈ X .

Let x ∈ X(b) = {x ∈ X : h(x) = b}. We say that x is feasible if x ∈ X(b).
Define the Lagrangian as

L(x, λ) = f(x) − λ⊤(h(x) − b) .

Typically, X ⊆ R
n, h : R

n 7→ R
m, with b, λ ∈ R

m. Here λ is called a Lagrangian
multiplier.

Theorem 1.1 (Lagrangian Sufficiency Theorem) If x̄ is feasible for P (b)
and there exists λ̄ such that

inf
x∈X

L(x, λ̄) = L(x̄, λ̄)

then x̄ is optimal for P (b).

Proof of the LST. For all x ∈ X(b) and λ we have

f(x) = f(x) − λ⊤(h(x) − b) = L(x, λ) .

Now x̄ ∈ X(b) ⊆ X and so by assumption,

f(x̄) = L(x̄, λ̄) ≤ L(x, λ̄) = f(x) , for all x ∈ X(b) .

Thus x̄ is optimal for the optimization problem P (b).

Example 1.1 Minimize x2
1 + x2

2 subject to a1x1 + a2x2 = b, x1, x2 ≥ 0.

Here L = x2
1 + x2

2 − λ(a1x1 + a2x2 − b). We consider the problem

minimize
x1,x2≥0

[x2
1 + x2

2 − λ(a1x1 + a2x2 − b)] .

This has a stationary point where (x1, x2) = (λa1/2, λa2/2). Now we choose
λ such that a1x1 + a2x2 = b. This happens for λ = 2b/(a2

1 + a2
2). We have

a minimum since ∂2L/∂x2
i > 0, ∂2L/∂x1∂x2 = 0. Thus with this value of λ

the conditions of the LST are satisfied and the optimal value is b2/(a2
1 + a2

2) at
(x1, x2) = (a1b, a2b)/(a2

1 + a2
2).
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1.2 The Dual Problem

Let us define

φ(b) = inf
x∈X(b)

f(x) and g(λ) = inf
x∈X

L(x, λ) .

Then for all λ

φ(b) = inf
x∈X(b)

L(x, λ) ≥ inf
x∈X

L(x, λ) = g(λ) . (1.1)

Thus g(λ) is a lower bound on φ(b), i.e., a lower bound on the solution value of
P (b). As this holds for all λ it is interesting to make this lower bound as large
as possible. Of course we can restrict ourselves to λ for which g(λ) > −∞. This
motivates the dual problem, defined as

maximize g(λ) , subject to λ ∈ Y ,

where Y = {λ : g(λ) > −∞}. In (1.1) we have a proof of the so-called weak
duality theorem that

inf
x∈X(b)

f(x) ≥ max
λ∈Y

g(λ) . (1.2)

The left hand side of (1.2) poses the primal problem.

1.3 Strong Lagrangian

We say that P (b) is Strong Lagrangian if there exists λ such that

φ(b) = inf
x∈X

L(x, λ) . (1.3)

In other words, P (b) is Strong Lagrangian if it can be solved by the Lagrangian
method. But when does this happen? Usually we just try the method and see.
If we are lucky, as in Example 1.1, then we will be able to establish that there
exists a λ that lets us solve P (b) this way. However, there are important classes
of problems for which we can guarantee that Lagrangian methods always work.

Note that (1.3) says that there is a λ such that φ(b) = g(λ). Combining this
with (1.2), we see that if the problem is Strong Lagrangian then min of primal =
max of dual.

1.4 Hyperplanes

Let the hyperplane (c, α) be given by

α = β − λ⊤(b − c) .



3 Lagrangian Methods

It has intercept at β on the vertical axis through b, and has slope(s) λ. Consider
the following approach to finding φ(b):

1. For each λ, find βλ ≡ maxβ such that the hyperplane lies completely below
the graph of φ.

2. Now choose λ to maximize βλ.

φ(c)φ(c)
Case 1 Case 2

βλ = φ(b) βλ < φ(b)

bb

Lagrangian methods work in Case 1 because of the existence of a tangent to
φ at b. Define a supporting hyperplane (c, α) at b as

α = φ(b) − λ⊤(b − c) , where φ(c) ≥ φ(b) − λ⊤(b − c) for all c ∈ R
m .

In fact, βλ = g(λ) = minx∈X L(x, λ). To see this, we argue

g(λ) = inf
x∈X

L(x, λ)

= inf
c∈Rm

inf
x∈X(c)

[f(x) − λ⊤(h(x) − b)]

= inf
c∈Rm

[φ(c) − λ⊤(c − b)]

= sup{β : β − λ⊤(b − c) ≤ φ(c) , for all c ∈ R
m}

= βλ .

Hence, the dual problem is maxβλ. Again, we see the weak duality result of
max βλ ≤ φ(b), with equality if the problem is Strong Lagrangian.

Theorem 1.2 The following are equivalent:

(a) there exists a (non-vertical) supporting hyperplane to φ at b;

(b) the problem is Strong Lagrangian.
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This is important since a (non-vertical) supporting hyperplane exists if φ(b) is a
convex function of b. We can find conditions that make φ convex.

Proof. Suppose there exists a (non-vertical) supporting hyperplane to φ at b.
This means that there exists λ such that

φ(b) − λ⊤(b − c) ≤ φ(c) for all c ∈ R
m .

This implies

φ(b) ≤ inf
c∈Rm

[
φ(c) − λ⊤(c − b)

]

= inf
c∈Rm

inf
x∈X(c)

[
f(x) − λ⊤(h(x) − b)

]

= inf
x∈X

L(x, λ)

= g(λ)

However, we have the opposite inequality in (1.1). Hence φ(b) = g(λ). This
means that P (b) is Strong Lagrangian, i.e., can be solved by minimizing L(x, λ)
with respect to x.

Conversely, if the problem is Strong Lagrangian then there exists λ such that
for all x ∈ X

φ(b) ≤ f(x) − λ⊤(h(x) − b) .

Imagine minimizing the right hand side over x ∈ X(c), where h(x) = c. This
gives

φ(b) ≤ φ(c) − λ⊤(c − b) .

This is true for all c, and hence

φ(b) − λ⊤(b − c) ≤ φ(c) for all c ∈ R
m .

Hence, φ has a (non-vertical) supporting hyperplane at b.



2 Linear Programming

2.1 Convexity and Lagrangian methods

1. A set S is a convex set if for all 0 ≤ δ ≤ 1

x, y ∈ S =⇒ δx + (1 − δ)y ∈ S .

2. A real-valued f is a convex function if for all x, y ∈ S and 0 ≤ δ ≤ 1

δf(x) + (1 − δ)f(y) ≥ f(δx + (1 − δ)y) .

3. A point x is an extreme point of S if whenever

x = δy + (1 − δ)z

for some y, z ∈ S and 0 < δ < 1 then x = y = z.

Theorem 2.1 (Supporting Hyperplane Theorem) Suppose φ is convex and
b lies in the interior of the set of points where φ is finite. Then there exists a
(non-vertical) supporting hyperplane to φ at b.

So, we are interested in conditions on the problem that make φ convex.

Theorem 2.2 Consider the problem P (b), defined as

minimize
x∈X

f(x) subject to h(x) ≤ b .

If X is a convex set and f and h are convex then φ is convex.

Proof. Take b1, b2 and b = δb1 + (1− δ)b2 for 0 < δ < 1 with b1, b2 such that φ is
defined. Take xi feasible for P (bi) for i = 1, 2 and consider x = δx1 + (1 − δ)x2.
Then X convex, x1, x2 ∈ X implies that x ∈ X . Also, h convex gives

h(x) = h(δx1 + (1 − δ)x2)

≤ δh(x1) + (1 − δ)h(x2)

≤ δb1 + (1 − δ)b2

= b .

So x is feasible for P (b). So, if f is convex

φ(b) ≤ f(x) = f(δx1 + (1 − δ)x2) ≤ δf(x1) + (1 − δ)f(x2) .
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This holds for all x1 ∈ X(b1) and x2 ∈ X(b2) so taking infimums gives

φ(b) ≤ δφ(b1) + (1 − δ)φ(b2)

so that φ is convex.

Remark. Consider the constraint h(x) = b. This is the same as h(x) ≤ b and
−h(x) ≤ −b. So φ is convex under these constraints if X is a convex set and f ,
h and −h are all convex. Thus h should be linear in x.

2.2 Linear programs

We will study problems of the form1

minimize
{
c⊤x : Ax ≤ b , x ≥ 0

}

where x and c are n-vectors, b is a m-vector and A is a m × n matrix. Such
problems are also written out in the longer form

minimize c⊤x , subject to Ax ≤ b , x ≥ 0 .

Example

minimize −(x1 + x2)

subject to

x1 + 2x2 ≤ 6
x1 − x2 ≤ 3

x1, x2 ≥ 0 .

A
B

C

D

E

F

x2 = 0

x1 = 0

x1 − x2 = 3

x1 + 2x2 = 6

x1 + x2 =const

2.3 Duality of linear programs

The primal LP optimization problems

(LP =) : minimize{c⊤x : Ax = b, x ≥ 0}
(LP ≥) : minimize{c⊤x : Ax ≥ b, x ≥ 0}

1For a thorough introduction to the topic of linear programming see Richard Weber’s course
on Optimization, available at: http://www.statslab.cam.ac.uk/ rrw1/opt/



7 Linear Programming

have corresponding dual problems

Dual of (LP =) : maximize{b⊤λ : A⊤λ ≤ c}
Dual of (LP ≥) : maximize{b⊤λ : A⊤λ ≤ c, λ ≥ 0}

2.4 Derivation of the dual LP problem

Consider (LP ≥), and introduce slack variables z to form the problem

minimize c⊤x , subject to Ax − z = b, x ≥ 0, z ≥ 0 .

So the set X ⊂ R
m+n is given by

X = {(x, z) : x ≥ 0, z ≥ 0} .

We use a Lagrangian approach. The Lagrangian is

L ((x, z); λ) = c⊤x − λ⊤ (Ax − z − b) =
(
c⊤ − λ⊤A

)
x + λ⊤z + λ⊤b

with finite minimum over (x, z) ∈ X if and only if

λ ∈ Y = {λ : λ ≥ 0, c⊤ − λ⊤A ≥ 0} .

The minimum of L((x, z); λ) for λ ∈ Y is attained where both
(
c⊤ − λ⊤A

)
x = 0

and λ⊤z = 0, so that
g(λ) ≡ inf

x∈X
L(x; λ) = λ⊤b .

Hence form of dual problem.

2.5 Shadow prices

The Lagrange multipliers play the role of prices since we have that

∂φ

∂bi
=

∂g(λ)

∂bi
= λi .

The variables λi are also known as shadow prices.

2.6 Conditions for optimality

For the (LP ≥) problem, x and λ are primal and dual optimal respectively if and
only if x is primal feasible, λ is dual feasible and, in addition, for any i = 1, . . . , n
and j = 1, . . . , m

(c⊤ − λ⊤A)ixi = 0 = λj(Ax − b)j .

These are known as the complementary slackness conditions.
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2.7 Basic insight

If an LP has a finite optimum then it has an optimum at an extreme point of the
feasible set.

There are a finite number of extreme points so an algorithm for solving the
LP is

• Find all the vertices of the feasible set.

• Pick the best one.

Our example has an optimum at C. However, there are

(
n + m

m

)
vertices, so this

algorithm could take a long time!

2.8 Basic solutions

A basic solution to Ax = b is a solution with at least n−m zero variables. The
solution is non-degenerate if exactly n−m variables are zero. The choice of the
m non-zero variables is called the basis. Variables in the basis are called basic;
the others are called non-basic.

If a basic solution satisfies x ≥ 0 then it is called a basic feasible solution
(bfs). The following is a theorem.

The basic feasible solutions are the extreme points of the
feasible set.

In our example, the vertices A–F are basic solutions (and non-degenerate) and
A–D are basic feasible solutions.



3 The Simplex Algorithm

1. Start with a bfs.

2. Test whether this bfs is optimal.

3. If YES then stop.

4. If NO then move to an ‘adjacent’ bfs which is better. Return to step 2.

3.1 Algebraic viewpoint

A basis, B, is a choice of m non-zero variables. For any x satisfying the constraints
Ax = b, we can write

ABxB + ANxN = b

where AB is a m×m matrix, AN is a m× (n−m) matrix, xB and b are m-vectors
and xN is a (n − m)-vector.

A basic solution has xN = 0 and ABxB = b and a basic feasible solution
has xN = 0, ABxB = b and xB ≥ 0.

As we have seen, if there exists a finite optimum then there exists a bfs that
is optimal.

Nondegeneracy assumptions

We will assume that the following assumptions hold. (If they do not, then they
will do so for a small perturbation of the data).

1. The matrix A has linearly independent rows, i.e., rank(A) = m.

2. Any m × m matrix formed from m columns of A is non-singular.

3. All basic solutions ABxB = b, xN = 0 have exactly m non-zero variables, i.e.,
xi 6= 0 for i ∈ B.

3.2 Simplex tableau

Now for any x with Ax = b, we have xB = A−1
B (b − ANxN ). Hence,

f(x) = c⊤x = c⊤BxB + c⊤NxN

= c⊤BA−1
B (b − ANxN ) + c⊤NxN

= c⊤BA−1
B b + (c⊤N − c⊤BA−1

B AN )xN .

We can assemble this information in a tableau.

9
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basic non-basic

I A−1
B AN A−1

B b

0 c⊤N − c⊤BA−1
B AN −c⊤BA−1

B b

3.3 Test for optimality

Suppose we want to maximize c⊤x and we find

(c⊤N − c⊤BA−1
B AN ) ≤ 0 and A−1

B b ≥ 0 .

Then for all feasible x (since x ≥ 0 =⇒ xN ≥ 0)

f(x) = c⊤BA−1
B b + (c⊤N − c⊤BA−1

B AN )xN ≤ c⊤BA−1
B b .

But for bfs x̂ with x̂B = A−1
B b and x̂N = 0 we have f(x̂) = c⊤BA−1

B b. So, x̂ is
optimal.

This gives us an easy way to check if a given bfs is optimal.

3.4 Choice of new bfs

Alternatively, if some (c⊤N − c⊤BA−1
B AN )i is positive we can increase the value of

the objective function by increasing from zero the value of (xN )i.

We would like to increase (xN )i by as much as possible. However, we need to
keep the constraints satisfied. So as we alter (xN )i the other variables alter and
we must stop increasing (xN )i if one becomes zero.

The net effect is that we interchange one basic variable with one non-basic
variable.

3.5 Simplex algorithm

1. Find an initial bfs with basis B.

2. Check the sign of (c⊤N − c⊤BA−1
B AN )i for i ∈ N . Are all components non-

positive?

3. If YES then we are at an optimum. Stop.

4. If NO, so that (c⊤N − c⊤BA−1
B AN )i > 0, say with i ∈ N , increase (xN )i as

much as possible.
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Either we can do this indefinitely, which means the maximum is
unbounded. Stop.

or one of xB variables becomes zero, giving a new new bfs. Repeat from
step 2.

3.6 Simplex algorithm: tableau form

0. Find an initial basic feasible solution.

The tableau takes the form

(aij) ai0

a0j a00

This is easy when the constraints are of the form

Ax ≤ b , b ≥ 0 .

We can write this as
Ax + z = b , z ≥ 0

and take an initial basic feasible solution of

x = 0 , z = b ≥ 0 .

It is best to think of this as extending x to (x, z) and then setting

(xB, xN ) = (z, x) = (b, 0) .

1. Choose a variable to enter the basis

Look for a j such that a0j > 0. Column j is called the pivot column and the
variable corresponding to column j will enter the basis. If a0j ≤ 0 for all j ≥ 1
then the current solution is optimal. If there is more than one j such that a0j > 0
choose any one. A common rule-of-thumb is to choose the j for which a0j is most
positive. Alternatively, we could choose the least j ≥ for which a0j > 0.

2. Find the variable to leave the basis

Choose i to minimize ai0/aij from the set {i : aij > 0}. Row i is called the
pivot row and aij is called the pivot. If aij ≤ 0 for all i then the problem is
unbounded and the objective function can be increased without limit.
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If there is more than one i minimizing ai0/aij the problem has a degenerate
basic feasible solution.

In our example we have at this point

x1 x2 z1 z2 ai0

z1 basic 1 2 1 0 6

z2 basic 1 −1 0 1 3

a0j 1 1 0 0 0

3. Pivot on the element aij

The purpose of this step is to get the equations into the appropriate form for the
new basic feasible solution.

• Multiply row i by 1/aij .

• Add −(akj/aij)× (row i) to each row k 6= i, including the objective function
row.

The new tableau form: (after re-arranging rows and columns), is as at the end
of Section 3.6. In our example we reach

x1 x2 z1 z2 ai0

z1 basic 0 3 1 −1 3

x1 basic 1 −1 0 1 3

a0j 0 2 0 −1 −3

Now return to Step 1.

In our example, one further iteration brings us to the optimum.

x1 x2 z1 z2 ai0

x2 basic 0 1 1
3 − 1

3 1

x1 basic 1 0 1
3

2
3 4

a0j 0 0 − 2
3 − 1

3 −5

This corresponds to the bfs x1 = 4, x2 = 1, z1 = z2 = 0, i.e., vertex C.



4 Advanced Simplex Procedures

4.1 Two phase simplex method

Suppose we do not have the obvious basic feasible solution. Consider

maximize − 6x1 − 3x2

subject to

x1 + x2 ≥ 1
2x1 − x2 ≥ 1

3x2 ≤ 2
x1, x2 ≥ 0

≡

maximize − 6x1 − 3x2

subject to

x1 + x2 − z1 = 1
2x1 − x2 − z2 = 1

3x2 + z3 = 2
x1, x2, z1, z2, z3 ≥ 0

Unfortunately, the basic solution

x1 = 0 x2 = 0 z1 = −1 z2 = −1 z3 = 2

is not feasible. The trick is to add artificial variables, y1, y2 to the constraints
and then minimize y1 + y2 subject to

x1 + x2 − z1 + y1 = 1

2x1 − x2 − z2 + y2 = 1

3x2 + z3 = 2

x1, x2, z1, z2, z3, y1, y2 ≥ 0

We can take the ‘easy’ initial bfs of y1 = 1, y2 = 1, z3 = 2, x1 = 0, x2 = 0.
In Phase I we minimize y1 + y2, starting with y1 = 1, y2 = 1 and z3 = 2.

(Notice we did not need an artificial variable in the third equation.) Provided
the original problem is feasible we should be able to obtain a minimum of 0 with
y1 = y2 = 0 (since y1 and y2 are not needed to satisfy the constraints if the
original problem is feasible). At the end of Phase I the simplex algorithm will
have found a bfs for the original problem. Phase II proceeds with the solution
of the original problem, starting from this bfs.

Note: the original objective function doesn’t enter into Phase I, but it is
useful to carry it along as an extra row in the tableau since the algorithm will
then arrange for it to be in the appropriate form to start Phase II.

We start with
x1 x2 z1 z2 z3 y1 y2

y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1

z3 0 3 0 0 1 0 0 2

Phase II −6 −3 0 0 0 0 0 0

Phase I 0 0 0 0 0 −1 −1 0

13
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Preliminary step. The Phase I objective must be written in terms of the non-
basic variables. This is accomplished by adding rows 1 and 2 to the bottom row,
to give

x1 x2 z1 z2 z3 y1 y2

y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1

z3 0 3 0 0 1 0 0 2

Phase II −6 −3 0 0 0 0 0 0

Phase I 3 0 −1 −1 0 0 0 2

Begin Phase I. Pivot on a21 to get

x1 x2 z1 z2 z3 y1 y2

y1 0 3
2 −1 1

2 0 1 − 1
2

1
2

x1 1 − 1
2 0 − 1

2 0 0 1
2

1
2

z3 0 3 0 0 1 0 0 2

0 −6 0 −3 0 0 3 3

0 3
2 −1 1

2 0 0 − 3
2

1
2

Pivot on a14 to get

x1 x2 z1 z2 z3 y1 y2

z2 0 3 −2 1 0 2 −1 1

x1 1 1 −1 0 0 1 0 1

z3 0 3 0 0 1 0 0 2

0 3 −6 0 0 6 0 6

0 0 0 0 0 −1 −1 0

End of Phase I. y1 = y2 = 0 and we no longer need these variables, and so drop
the last two columns and Phase I objective row. We have a bfs with which to
start Phase II, with x1 = 1, z2 = 1, z3 = 2. The rest of the tableau is already
in appropriate form. So we rewrite the preceeding tableau without the y1, y2

columns.

Begin Phase II. x1 x2 z1 z2 z3

z2 0 3 −2 1 0 1

x1 1 1 −1 0 0 1

z3 0 3 0 0 1 2

0 3 −6 0 0 6
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In one more step we reach the optimum, by pivoting on a12.

x1 x2 z1 z2 z3

x2 0 1 − 2
3

1
3 0 1

3

x1 1 0 − 1
3 − 1

3 0 2
3

z3 0 0 2 −1 1 1

0 0 −4 −1 0 5

In general, artificial variables are needed when there are constraints like

≤ −1, or ≥ 1, or = 1,

unless they happen to be of a special form for which it is easy to spot a bfs. If
the Phase I objective cannot be minimized to zero then the original problem is
infeasible.

The problem we have solved is the dual of the problem P that we considered in
Chapters 2–3, augmented by the constraint 3x2 ≤ 2. It is interesting to compare
the final tableau above with the tableau obtained in solving the primal. They are
essentially transposes of one another.

4.2 Primal and dual algorithms

Consider the problem (LP =), defined as minimize{c⊤x : Ax = b, x ≥ 0}. This
has dual maximize{λ⊤b : c⊤ − λ⊤A ≥ 0}. At each stage of the primal simplex
algorithm, we have a tableau,

basic, xB ≥ 0 non-basic, xN = 0

I A−1
B AN A−1

B b ≥ 0

c⊤B − c⊤BA−1
B AB = 0 c⊤N − c⊤BA−1

B AN , free −c⊤BA−1
B b

Here we have a basic feasible solution for the primal, xB = A−1
B b, and a basic

(though not necessarily feasible) solution for the dual, λ⊤
B = c⊤BA−1

B . We always
have primal feasibility and complementary slackness. Recall

primal

feasibility

Ax = b and x ≥ 0

+

dual

feasibility

(c⊤ − λ⊤A) ≥ 0

+

complementary

slackness

(c⊤ − λ⊤A)x = 0

=⇒ optimality.
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Primal algorithms maintain primal feasibility and complementary slackness
and seek dual feasibility. Dual algorithms maintain dual feasibility and com-
plementary slackness and seek primal feasibility.

4.3 Dual simplex algorithm

The dual simplex algorithm starts with and maintains a primal/dual basic
solution that is dual feasible and satisfies complementary slackness while seeking
primal feasibility. This can be useful.

It may be easier to spot a dual feasible solution

minimize 2x1 + 3x2 + 4x3 s.t.
x1 + 2x2 + x3 ≥ 3

2x1 − x2 − 3x3 ≥ 4

x1, x2, x3 ≥ 0

Note ci ≥ 0 for all i. Let us add slack variables, zi ≥ 0 to obtain

x1 + 2x2 + x3 − z1 = 3

2x1 − x2 − 3x3 − z2 = 4

The primal algorithm must use two-phases since z1 = −3, z2 = −4 is not
primal feasible. However, the tableau contains a dual feasible solution, λ1 = λ2 =
0, and c⊤ − λ⊤A = (2, 3, 4, 0, 0) ≥ 0.

−1 −2 −1 1 0 −3

−2 1 3 0 1 −4

2 3 4 0 0 0

Rule: for rows, i, with ai0 < 0 pick column j with aij < 0 to minimize a0j/−aij.
Pivoting on a21 gives

0 − 5
2 − 5

2 1 − 1
2 −1

1 − 1
2 − 3

2 0 − 1
2 2

0 4 7 0 1 −4

and then on a12 gives

0 1 1 − 2
5

1
5

2
5

1 0 −2 − 1
5 − 2

5
11
5

0 0 3 8
5

1
5 − 28

5
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So the optimum is 28
5 , with x1 = 11

5 , x2 = 2
5 , x3 = 0.

Notice that for problems of the form Ax ≥ b we can write

Ax − z = b z ≥ 0

A

(
x

z

)
=

(
· · · −1 0

· · · 0 −1

)(
x

z

)
= b

Hence

(c⊤ − λ⊤A) =
(
2 3 4 0 0

)
−
(
λ1 λ2

)( · · · −1 0

· · · 0 −1

)

=
(
· · · λ1 λ2

)

So the dual variables, λ, can be found in the objective function row under the
slack variables in the optimal tableau. E.g., λ = (8

5 , 1
5 ).

We may wish to add constraints to optimal solutions

Suppose we have solved an LP and have the final tableau

non-basic basic

I +ve

+ve 0

Now we wish to add a new constraint

a1x1 + a2x2 + · · · + anxn ≤ b .

If the optimal solution satisfies this constraint the solution remains optimal for
the new problem. Otherwise, we add it to the tableau to give

0

I
... +ve
0

aN aB 1 b

+ve 0 0

−→

0

I
... +ve
0

0 1 -ve?

+ve 0 0

Notice that we still have a dual feasible solution. The problem solution may
not be primal feasible. However, we can apply the dual simplex algorithm to find
the new optimum under this additional constraint.
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Gomory’s cutting plane method

The addition of new constraints is useful in Gomory’s cutting plane method
for integer linear programming. Consider the final tableau on page 16. Pick a
row in which the far right hand element is not an integer, say row 1. This says

x2 + x3 − 2
5z1 + 1

5z2 = 2
5 .

Suppose x1, x2, x3, z1, z2 are restricted to be non-negative integers. Then we must
have

x2 + x3 − 1z1 + 0z2 ≤ x2 + x3 − 2
5z1 + 1

5z2 = 2
5 .

This is because z1, z2 ≥ 0 and we have replaced − 2
5 and 1

5 by the integers that lie
just below them.

Since the left hand side is an integer, it can be no more than the integer just
below 2

5 . So a solution in integers must satisfy

x2 + x3 − z1 ≤ 0 .

However, the present solution does not satisfy this, since x2 = 2
5 , x3 = z1 = z2 =

0. Thus we can add this new constraint (or cutting plane) to give

0 1 1 − 2
5

1
5 0 2

5

1 0 −2 − 1
5 − 2

5 0 11
5

0 1 1 −1 0 1 0

0 0 3 8
5

1
5 0 − 28

5

which is written into standard form

0 1 1 − 2
5

1
5 0 2

5

1 0 −2 − 1
5 − 2

5 0 11
5

0 0 0 − 3
5 − 1

5 1 − 2
5

0 0 3 8
5

1
5 0 − 28

5

Applying the dual simplex algorithm to this, and repeating the process, we
will eventually arrive at the optimal integer solution. In this example we reach
the optimum of x1 = 3, x2 = x3 = 0 in just one more interation.

0 1 1 −1 0 1 0
1 0 −2 1 0 −2 3
0 0 0 3 1 −5 2

0 0 3 1 0 1 −6



5 Complexity of Algorithms

5.1 Theory of algorithmic complexity

An instance of an optimization problem is defined by its input data. E.g., an
instance of linear programming with n variables and m constraints is described
by the inputs c, A and b. There are mn + m + n numbers and if all of them can
be expressed in no more than k bits, the instance can be described in a string of
(mn + m + n)k bits. This is the instance size.

An optimization problem is solved by a computational algorithm whose run-
ning time depends on how it is programmed and the speed of the hardware. A
slarge instance can be easy to solve, such as LP with A = I. However, in general,
we expect an algorithm’s running time to increase with size of the instance. Ig-
noring details of the implementation, the running time depends on the number of
arithmetic operations involved. For example, the linear system Ax = b, with A
being n×n, can be solved by the algorithm of Gaussian elimination, using O(n3)
operations of addition, subtraction, multiplication and division. We define

• f(n) = O(g(n)) if there exists a c such that f(n) ≤ cg(n) for all n.

• f(n) = Ω(g(n)) if there exists a c such that f(n) ≥ cg(n) for all n.

• f(n) = Θ(g(n)) if f(n) is both O(g(n)) and Ω(g(n)).

Of course multiplication is more difficult than addition and so in computing
running time we might count operations according more elementary computer
instructions. In what follows we make use of Turing’s famous proof that the
class of things that can be computed is the class things that can be computed
by a Deterministic Turing Machine (DTM). A DTM is essentially a finite-state
machine that can read and write to an external storage medium.

When a DTM is given an input x it runs for some number of steps and then
outputs an asnwer, f(x). This number of steps is its running time. There are many
Turing machines. Let TM (n) be the worst-case running time of some Turning
machine, say M , over inputs x of size |x| = n. We say that a function f(x) is
computable in polynomial time if there exists some Turing machine that can
compute f(x) within |x|k steps (for some fixed k). The definition is robust, since
different Turing machines can simulate one another and more efficient models
of computation, by at most squaring or cubing the the computation time. In
contrast, if TM (n) = Ω(2cn) for all M , then f(x) is said to be computable in
exponential time.

19
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5.2 The Travelling Salesman Problem

Given a finite set of points S in the plane, the TSP asks for the shortest tour of
S. More formally, given S = {s1, s2, . . . , sn} a shortest tour that visits all points
of S is specified by a permutation σ that minimizes the sum of distances

d(sσ(1), sσ(2)) + d(sσ(2), sσ(3)) + · · · + d(sσ(n−1), sσ(n)) + d(sσ(n), sσ(1))

where d(si, sj) is the distance between points i and j.
In general, it is difficult to prove that a problem does not have a polynomial

time algorithm. No polynomial time algorithm is known for TSP. But there is
also no proof that a polynomial time algorithm for TSP does not exist. We see in
Lecture 6 that the simplex algorithm for LP is an exponential time algorithm. It
was not until the 1970s that a polynomial time algorithm was discovered for LP.

5.3 Decision Problems

A decision problem (or recognition problem) is one that takes the form of a
question with a yes/no answer. For example, decision-TSP is

Given the points S, and L is there a tour of length ≤ L? (5.1)

This differs from optimization-TSP: find the shortest tour, or the evaluation-TSP:
find the length of the shortest tour. Of course the three types of problem are closely
related. We focus on decision problems. This avoids problems in which the size
of the input or output causes non-polynomial time behaviour.

5.4 P and NP problems

A decision problem in is P if its answer is computable in polynomial time. I.e.,
there exists a deterministic Turing machine which, given any instance (with input
data x), can compute the answer within a number of steps bounded by |x|k (for
some fixed k).

A decision problem belongs to NP if there exists a checking function r(x, y)
such that the answer to the decision problem is yes iff there exists a y (called a
certificate) such that r(x, y) = 1 and r(x, y) is computable in polynomial time.
For example, if the answer to (5.1) is yes then y could be the order in which the
points should be visited. It takes only time O(n) to add up the length of this tour
and check it is less than L (this being the computation r(x, y)).

‘NP ’ stands for nondeterministic polynomial. An equivalent definition of
NP is that it is the class of decision problems whose answers can be computed
in polynomial time on a ‘nondeterministic Turing machine’ (NDTM). A NDTM
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consists of many DTMs working in parallel, any one of which can answer yes in
polynomial time without consulting the others. Essentially, these computers are
carrying out parallel calculations of r(x, y) for all possible y. Either one of them
produces the answer yes within time nk, or the answer is no. A NDTM for (5.1)
could consist of (n − 1)! DTMs, each of them checking one possible tour to see if
its length is less than L. Clearly, P ⊆ NP . It is believed that P ⊂ NP : that is,
there are problems in NP which are not in P . However, this is a major unsolved
problem.

NP -complete

NP -hard
NP

P

5.5 Polynomial reduction

When is problem Π1 no harder than another problem Π2? We say that Π1 re-
duces to Π2 if we can construct an algorithm for Π1 as follows.

1. Make a (polynomial time) transformation of the instance of Π1 into an instance
of Π2.

2. Apply some algorithm to solve this instance of Π2.

3. Make a (polynomial time) transformation of this solution of Π2 back into a
solution of Π1.

The idea is that we can use an algorithm that solves Π2 to solve Π1, with additional
work in steps 1 and 3 that requires at most polynomial time. Thus Π1 is really
no harder than Π2.

5.6 NP-completeness

Now we can talk about the hardest problems in NP . A problem Π is said to
be NP-hard if every problem in NP can be reduced to it. It is said to be NP-
complete if moreover Π ∈ NP . Thus all NP-complete problems can be reduced
to one another and are as difficult as all problems in NP .

There are many NP-complete problems. LP in which all variable are restricted
to be 0 or 1 is NP-complete. TSP is NP-complete. So all problems in NP are no



Examples of NP -complete problems 22

harder than either of these problems. If you can find a polynomial time algorithm
for TSP then you have found a polynomial time algorithm for all problems in
NP and it would be true that P = NP . As we said, since no one has ever found
a polynomial time algorithm for any NP-complete problem, it is believed that
P 6= NP . To show that a new problem, Π, is NP-complete we must(i) show that
Π ∈ NP , and (ii) show that a known NP-complete problem reduces to Π.

5.7 Examples of NP -complete problems

Satisfiability (Cook (1971) Given a propositional formulae with AND’s, NOT’s,
OR’s and Boolean (T or F) variables X1, X2, . . . , Xr, for example,

(X1 ORNOT X2)AND (X3 AND X4)

is there an assignment of truth values to the variables that makes the formulae
true? (e.g. X1 = X2 = X3 = X4 = T in the above example.)

Hamiltonian circuit Given a graph G. Is there a set of edges forming a tour
of all the vertices? To see that an instance of this is no harder than as TSP, think
of a TSP instance with d(si, sj) = 1 if there is an edge from i to j and d(si, sj) = 2
if there is not. Ask, ‘is there a tour of length ≤ n?’

Subgraph isomorphism Given two graphs G, G′. Does G contain a subgraph
isomorphic to G′? Interestingly, Graph ismorphism (i.e., ‘Are graphs G and G′

isomorphic?’) is known to be in NP , but it is suspected to be neither in P or
NP-complete.

Clique decision problem Given a graph G and number k. Does G contain a
clique of size k? (i.e., k vertices all pairs of which are connected together). E.g.,
below left: k = 3, yes ; k = 4, no.

Vertex cover decision problem Given a graph G and number k. Is there a
set of k vertices such that every edge of G starts or finishes at one of them? Such
a set of vertices is called a vertex cover. E.g., above right: k = 2, no; k = 3, yes.



6 Computational Complexity of LP

6.1 Running time of the simplex algorithm

Worst-case running time

The simplex algorithm moves from one basic feasible solution to an adjacent one,
each time improving the value of the objective function. However, it can take an
exponentially large number of steps to terminate.

Suppose the feasible region is the cube in R
d defined by the constraints

0 ≤ xi ≤ 1 , i = 1, . . . , d

and we seek to maximize xd. There are 2d vertices. The paths shown below visit
all vertices before terminating at (0, 0, . . . , 1).

d = 2 d = 3

x1 x1

x2 x2

x3

Given 0 < ǫ < 1/2, consider the perturbed unit cube given by the constraints

ǫ ≤ x1 ≤ 1 , ǫxi−1 ≤ xi ≤ 1 − ǫxi−1 i = 2, . . . , d .

It can be verified that the cost function increases strictly with each move along
the path. For example, for d = 2 we have

(ǫ, ǫ2)

(1, 1 − ǫ)

(1, ǫ)

(ǫ, 1 − ǫ2)

A B

CD

x1

x2

0

Note that x2 increases along the route ABCD. So if our pivoting rule is always to
move to the adjacent bfs for which the entering variable has the least index (so-
called Bland’s rule), then the simplex algorithm will require 2d − 1 pivoting steps
before terminating. With this pivoting rule the simplex algorithm has exponential

23
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worst-case time complexity. Observe that the initial and final vertices are adjacent
and a different pivoting rule could reach the optimum in only one step. However,
for all common pivoting rule that have been studied there is some instance for
which the number of steps until termination is exponential. It is unknown whether
there is a pivoting rule that might make the simplex algorithm more efficient.
This is related to the Hirsch conjecture: that for a polytope in R

n defined by
m inequality constraints the number of pivots required to move from one bfs to
another bfs is never more than m − n.

Average-case running time

Not all algorithms with exponential time complexity are bad in practice. Often,
they can have very good performance. The simplex algorithm appears to perform
well on average. The difficulty is defining what is meant by ‘on average’.

6.2 The complexity of LP

We shall investigate alternative algorithms for solving LP. In particular, we seek
a polynomial time algorithm. If we can show that LP ∈ P then this is likely to
tell us something about good algorithms in practice. There are two classes of
methods for solving LP.

Boundary value methods Interior point methods

The size of an LP instance

Any non-negative integer, r, (r ≤ U) can be written in binary form

r = ak2k + ak−12
k−1 + · · · + a12

1 + a02
0 ≤ 2 log2 U

where a0, a1, . . . , ak are 0 or 1. The number k is at most ⌊log2 U⌋. Thus, using
an extra bit for the sign, we can represent any integer r where |r| ≤ U by at most
(⌊log2 U⌋ + 2) bits.

An instance of an LP problem is given by a m×n matrix A, a m-vector b and
a n-vector c. So, assuming that the largest magnitude of any of the components



25 Computational Complexity of LP

is U , an LP instance has a size in bits of

(mn + m + n)(⌊log2 U⌋ + 2) .

6.3 Feasibility problem

Consider the primal/dual pair:

P : minimize {c⊤x : Ax ≥ b}
D : maximize{b⊤λ : A⊤λ = c, λ ≥ 0} .

By the strong duality of linear programming, each problem has an optimal
solution if and only there is a feasible solution to

b⊤λ = c⊤x Ax ≥ b, A⊤λ = c, λ ≥ 0 .

Thus we can solve LP if we can solve a feasibility problem like this. We shall
therefore focus on feasibility and the decision problem

Is the polyhedron P = {x ∈ R
n : Ax ≥ b} non-empty?

The algorithm that we shall use is known as the ellipsoid method.

6.4 Preliminaries for ellipsoid method

Definitions 6.1

1. Let D be a n × n positive definite symmetric matrix. The set

E = E(z, D) = {x ∈ R
n : (x − z)⊤D−1(x − z) ≤ 1}

is called an ellipsoid with centre at z ∈ R
n.

2. Let D be a n×n non-singular matrix and t ∈ R
n. The mapping S : R

n 7→ R
n

defined by S(x) = Dx + t is called an affine transformation.

3. The volume of a set L ⊂ R
n, denoted by Vol(L), is defined by

Vol(L) =

∫

x∈L

dx .

We shall use the result that if S is given by the affine transformation S(x) = Dx+t
then

Vol(S(L)) = | det(D)|Vol(L) .
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6.5 Intuitive description of the ellipsoid method

We generate a sequence of ellipsoids {Et}. Et has centre xt, such that

• If xt ∈ P , then P is non-empty and the method stops.

• If xt 6∈ P , then there is a violated constraint with Aixt < bi, where Ai is some
row of A and bi is the matching element of b.

Thus, P is contained in the half-space {x ∈ R
n : Aix ≥ Aixt}. Call the intersec-

tion of this half-space with Et a half-ellipsoid.
We construct the ellipsoid Et+1 in such a way that it covers this half-ellipsoid

and has volume only a fraction of that of Et.
We repeat this procedure until either we find a point of P or we conclude that

the volume of P is very small and therefore can be taken as empty.

Et

Et+1

xt+1

xt A⊤
i x > bi

A⊤
i x > A⊤

i xt

P

The key result is as follows.

Theorem 6.1 Let E = E(z, D) be an ellipsoid in R
n, and a be a non-zero n-

vector. Consider the half-space H = {x ∈ R
n : a⊤x ≥ a⊤z} and let

z = z +
1

n + 1

Da√
a⊤Da

,

D =
n2

n2 − 1

(
D − 2

n + 1

Daa⊤D

a⊤Da

)
.

Then the matrix D is symmetric and positive definite and thus E′ = E(z, D) is
an ellipsoid. Moreover,

(a) E ∩ H ⊂ E′,

(b) Vol(E′) < e−1/(2(n+1))Vol(E) .



7 The Ellipsoid Method

7.1 Ellipsoid algorithm

Khachiyan’s ellipsoid method (1979):

Input

(a) A matrix A and vector b defining the polyhedron P = {x ∈ R
n : A⊤

i x ≥
bi, i = 1, . . . , m}.

(b) A number v, such that either P is empty or Vol(P ) > v.

(c) An ellipsoid (in fact, a ball) E0 = E(x0, r
2I) with volume at most V , such

that P ⊂ E0.

Output A feasible point x∗ ∈ P if P is non-empty, or a statement that P is
empty.

We will show subsequently that v = n−n(nU)−n2(n+1) > Vol(Et∗) and

V = (2n)n(nU)n2

> Vol(E0) > Vol(E1) > · · · > Vol(Et∗) .

E0

x0

x1

E1

Et∗

P

Initialize step Let

t∗ = ⌈2(n + 1) log(V/v)⌉ , E0 = E(x0, r
2I) , D0 = r2I , t = 0 .

Main iteration

(a) If t = t∗ stop; P is empty.

(b) If xt ∈ P stop; P is non-empty.

27
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(c) If xt 6∈ P find a violated constraint, i, such that A⊤
i xt < bi.

(d) Let Ht = {x ∈ R
n : A⊤

i x ≥ A⊤
i xt}.

Construct an ellipsoid Et+1 = E(xt+1, Dt+1) containing Et ∩ Ht with

xt+1 = xt +
1

n + 1

DtAi√
A⊤

i DtAi

,

Dt+1 =
n2

n2 − 1

(
Dt −

2

n + 1

DtAiA
⊤
i Dt

A⊤
i DtAi

)

(e) t := t + 1, return to (a).

7.2 Proof that E ∩ H ⊂ E
′

First, consider the case z = 0, D = I and a = e1 = (1, 0, . . . , 0)⊤. So, E0 = {x ∈
R

n : x⊤x ≤ 1} and H0 = {x ∈ R
n : x1 ≥ 0}.

E0
E′

0

Hence,

E′
0 = E

(
e1

n + 1
,

n2

n2 − 1

(
I − 2

n + 1
e1e

⊤
1

))
.

Re-writing this, we have

E′
0 =

{
x ∈ R

n :

(
n + 1

n

)2(
x1 −

1

n + 1

)2

+
n2 − 1

n2

n∑

i=2

x2
i ≤ 1

}

=

{
x ∈ R

n :
n2 − 1

n2

n∑

i=1

x2
i +

2(n + 1)

n2
x2

1

+

(
n + 1

n

)2(
− 2x1

n + 1
+

1

(n + 1)2

)
≤ 1

}
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So that

E′
0 =

{
x ∈ R

n :
n2 − 1

n2

n∑

i=1

x2
i +

1

n2
+

2(n + 1)

n2
x1(x1 − 1) ≤ 1

}
.

Now suppose x ∈ E0 ∩ H0. Then 0 ≤ x1 ≤ 1, and so x1(x1 − 1) ≤ 0. Also,∑n
i=1 x2

i ≤ 1. Hence

n2 − 1

n2

n∑

i=1

x2
i +

1

n2
+

2(n + 1)

n2
x1(x1 − 1) ≤ n2 − 1

n2
+

1

n2
= 1 ,

which verifies that x ∈ E′
0, proving that E0 ∩ H0 ⊂ E′

0.

Now, consider the general case and construct an affine transformation T (·)
such that T (E) = E0, T (H) = H0 and T (E′) = E′

0. The result then follows since
affine transformations preserve set inclusion, i.e. if A ⊂ B ⊂ R

n and T (·) is an
affine transformation, then T (A) ⊂ T (B).

Given E = E(z, D), introduce the affine transformation

T (x) = RD−1/2(x − z)

where R is a rotation matrix which rotates the unit ball so that D1/2a is aligned
with the unit vector e1 = (1, 0, . . . , 0)⊤ i.e.

R⊤R = I and RD1/2a = ||D1/2||e1

So now, T (E) = E0 since

x ∈ E ⇐⇒ (x − z)⊤D−1(x − z) ≤ 1

⇐⇒ (x − z)D−1/2R⊤RD−1/2(x − z) ≤ 1

⇐⇒ RD−1/2(x − z) ∈ E0

⇐⇒ T (x) ∈ E0 .

Similarly, T (H) = H0 since

x ∈ H ⇐⇒ a⊤(x − z) ≥ 0

⇐⇒ a⊤D1/2R⊤RD−1/2(x − z) ≥ 0

⇐⇒ e⊤1 T (x) ≥ 0

⇐⇒ T (x) ∈ H0

Similarly, one can show T (E′) = E′
0. Above, we proved that E0∩H0 ⊂ E′

0, which
is equivalent to T (E) ∩ T (H) ⊂ T (E′), which implies E ∩ H ⊂ E′.
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7.3 Proof that Vol(E ′) < e
−1/(2(n+1))Vol(E)

We have that
Vol(E′)

Vol(E)
=

Vol(T (E′))

Vol(T (E))
=

Vol(E′
0)

Vol(E0)
.

Now,

E′
0 = E

(
e1

n + 1
,

n2

n2 − 1

(
I − 2

n + 1
e1e

⊤
1

))
.

So, introduce the affine transformation

F (x) =
e1

n + 1
+

(
n2

n2 − 1

(
I − 2

n + 1
e1e

⊤
1

))1/2

x .

One can easily check that E′
0 = F (E0). So

Vol(E′
0) =

√

det

(
n2

n2 − 1

(
I − 2

n + 1
e1e⊤1

))
Vol(E0)

Hence,

Vol(E′
0)

Vol(E0)
=

(
n2

n2 − 1

)n/2(
1 − 2

n + 1

)1/2

=
n

n + 1

(
n2

n2 − 1

)(n−1)/2

=

(
1 − 1

n + 1

)(
1 +

1

n2 − 1

)(n−1)/2

< e−1/(n+1)
(
e1/(n2−1)

)(n−1)/2

= e−1/(2(n+1)) ,

using (twice) the inequality 1 + a < ea (a 6= 0). Therefore,

Vol(E′)

Vol(E)
< e−1/(2(n+1)) .



8 Complexity of the Ellipsoid Algorithm

8.1 The bound V

Lemma 8.1 Let A be a m×n integer matrix and let b be a vector in R
m. Let U

be the largest absolute value of the entries of A and b. Then,

(a) Every extreme point of the polyhedron P = {x ∈ R
n : Ax ≥ b} satisfies

−(nU)n ≤ xj ≤ (nU)n , j = 1, . . . , n .

(b) Every extreme point of the (standardized) polyhedron P = {x ∈ R
n : Ax = b}

satisfies
−(mU)m ≤ xj ≤ (mU)m , j = 1, . . . , n .

Proof. Consider first (a). We are assuming here that m > n. Let x be an
extreme point of P . Choose n linearly independent active constraints and write
Âx = b̂ where Â is n × n invertible submatrix of A and b̂ is the matching n-
dimensional subvector of b. So, we have x = Â−1b̂.

By Cramer’s rule, we can write the solution

xj =
det(Âj)

det(Â)
,

where Âj is the same as Â except that the jth column is replaced by b̂. Now

∣∣∣det(Âj)
∣∣∣ =

∣∣∣∣∣
∑

σ

(−1)|σ|
n∏

i=1

âi,σ(i)

∣∣∣∣∣ ≤ n!Un ≤ (nU)n , j = 1, . . . , n ,

where σ is one of the n! permutations of 1, . . . , n, with |σ| giving the number of
inversions (i.e., i < j and σ(i) > σ(j)).

Finally, since Â is invertible, det(Â) 6= 0 and all entries in A are integer so

| det(Â)| ≥ 1. Therefore, the extreme point x satisfies

|xj | ≤ (nU)n, for all j.

Exactly, the same argument may be used for (b) except that we use a basis matrix
AB . AB is m × m and we can replace n by m throughout.

By part (a) of the previous lemma all the extreme points of P = {x ∈ R
n :

Ax ≥ b} are contained in the bounded polyhedron PB defined by

PB = {x ∈ P : |xj | ≤ (nU)n, j = 1, . . . , n} .
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P is nonempty if and only if it contains an extreme point. Hence, we can test for
the emptiness of PB instead of P . But PB is contained in the ball E(0, n(nU)2nI)
whose volume is at most

V = (2n(nU)n)
n

= (2n)n(nU)n2

.

8.2 The bound v

We say a polyhedron P is full-dimensional if it has positive volume. For ex-
ample, P = {(x1, x2) : x1 + x2 = 1, x1, x2 ≥ 0} has Vol(P ) = 0 and so is not
full-dimensional.

Lemma 8.2 Let P = {x ∈ R
n : Ax ≥ b} and assume that A and b have integer

entries which are bounded in absolute value by U . Let

ǫ =
1

2(n + 1)
[(n + 1)U ]

−(n+1)
, Pǫ = {x ∈ R

n : Ax ≥ b − ǫe}

where e⊤ = (1, 1, . . . , 1). Then

(a) If P is empty, then Pǫ is empty.

(b) If P is non-empty, then Pǫ is full-dimensional.

Proof of (a) Suppose P is empty and consider the infeasible linear program
minimize {0⊤x : Ax ≥ b} and its dual maximize {λ⊤b : λ⊤A = 0⊤, λ ≥ 0}.
Since the primal is infeasible the dual problem has value +∞. Therefore, there
exists a λ ≥ 0 with

λ⊤A = 0⊤ λ⊤b = 1 .

So, using the previous lemma, we can find a bfs λ̂ to the constraints λ⊤A = 0⊤,
λ⊤b = 1, λ ≥ 0 such that

λ̂i ≤ ((n + 1)U)n+1 , for all i .

Since λ̂ is a bfs, at most n + 1 of its components are non-zero so that

m∑

i=1

λ̂i ≤ (n + 1) ((n + 1)U)
n+1

.

Therefore,

λ̂⊤(b − ǫe) = 1 − ǫ
m∑

i=1

λ̂i ≥
1

2
> 0 .

Hence, when we replace b by b − ǫe the value of the dual remains +∞ and the
primal problem is again infeasible and Pǫ is also empty.
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Proof of (b) Let x be an element of P so that Ax ≥ b. Let y be a vector such
that

xj −
ǫ

nU
≤ yj ≤ xj +

ǫ

nU
, for all j .

Then the ith row of Ay satisfies

n∑

j=1

aijyj ≥
n∑

j=1

aijxj −
ǫ

nU

n∑

j=1

|aij |

≥ bi −
ǫ

nU
nU

= bi − ǫ .

Therefore, any such vector y belongs to Pǫ and the set of all such vectors y (a
cube) has positive volume (of (2ǫ/nU)n) and so is full-dimensional.

The following lemma can also be proved.

Lemma 8.3 Let P = {x ∈ R
n : Ax ≥ b} be a full-dimensional bounded polyhe-

dron, where the entries of A and b are integer and have absolute value bounded
by U . Then,

Vol(P ) > n−n(nU)−n2(n+1) .

8.3 Running time of the ellipsoid method

We have the values

V = (2n)n(nU)n2

and v = n−n(nU)−n2(n+1)

and know that the ellipsoid method takes at most t∗ = ⌈2(n + 1) log(V/v)⌉ steps.
This gives t∗ = O(n4 log(nU)).

In practice, we apply the ellipsoid algorithm to Pǫ. We know that P is
nonempty if and only if Pǫ is nonempty. Let Pǫ = {x : (1/ǫ)A ≥ (1/ǫ)b−e}. Recall
U is an integer, so 1/ǫ is also an integer and so this writes the constraints of Pǫ so
that all coefficients are integers that are bounded in magnitude by Uǫ = U/ǫ. We

know that Pǫ is contained in a ball of volume at most Vǫ = (2n)n(nUǫ)
n2

. Also,
when P is nonempty Pǫ has volume of at least vǫ = (2ǫ/nU)n (by the proof in
part (b) of Lemma 8.2). Thus the ellipsoid algorithm applied to Pǫ will terminate
in a number of steps at most ⌈2(n + 1) log(Vǫ/vǫ)⌉ = O(n4 log(nU)).

There are a few wrinkles to consider: on a computer we cannot actually cal-
culate the square root

√
A⊤

i DtAi that is needed to find xt+1 from xt. There is
also a worry that in multiplying numbers together we might be forced to use ones
as large as 2U . However, it can be shown that if we carry out the algorithm to
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a certain accuracy it will still correctly decide whether P is nonempty. At each
step the calculation of A⊤

i DtAi requires (n2) operations, which makes the running
time of the algorithm O(n6 log(nU)).

8.4 Sliding objective ellipsoid method

Suppose we wish to solve the problem minimize {c⊤x : Ax ≥ b, x ≥ 0}. First, use
the ellipsoid method to find a feasible solution x0 ∈ P , where P = {x ∈ R

n :
Ax ≥ b}. Now we apply the ellipsoid method again (note the strict inequality) to
the new polyhedron given by

P ∩ {x ∈ R
n : c⊤x < c⊤x0} .

If this is empty then x0 is optimal. Otherwise, we have a new solution x1 ∈ P , say,
with strictly smaller objective function than c⊤x0. Now we reapply the ellipsoid
method to the new polyhedron.

P c⊤x < c⊤xt

c⊤x < c⊤xt+1

Et

Et+1

xt

xt+1

−c

At each iteration we add a new constraint in the direction of the vector c. All the
constraints c⊤x < c⊤xt are parallel to one another. One can show that by this
procedure we reach the optimum in polynomial running time.



9 The Network Simplex Algorithm

9.1 Graph terminology

The next four lectures are about network flow problems. They include trans-
portation, assignment, maximum flow and shortest path problems.

A graph G = (N, A) consists of a set of nodes, N , and a set of arcs, A. In an
undirected graph the arcs are unordered pairs of nodes {i, j} ∈ A, i, j ∈ N . In a
directed graph (also called a network) the arcs are ordered pairs of nodes (i, j).
A walk is an ordered list of nodes i1, i2, . . . , it such that, in an undirected graph,
{ik, ik+1} ∈ A, or, in a directed graph, that either (ik, ik+1) ∈ A or (ik+1, ik) ∈ A,
for k = 1, . . . , t − 1. A walk is a path if i1, i2, . . . , ik are distinct, and a cycle if
i1, i2, . . . , ik−1 are distinct and i1 = ik. A graph is connected if there is a path
connecting every pair of nodes.

1

2

3

4

5

1
2

3

4

5

6

a directed graph a spanning tree (dotted)

A network is acyclic if it contains no cycles. A network is a tree if it is
connected and acyclic. A network (N ′, A′) is a subnetwork of (N, A) if N ′ ⊂ N
and A′ ⊂ A. A subnetwork (N ′, A′) is a spanning tree if it is a tree and N ′ = N .

9.2 The minimum cost flow problem

Let fij denote the amount of flow of some material on arc (i, j) ∈ A. Let bi,
i ∈ N , denote the amount of flow that enters the network at node i ∈ N . If bi > 0
we say the node is a source (supplying bi units of flow). If bi < 0 we say that
the node is a sink (with a demand of |bi| units of flow).

Suppose there is a cost of cij per unit flow on arc (i, j) ∈ A. The minimum
cost flow problem is

minimize
∑

(i,j)∈A

cijfij

35
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subject to

bi +
∑

j:(j,i)∈A

fji =
∑

j:(i,j)∈A

fij , for all i ∈ N

mij ≤ fij ≤ Mij , for all (i, j) ∈ A .

These say that flows must be feasible and conserve flow at each node. For feasible
flows to exist we must also have

∑
i∈N bi = 0. An important special case is that

of uncapacitated flows, mij = 0 and Mij = ∞.
Note that the minimum cost flow problem is a special form of linear pro-

gram. Its simple structure allows for special algorithms. Constraints are of the
form Ax = b, where

(A)ik =






+1 node i is start of kth arc ;
−1 node i is end of kth arc ;

0 otherwise .

9.3 Spanning tree solutions

Assume that the network is connected. A spanning tree solution, fij , is one
that can be constructed as follows

1. Pick a set T ⊂ A of n − 1 arcs forming a spanning tree and partition the
remaining arcs A \ T into the two sets L and U .

2. Set fij = mij for each arc (i, j) ∈ L and fij = Mij for each arc (i, j) ∈ U .

3. Use the flow conservation constraints to determine the flows fij for arcs (i, j) ∈
T . We begin by determining the flows on arcs incident to leaves of the tree T .
Subsequently we determine the flows on other arcs of T .

A spanning tree solution with mij ≤ fij ≤ Mij is a feasible spanning tree
solution.

1
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3

4

5

6

7

T

Theorem 9.1 A flow vector is a spanning tree solution if and only if it is a
basic solution.
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9.4 Optimality conditions

Consider the Lagrangian of the minimum cost flow problem

L(f ; λ) =
∑

(i,j)∈A

cijfij −
∑

i∈N

λi




∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji − bi





=
∑

(i,j)∈A

(cij − λi + λj) fij +
∑

i∈N

λibi .

Minimizing L(f ; λ) over mij ≤ fij ≤ Mij gives dual feasibility and comple-
mentary slackness conditions:

c̄ij = cij − λi + λj > 0 =⇒ fij = mij

c̄ij = cij − λi + λj < 0 =⇒ fij = Mij

c̄ij = cij − λi + λj = 0 ⇐= mij < fij < Mij

Observe that if T is a spanning tree then we can solve the following equations
in a unique way, where n = |N |.

λn = 0 , λi − λj = cij , for all (i, j) ∈ T

9.5 Pivoting to change the basis

We compute the reduced costs c̄ij = cij − (λi − λj) for each arc (i, j) 6∈ T .
Recall c̄ij = 0 for all arcs (i, j) ∈ T by construction.

If c̄ij ≥ 0 for all (i, j) ∈ L and c̄ij ≤ 0 for all (i, j) ∈ U then the current
basic feasible solution is optimal. Otherwise, choose an arc (i, j) where there is a
violation. This arc together with the tree T forms a cycle. Add (or subtract) as
much flow as possible around this cycle so as to increase (or decrease) fij . Note
that

∑
kℓ c̄kℓ =

∑
kℓ ckℓ = c̄ij , where the sums are taken around the arcs of the

cycle. Thus if c̄ij is negative we can decrease the total cost by increasing the flow
fij . Similarly, if c̄ij is positive we can decrease cost by decreasing the fij .

Example Consider the minimum cost flow problem below. On each arc we give
the values of (cij , mij , Mij). There is b1 = 6, b2 = −4, and b3 = −2. The spanning
tree consists of 2 arcs (shown undashed). In the left hand figure, we set λ1 = 0
and find λ2 = −3 (so c12 = 3 = λ1 − λ2). Similarly, λ3 = −5. On the arc (1, 3)
the value of c13−λ1 +λ3 = 1− (0)+(−5) = −4. Since this is < 0 we can decrease
cost by increasing f13. Inserting the arc (1, 3) into the tree produces the cycle
(1, 3, 2, 1). We increase the flow f13 as much as possible shifting flow around this
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cycle (i.e., by 1). This produces the flows shown in the right diagram. The tree is
now arcs (1, 3), (1, 2). We recalculate: λ1 = 0, λ1 = −3 and λ2 = −1. The value
of c23 − λ2 + λ3 = 2 − (−3) + (−1) = 4. Since this is > 0 we want flow on (2, 3)
be minimal, which it is. So we now have the optimal solution.

0

1

1

1
1

2

2

2

2

2

33
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44

5

66 (1, 1, 3)(1, 1, 3)

(3, 3, 7)(3, 3, 7) (2, 0, 3)(2, 0, 3)

9.6 Finding the initial feasible tree solution

1. Every network flow problem can be reduced to one with exactly one source
node and one sink node (by adding in two nodes).

2. Every network flow problem can be reduced to one without sources or sinks
(by connecting the above two nodes with an edge). The constraints are just
Af = 0. Any f satisfying this is called a circulation and such flow problems
are called circulation problems.

3. In the case that mij = 0, for all i, j, the zero flow is a feasible tree solution.
If mij 6= 0 for some arc (i, j) we can replace the flows by fij − mij and adjust
the supplies bi accordingly.

9.7 Integrality of optimal solutions

Suppose the input data (mij , Mij and bi) are all integers. Then the above algo-
rithm leads to optimal integer solutions. There are no multiplications or divisions.

Theorem 9.2 (Integrality theorem) For every network flow problem with in-
teger data, every basic feasible solution and, in particular, every basic optimal
solution assigns integer flow to every arc.

This theorem is important for the many practical problems in which an integer
solution is required for a meaningful interpretation (for example, the assignment
problems). Later, we investigate linear programming problems subject to the
additional constraint that the solution be in integers. Such problems are usually
much harder to solve than the problem without the integer constraint. However,
for network flow problems we get integer solutions for free.



10 Transportation and Assignment

Problems

10.1 Transportation problem

In the transportation problem there are m suppliers of a good and n customers.
Suppose supplier i produces si units of the good, customer j demands dj units of
the good, and there is a balance between demand and supply so that

m∑

i=1

si =

n∑

j=1

dj .

Suppose the cost of transporting a unit of good from supplier i to consumer j
is cij . The problem is to match suppliers with consumers to minimize the total
transportation cost. We can easily formulate the transportation problem as a
minimum cost flow problem as follows

minimize

m∑

i=1

n∑

j=1

cijfij

subject to
m∑

i=1

fij = dj , j = 1, . . . , n ,

n∑

j=1

fij = si , i = 1, . . . , m ,

fij ≥ 0 , for all i, j .

This is a special case of the minimum cost flow problem with mij = 0, Mij = ∞
and the graph structure of a bipartite graph. That is, the nodes divide into
disjoint sets S (suppliers) and C (customers) and and A ⊂ S × C (the only arcs
are those which connect suppliers to consumers).

1

1

2

2

3

s1

s2

s3

d1

d2

Suppliers Customers

Lemma 10.1 Every minimum cost flow problem is equivalent to a transportation
problem.

39
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Proof. Consider the minimum cost flow problem with mij = 0, Mij < ∞, and
input data G = (N, A), Mij , cij and bi. For every arc (i, j) ∈ A construct a
source node with supply Mij . For every node i ∈ N construct a sink node with
demand

∑
k: (i,k)∈A Mik − bi. Now connect every source node (i, j) to each of the

sink nodes i and j with infinite upper bounds on capacities. Let cij,i = 0 and
cij,j = cij .

Mij

cij

demand

supply i

j

i,j

∑
k Mik − bi

∑
k Mjk − bj

0

There is a 1-1 correspondence between feasible flows in the two problems and
these flows have the same costs. To see this put a flow of fij on the arc from i, j
to j, and a flow of Mij − fij on the arc from i, j to i. The total amount flowing
into node i is then

∑
j(Mij − fij) +

∑
j fji, which must equal

∑
j Mij − bi. Thus

we have the flow conservation constraints of the minimum cost flow problem.
For this reason new algorithms are often first tested on transportation prob-

lems. The case in which there is an arc from every supplier to every consumer is
known as the Hitchcock transportation problem.

10.2 Tableau form

It is convenient to present the input data and spanning tree solutions (i.e., the
bfs’s) for the transportation problem in tableau form. (This is a different form of
tableau to that of the simplex tableau). We express the input data in a tableau
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The λi are computed using the fact that we require λi−λj = cij wherever fij > 0.
At the first interation we increase (by as much as possible) the flow in an empty
cell where λi − λj > cij (i.e., c̄ij > 0). We do this by adding and subtracting θ
around some cycle of cells in which fij > 0.

12

   

0 1
5

2
6

1

1

1

2 3
8
10

4 3

0 10
1

2
9
8

1

1 2
1 3

2
6

   

0 1
5

3
6 1

1 2 2
8
11

11

4 3

0 9

77

1
3

9
9

1

0
1 3

1
6

further

iterations

−1−1−1−1 −2 −3

+θ

+θ

+θ

−θ

−θ

−θ

The final tableau above contains the optimal solution because we have λi−λj =
cij everywhere that fij > 0 and λi − λj ≤ cij everywhere else.

10.3 Assignment problem

Given a set P of m people and a set T of m tasks and a cost, cij , the assignment
problem is one of choosing variables fij to

minimize

m∑

i=1

m∑

j=1

cijfij ,

subject to

fij =

{
1 if person i is assigned to task j

0 otherwise.

m∑

j=1

fij = 1 , for all i = 1, . . . , m

m∑

i=1

fij = 1 , for all j = 1, . . . , m .

These constraints say that each person is assigned to exactly one task and that
every task is covered. Except for the integer constraints, the assignment problem
is a special case of the Hitchcock transportation problem
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10.4 Integer constraints

The problem in which the integer constraints are replaced with 0 ≤ fij ≤ 1 is
known as the LP-relaxation of the assignment problem. If we use the spanning
tree method then our solution will take values 0 or 1 and hence be optimal for
both the LP-relaxation and the assignment problem.

Had we used a non-simplex type method to solve the underlying linear program
(e.g., some interior point projective algorithm) then an integer-valued optimal
solution may not be guaranteed. It is a feature of the method and not the problem.
Many LP-relaxations of problems have multiple non-integer solutions.

10.5 Maximum flow problem

Suppose we have a network with a single source node, 1 and a single sink node n
and upper bounds Mij on all the arcs. Also, assume for convenience that mij = 0.
The maximum flow problem is then to send as much flow from 1 to n. We write
this as

maximize δ

subject to

∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji =






δ i = 1
0 i 6= 1, n

−δ i = n

0 ≤ fij ≤ Cij , for all (i, j) ∈ A .

We can formulate the maximum flow problem as a minimum cost flow problem
by adding an additional arc (n, 1) to the network with mn1 = 0 and Mn1 = ∞
and then assign cost cn1 = −1 to the arc (n, 1) and zero cost to all the original
arcs.

Since, the only arc with non-zero cost has negative cost it follows that the
optimal solution to this minimum cost flow problem will circulate as much flow
as possible across the network, constrained only by the original arc capacities —
i.e., it also solves the maximum flow problem.

cn1 = −1

1 n



11 Maximum Flow and Shortest Path

Problems

11.1 Max-flow min-cut theorem

We return to the max-flow problem of Section 10.5. For S ⊂ N define the capacity
of the cut [S, N \ S] as

C(S, N \ S) =
∑

i∈S,j 6∈S

Cij .

Theorem 11.1 (Max-flow min-cut theorem)

Max-flow , δ = min cut capacity = min
S:1∈S, n6∈S

C(S, N \ S)

There are two parts to the proof. First

value of any flow ≤ capacity of any cut

Define
f(X, Y ) =

∑

i∈X,j∈Y :(i,j)∈A

fij

and suppose that 1 ∈ S, n 6∈ S. Then

δ =
∑

i∈S




∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji





= f(S, N) − f(N, S)

= f(S, S) + f(S, N \ S) − f(N \ S, S) − f(S, S)

= f(S, N \ S) − f(N \ S, S)

≤ f(S, N \ S)

≤ C(S, N \ S) .

We now complete the proof using the Ford-Fulkerson algorithm. Suppose
that fij is optimal and recursively define S ⊂ N as follows

1. 1 ∈ S

2. If i ∈ S and fij < Cij then j ∈ S

3. If i ∈ S and fji > 0 then j ∈ S.
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So, S is the set of nodes to which you can increase flow. Either n ∈ S in which
case we can increase flow along a path from 1 to n, or n 6∈ S so that [S, N \ S] is
a cut with 1 ∈ S and n 6∈ S. But for i ∈ S, j 6∈ S, fij = Cij , fji = 0 and

δ = f(S, N \ S) − f(N \ S, S) = C(S, N \ S) .

We can take zero flow fij = 0 as the initial flow. If all capacities and initial
flows are integer then every step increases the flow by at least one unit. Thus the
algorithm will converge in a finite number of steps.

Dual formulation

We can recast the max-flow problem as a minimum cost flow problem:

minimize −fn1

subject to
∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji = 0 , for all i ∈ N

0 ≤ fij ≤ Cij , for all (i, j) ∈ A , fn1 ≥ 0 .

Consider the Lagrangian in the usual way with dual variables, λi, i ∈ N . For
optimality on arc (n, 1) we have (cn1 = −1)

c̄n1 = cn1 − λn + λ1 = 0 ,

so that λ1 = 1 + λn. On all the other arcs the costs are zero so that the reduced
costs are just c̄ij = λj − λi and at an optimal solution

λj − λi > 0 =⇒ fij = 0

λj − λi < 0 =⇒ fij = Cij .

So λi = 1 for i ∈ S and λj = 0, j ∈ N \ S.

11.2 Project management

A project that is described by a set of jobs that must be completed in a certain
order. Job i has a duration τi. How can we determine the least time in which the
project can be completed?

Consider a graph in which there is an arc (i, j) whenever job i must be com-
pleted before job j. Introduce two additional jobs, s and s′, each of zero duration,
to indicate the start and finish of the project, and introduce arcs (s, i) and (i, s′)
for every job i. Suppose we start job i at time ti. We wish to

minimize (ts′ − ts) , subject to tj − ti ≥ τi , for all (i, j) ∈ A .
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start end

s
s′

i j

The dual of this problem is

maximize
∑

(i,j)∈A

τifij

subject to

∑

j: (j,i)∈A

fji −
∑

j: (i,j)∈A

fij = −bi , for all i , and fij ≥ 0 , for all (i, j) ∈ A ,

where bs = 1, bs′ = −1 and bi = 0 for i 6= s, s′. This is a minimum cost flow
problem with each arc cost being −τi. The path of arcs for which fij = 1 defines
the critical path.

11.3 The shortest path problem

Shortest path problems have applications in transportation and communications,
and are often subproblems embedded in more complex problems. Although they
are special forms of minimum cost flow problems they can be solved more effi-
ciently by specialized algorithms. Given a network (N, A) we think of each arc
having a length cij ≥ 0 and consider paths in which arcs are traversed in the
forward direction only. The length of a path is the sum of the lengths of the as-
sociated arcs. A shortest path between a given pair of nodes is the path between
them of minimum length. It is convenient to consider the problem of finding the
shortest paths from all nodes to a given destination node.

Take some node, say n = |N |, as a root node. Put a demand of n − 1 at
this node (that is, bn = −(n − 1)) and a supply of one unit at every other node
(b1 = · · · = bn−1 = 1), so that total supply and demand are equal. Let the cost
cij of arc (i, j) be given by its length and solve this minimum cost flow problem
by the network simplex algorithm. Then the shortest path from any node i to n
is given by following the arcs of the spanning tree from i to n.
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Let vi be the shortest distance from node i to the root node n. These quantities
are known as labels. Algorithms which systematically determine their values in
some order are called label-setting algorithms. Algorithms which find their
values through a sequence of iterations are called label-correcting algorithms.

11.4 Bellman’s equations

Consider the minimum cost flow problem formulation of the shortest path prob-
lem. Suppose that the λis are the optimal dual variables associated with the
optimal spanning tree solution. Recall that on each arc of the tree, where fij > 0,
we must have

λi = cij + λj .

Taking λn = vn = 0 and adding these equalities along a path from i to n we
conclude that λi = vi, the length of the shortest path from i to n.

Moreover, as b1 = · · · = bn−1 = 1, the dual problem, with λn = 0, is

maximize
n−1∑

i=1

λi , subject to λi ≤ cij + λj for all (i, j) ∈ A .

It follows that in the optimal solution, λ, if all components are fixed except for
λi, then we should set λi as large as possible subject to the feasibility constraint.
That is, λi satisfies

λi = min
k: (i,k)∈A

{cik + λk} , i = 1, . . . , n − 1 .

with λn = 0. These are known as Bellman’s equations.

i nk
cik λk

The idea is that if we are looking for the shortest path from i to n then we
should choose the first arc of the path (i, k) by minimizing over path lengths
cik + λk. This method is also known as dynamic programming.



12 Algorithms for Shortest Path

Problems

12.1 Bellman-Ford algorithm

Let vi(t) be the length of the shortest path from i to n which uses at most t arcs.
We have vn(t) = 0 for all t and vi(0) = ∞ for all i 6= n. Then

vi(t + 1) = min
k: (i,k)∈A

{cik + vk(t)} , i = 1, . . . , n − 1

defines the Bellman-Ford algorithm for solving the shortest path problem.

It is a label-correcting algorithm. If we assume that there are no negative
length cycles then vi(n − 1) = vi and allowing further additional arcs cannot
reduce the length, so that vi(n) = vi(n − 1).

The Bellman-Ford algorithm has running time O(mn), where n is the number
of nodes and m is the number of arcs, since there are at most n iterations and at
each iteration each arc is examined once.

To find the shortest paths and not just their length vi we could record a
successor node, s(i) to i as he first node along the shortest path from i to n.
Whenever we have vi(t + 1) < vi(t), we delete the old successor of i, if any, and
let s(i) be such that vi(t + 1) = cis(i) + vs(i)(t).

12.2 Dijkstra’s algorithm

Dijkstra’s algorithm is a label-setting algorithm. It can only be applied when all
arc lengths cij are non-negative. The idea is to collect up nodes in the order of
their increasing shortest path lengths, starting from the node with shortest path
length. To ease exposition, suppose all arcs are present, taking cij = ∞ for some
node pairs if necessary.

Lemma 12.1 Suppose that cij ≥ 0 for all i, j. Let ℓ 6= n be such that

cℓn = min
i6=n

cin .

Then vℓ = cℓn and vℓ ≤ vk for all k 6= n.

Proof A path from node k to n has a last arc, say (i, n) whose length cin is at
least cℓn. For node ℓ, we also have vℓ ≤ cℓn. Thus vℓ = cℓn ≤ vk for all k 6= n.
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Dijkstra’s algorithm is

1. Find a node ℓ 6= n such that cℓn ≤ cin for all i 6= n. Set vℓ = cℓn.

2. For every node i 6= ℓ, n set cin = min{cin, ciℓ + cℓn}.

3. Remove node ℓ from the graph and return to step 1 to apply the same steps
to the new graph

Remarks

1. The running time is O(n2) where n is the number of nodes. This follows since
there are n iterations each involving a comparison and update of arc lengths
from each remaining node.

2. In the case of dense graphs, with arcs numbering m = O(n2), this improves
on the Bellman-Ford algorithm (which has computational complexity O(mn).
Dijkstra’s algorithm is the best possible since any shortest path algorithm
would need Ω(n2) operations just to examine every arc at least once.

Example (n = 4)

1. Iteration 1 gives ℓ = 3 and v3 = 1.

2. Modify arc lengths
c14 = min{∞, 9 + 1} = 10 and
c24 = min{7, 8 + 1} = 7.

3. Eliminate node ℓ = 3 from the graph.

4. Iteration 2 gives ℓ = 2 and v2 = 7.

5. Modify arc length
c14 = min{10, 2 + 7} = 9.

6. Eliminate node ℓ = 2.

7. Node 1 is only node remaining so set
v1 = c14 = 9.

1
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12.3 Reformulation with non-negative cij

If vi (i 6= n) is the shortest path length from node i to node n then from the
Bellman equations (dual feasibility) we have that

vi ≤ cij + vj , for all (i, j) .

So that c̄ij = cij + vj − vi ≥ 0 are non-negative arc lengths and along any path
visiting nodes i1, . . . , ip

p−1∑

k=1

c̄ikik+1
=

p−1∑

k=1

(
cikik+1

+ vik+1
− vik

)
= vip

− vi1 +

p−1∑

k=1

cikik+1
.

Hence, the shortest paths under the new arc lengths are the same as those under
the original (possibly negative) arc lengths.

This is useful when we wish to solve the all-pairs problem, that is, to find the
shortest distances between all pairs of nodes. Here, if we have negative arc lengths,
we would use the Bellman-Ford algorithm to obtain vi for a given root node and
then apply Dijkstra’s algorithm to solve the n − 1 remaining problems using the
non-negative costs, c̄ij which are defined in terms of the vi just calculated.

For dense graphs, with m = O(n2), the overall complexity is

O(n3) + (n − 1)O(n2) = O(n3) .

This compares with a computational complexity of O(n4) for the Bellman-Ford
algorithm to solve the all-pairs problem.

12.4 Minimal spanning tree problem

Given a network (N, A), with cost cij associated with arc (i, j) ∈ A, find the
spanning tree of least cost. This problem arises, for example, when we wish to
design a communications network connecting a set of cities at minimal cost.

Theorem 12.1 (MST property) Let U be some proper subset of the set of
nodes, N . If (u, v) is an arc of least cost such that u ∈ U and v ∈ N \ U then
there is a minimal cost spanning tree that includes (u, v) as an arc.

Proof Suppose to the contrary that there is no minimal spanning tree that
includes (u, v). Let T be any minimal spanning tree. Adding (u, v) to T must
introduce a cycle, since T is a spanning tree. Thus, there must be another arc
(u′, v′) in T such that u′ ∈ U and v′ ∈ N \ U . If not, there would be no way
for the cycle to get from u to v without following the arc (u, v) a second time.
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Deleting the arc (u′, v′) breaks the cycle and yields a spanning tree T ′ whose
cost is certainly no greater than the cost of T since by assumption cuv ≤ cu′v′ .
Thus, T ′ contradicts our assumption that there is no minimal spanning tree that
includes (u, v).

12.5 Prim’s greedy algorithm for MST

Labels the nodes, N = {1, 2, . . . , n} and set U = {1}. Now construct U recursively
using the property above.

1. Find the cheapest arc (u, v) connecting U and N \U (breaking ties at random).

2. Add v to U and repeat until U = N .

Prim’s algorithm takes O(n2) steps. Suppose each time we start step 1 we already
know the shortest distance between U and every j 6∈ U , say cUj = mini∈U cij .
Then it takes no more than n comparisons to find the lowest cost arc between U
and N \ U (by comparing all the cUj for j ∈ N \ U). Having found a node v to
add to U , we can now find the shortest distance between U ′ = U + {v} and any
j in N \ U ′, say cU ′j = min{cvj , cUj}. Thus each step of the algorithm requires
at most n comparisons, and the algorithm has n − 1 steps.

Example. In this example, Prim’s algorithm adds arcs in the sequence {1, 3},
{3, 6}, {6, 4}, {3, 2}, {2, 5}.
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13 Branch and Bound

13.1 Integer programming problems

Can one obtain an optimal solution to an integer linear program (pathILP)
by rounding the solution to its LP relaxation? No, not easily.

Rounding may not be optimal

Consider the problem
maximize z = x1 + 5x2 ,

subject to
x1 + 10x2 ≤ 20 , x1 ≤ 2 , x1, x2 ∈ {0, 1, . . .}.

Without the integer constraints the optimum is:

x1 = 2, x2 = 9
5 ; z = 11 .

If we round x2 (in the feasible direction) then x2 = 1, z = 7.
However, the optimal solution is

x1 = 0, x2 = 2; z = 10 .

The best integer solution is not the closest to the best non-integer solution.

Rounding may not be feasible

Suppose a LP has optimal solution x1 = 6 1
2 , x2 = 10, with feasible set

−x1 + x2 ≤ 3 1
2 , x1 + x2 ≤ 16 1

2

Neither x1 = 6 nor x1 = 7 is feasible.

A possible algorithm

If all variables must be integers and the feasible set is bounded, then there are
only a finite number of feasible solutions. So a possible algorithm is

1. Try all solutions. 2. Compare them. 3. Pick the best.

However, there may be very many solutions to compare. We would like a more
efficient method of choosing between all possible solutions.
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13.2 Branch and Bound technique

A Branch and Bound technique can be used for many types of problem. Its
speed is very much problem dependent. The idea is to divide up the space of all
solutions in some sensible way so that there is a good chance we can reject large
subsets of nonoptimal solutions without actually evaluating them. Suppose we
wish to solve the problem:

minimize f(x), subject to x ∈ X ,

where X is a finite set of feasible solutions. The method takes a ‘divide-and-
conquer’ approach, in which problems are broken into subproblems. The original
problem is broken into one or more subproblems, the ith of which is to minimize
f(x) over x ∈ Xi. Subsequently, we break Xi into subproblems, continuing in
this way until a subproblem is easy to solve.

We also suppose that for any subproblem, in which f in minimized over a
x ∈ X ′, where X ′ is a subset of X , we can calculate a lower bound such that

ℓ(X ′) ≤ min
x∈X′

f(x) .

Branch and Bound algorithm

The algorithm keeps a list L of outstanding (active) subproblems and the cost U
of the best feasible solution found so far.

0. Initialize step. Set U = ∞. Discard any obviously infeasible solutions.
Treat the remaining solutions as one subset. Go to Step 2.

1. Branch step. Use some branch rule to select one of the remaining subsets
and break it into two or more subsets. Two common rules are:

Best bound rule. We partition the subset with the lowest bound, hoping that
this gives the best chance of an optimal solution and of being able to discard
other, larger, subsets by the fathom test.

Newest bound rule. We partition the most recently created subset, breaking
ties with best bound rule. This has book-keeping advantages in that we don’t
need to keep jumping around the tree too often. It can save some computational
effort in calculating bounds.

2. Bound step. For each new subset, Y , calculate ℓ(Y ).
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3. Fathom step. Exclude from further consideration any new subsets, Y , such
that

(a) ℓ(Y ) ≥ U .

(b) Y contains no feasible solutions.

(c) We can find an optimal solution to the problem of minimizing f over Y , say
x′, so ℓ(Y ) = f(x′). If ℓ(Y ) ≥ U , we eliminate Y by test (a). If ℓ(Y ) < U ,
we reset U = ℓ(Y ), store x′ as the best solution so far and re-apply test (a)
to all other active subsets.

4. Stopping rule. If there are no remaining active subsets, stop. The best
solution obtained so far is optimal. Otherwise, go to Step 1.

13.3 A knapsack problem

A hiker wishes to take some items on a journey. Which items he should take so
that the total value is at least 9, but the total weight is a minimum?

i 1 2 3 4
vi 5 5 4 2
wi 5 6 3 1

wi/vi 1 1.2 0.75 0.5

Each of the 16 subsets of {1, 2, 3, 4} is a possible solution. However, only 8 of
these are feasible. The hiker’s problem is

minimize

4∑

i=1

xiwi , subject to

4∑

i=1

xivi ≥ 9, and xi ∈ {0, 1} , for all i .

1. Starting with X as the only subset, we take items in index order until the total
value is at least 9. This gives U = 11. Since we must include at least one item
and the least item has weight 1, we have ℓ(X) = 1.

2. Break X into two subproblems, X1 and X0, such that the hiker does or does
not include item 1 in his backpack. Clearly ℓ(X0) = 1 (since he must include at
least one of the remaining items) and ℓ(X1) = 5 (since item 1 is in the backpack.
Neither subproblem can be eliminated by tests (a) or (b). So L = {X0, X1}.

3. Break X0 into the subproblems X01, X00, such that the backpack does not
include item 1, and does or does not include item 2. X00 is infeasible and so
we eliminate it. For X01 we have ℓ(X01) = 6. Now L = {X01, X1}.
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4. Break X1 into two subproblems, X11 and X10, which contain item 1, and do
or do not contain item 2. We have ℓ(X10) = 5 and ℓ(X11) = 11. Hence X11

can be eliminated by test (a) and L = {X01, X10}.

5. Break X10 into subproblems X101 and X100, which contain item 1, do not
contain item 2, and do or do not contain item 3. We eliminate X100 by test
(b). Clearly problem X101 is solved by x1 = {1, 3}, f(x1) = 8. So following
(c) we set U = 8 and L = {X01}.

6. Break X01 into subproblems X011 and X010. Since ℓ(X011) > U , we eliminate
X001 by test (a). As for X010 it is infeasible, and so elimnated by test (b).

L is now empty and so we are done. The optimal solution x1 = {1, 3}.

X

ℓ = 1

X0

ℓ = 1
X1

ℓ = 5

X00

infeasible

X01

ℓ = 6

X10

ℓ = 5

X11

ℓ = 11

X010

infeasible

X011

ℓ = 9

X100

infeasible

X101

opt= 8

Note 1. There is a trade off between the number of iterations that the method
takes and the effort we put into calculating the bounds.

For example, in calculating ℓ(X0) we could notice that for items 2, 3 and 4 the
value of wi/vi is 6/5, 3/4, 1/2. So to fill the backpack to total value 9, without
using item 1, requires a weight of at least 1 + 3 + 3(6/5) = 38/5, and we can put
ℓ(X0) = 7.6. Similarly, ℓ(X1) = 5 + 1 + 2(3/4) = 7.5.

By a similar calculation we have ℓ(X01) = 6 + 1 + 2(3/4) = 8.5. So at after
Step 5 we could eliminate X01 and so Step 6 would be unnecessary.

Note 2. Suppose we want all optimal solutions. In this case, we replace the
fathom test (a) with ℓ(Y ) > U and change fathom test (c) so that if ℓ(Y ) = U we
add additional incumbent solutions to the collection, and if ℓ(Y ) < U we throw
away all current incumbent solutions and replace by new one(s).



14 Integer Programming

14.1 Dakin’s method

Consider the problem

minimize z =

n∑

j=1

cjxj

subject to

n∑

j=1

aijxj ≥ bi , i = 1, . . . , m

xj ≥ 0 , j = 1, . . . , n

xj ∈ Z , j = 1, . . . , I (I ≤ n)

If only some but not all of the variables (I < n) are constrained to be integer-
valued then we say the optimization problem is a mixed integer program. If
all the variables are constrained to be integer-valued (I = n) then it is said to be
a pure integer program.

Dakin’s method applies to both pure and mixed forms of integer programs.
It nicely combines the primal and dual simplex algorithm with Branch and Bound.

Initialize step. Recall that the problem without the integer constraints is the
linear programming relaxation. We use this as our method of generating
lower bounds.

We set U = ∞ and solve the LP relaxation of the problem with the primal
simplex method. If optimal solution, say x̂, has x̂j ∈ Z, for j = 1, . . . , I then
stop. This solution is optimal. Otherwise, pick a variable, say xj , that is meant
to be integer but is not. Partition into two subsets by adding one or other of the
constraints

xj ≤ ⌊x̂j⌋ or xj ≥ ⌈x̂j⌉ .

Observe that x̂i violates both of these constraints and that if x̂ is the unique
optimal solution to the LP relaxation then the optimal cost of each of the two
subproblems will be strictly larger.

Bound step. Solve the resulting LP relaxation of the problem with the new
constraint. Use the dual simplex method, starting with the basic solution that
was optimal before adding the new constraint. The dual simplex method works
well for this task. Use the newest bound rule for greatest efficiency.
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Fathoming. The fathoming tests become:

1. If new optimal solution has ℓ(Y ) ≥ U .

2. If dual simplex implies that there are no feasible solutions.

3. If the optimal solution is feasible for the original problem, i.e., has integer
values for x1, . . . , xI and if ℓ(Y ) < U , then reset U = ℓ(Y ) and store x as the
incumbent solution.

14.2 Example of Dakin’s method

Consider the pure integer programming problem

minimize x1 − 2x2 ,

subject to − 4x1 + 6x2 ≤ 9 , x1 + x2 ≤ 4 , x1, x2 ≥ 0 , x1, x2 ∈ Z .

1. Set U = ∞.

2. Solve the LP relaxation to obtain x1 = (1.5, 2.5) with optimal cost −3.5.

3. Create two subproblems by adding the constraints x2 ≥ 3 (subproblem P1) or
x2 ≤ 2 (subproblem P2).

4. The LP relaxation of P1 is infeasible and we can eliminate this subset of possible
solutions.

5. The optimal solution to P2 is x2 = (0.75, 2), with optimal cost of −3.25.

6. Partition P2 into two subproblems according to the additional constraint x1 ≥
1 (subproblem P3) or x1 ≤ 0 (subproblem P4).

7. The optimal solution to P3 is x3 = (1, 2) which is integer and therefore er
record this as the best solution so far and set U = −3.

8. The optimal solution to P4 is (0, 1.5) with optimal cost −3 ≥ U . So delete P4.

9. There are no more unfathomed subproblems so we stop with optimal solution
x3 = (1, 2).
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14.3 Decision variables

We have seen pure and mixed integer programming problems. A further class
of practically useful programs arises from the constraints that the variables may
take one of the two values 0 or 1. We met one of these in Section 13.3. Such prob-
lems are called binary, or zero-one programs. Their interpretation as decision
variables can capture many modelling questions. We give some examples.

Binary choice, the 0–1 knapsack problem

We have n items with item j having a size wj and value vj . Given a bound K on
the overall size of our knapsack, how should we select the items to maximize the
total value?

maximize

n∑

j=1

vjxj , subject to

n∑

j=1

wjxj ≤ K , xj ∈ {0, 1} , j = 1, . . . , n .

Contingent decisions

A typical feature of discrete problems is that the variables are dependent in that
decision x can be made only if y is also made. We can capture this dependence
by the constraint x ≤ y. So that if y = 0 then x = 0.

Example: the facility location problem

Suppose that there are n potential facilities and that it costs cj to build facility
j = 1, . . . , n. There are m clients wishing to use one of the facilities and suppose
that it costs dij for client i = 1, . . . , m to use facility j.
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The facility location problem is to choose which facilities to build in order
to minimize the total cost of construction and use. We can formulate the problem
as follows.

minimize
n∑

j=1

cjyj +
m∑

i=1

n∑

j=1

dijxij

subject to

n∑

j=1

xij = 1 , i = 1, . . . , m

xij ≤ yj , i = 1, . . . , m, j = 1, . . . , n

xij , yj ∈ {0, 1} , j = 1, . . . , n .

Note that feasible solutions satisfy xij = 0 for all i = 1, . . . , m whenever
yj = 0. So that clients do not attempt to use a facility that is not constructed.

Relations between variables

Consider constraints of the form

n∑

j=1

xj ≤ 1 , or

n∑

j=1

xj = 1 ,

where all variables are binary. The first implies that at most one of the variables
can take the value 1. The second implies that precisely one of the variables must
be 1.

Restricted ranges of values

Suppose a variable x is restricted to the values {a1, . . . , am}. Introduce m binary
variables yj, j = 1, . . . , m together with the constraints

x =

m∑

j=1

ajyj ,

m∑

j=1

yj = 1 , yj ∈ {0, 1} .



15 Travelling Salesman Problem

15.1 Categories of algorithms

Given an undirected graph G = (N, A) consisting of n nodes and m arcs together
with costs cij for each arc {i, j} ∈ A, the travelling salesman problem (TSP)
is to find a tour of minimum cost.

1. Exact algorithms are guaranteed to find an optimal solution but may take
an exponential number of iterations. An exact algorithm for TSP is to write
it as an ILP and solve it using branch and bound.

2. Approximation algorithms have polynomial worst-case time complexity,
supplying a suboptimal solution with a guaranteed bound on the degree of
suboptimality. We shall look at such an algorithm for TSP, based on the
minimum spanning tree.

3. Heuristic algorithms supply suboptimal solutions without any bound on
their quality. They do not necessarily provide polynomial running times, but
empirically they often provide a successful tradeoff between optimality and
speed. We look at two approaches that have been used for TSP: local search
and simulated annealing.

15.2 Exact methods

Set xij = 1 or 0 as (i, j) ∈ A is or is not present in the tour. Define

δ(S) = {(i, j) ∈ A : i ∈ S, j 6∈ S} .

For a tour there must be two arcs incident to every node so

∑

(i,j)∈δ({i})

xij = 2, i ∈ N . (15.1)

Furthermore, for any partition of the nodes into subsets S and N \ S there must
be at least two edges connecting S and N \ S. So we must also have

∑

(i,j)∈δ(S)

xij ≥ 2 , for all S ⊂ N, such that S 6= ∅ or N . (15.2)

The so-called cutset formulation of the TSP is therefore
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minimize
∑

(i,j)∈A

cijxij

subject to (15.1), (15.2) and xij ∈ {0, 1}. Notice that we have exponentially many
constraints, since there are 2n − 2 constraints of type (15.2).

Alternatively, we can replace (15.2) by

∑

(i,j) : i,j∈S

xij ≤ |S| − 1, for all S ⊂ N such that S 6= ∅ or N . (15.3)

This constraint ensures there is no cycle involving less than all n nodes. Again
we have an exponential number of constraints. This is called the subtour elimi-
nation formulation of the TSP. The LP relaxations of these two formulations
have the same feasible sets (though this is not obvious).

15.3 Polynomial formulation of TSP

Think of the undirected formulation of the TSP. The the salesman must on leaving
a city he must next visit one and only one city, and, similarly, on arriving at a
city he must have come from one and only one city. Therefore we must have

∑

j : (i,j)∈A

xij = 1, i = 0, 1, . . . , n − 1 (15.4)

∑

i : (i,j)∈A

xij = 1, j = 0, 1, . . . , n − 1 . (15.5)

These constraints are not sufficient to ensure that the solutions do not consist
of several subtours such as is shown here.
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Consider a tour s0 = 0, s1, s2, . . . , sn−1. Let ti be the position in the tour at
which city i is visited. So, we have t0 = 0, ts1

= 1, and in general,

tsi
= i, i = 0, 1, . . . n − 1 .
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We require that if xij = 1 then

tj = ti + 1 .

Also, ti is an integer between 0 and n − 1. Hence,

tj ≥
{

ti − (n − 1) if xij = 0

ti + 1 if xij = 1 .

These constraints can be written as

tj ≥ ti + 1 − n(1 − xij) , i ≥ 0, j ≥ 1, i 6= j . (15.6)

It turns out that these constraints also rule out subtours. To see this, suppose
we have a solution which satisfies these constraints and consists of two or more
subtours. Consider the subtour that does not include city 0, and suppose it has
r ≥ 2 arcs. Summing the constraints over the arcs of this subtours leads to the
condition

0 ≥ r ,

and hence there can only be a single tour visiting all the cities.
Thus the TSP can be formulated as an ILP in n2+n variables and 2n+n(n−1)

constraints. Namely,

minimize
∑

i,j

cijxij

subject to (15.4), (15.5), (15.6), xij ∈ {0, 1}, t0 = 0 and ti ∈ {0, 1, 2, . . .}.

15.4 Solution using branch and bound

Notice that by dropping the constraints establishing the lack of subtours we are
left with an assignment problem, which can be efficiently solved by the network
simplex to provide a lower bound on the optimal solution.

We need not worry about the relaxation to non-integral solutions since the
network simplex algorithm will always find an integer solution. Thus we consider

minimize
∑

i,j

cijxij , subject to (15.4), (15.5) and xij ∈ {0, 1}.

If the optimal solution corresponds to a tour visiting all the cities then it is
optimal for the original travelling salesman problem.

If not, we continue with a branch and bound algorithm, using a branching rule
that breaks the problem in two by an additional constraint of the form xij = 0.
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Think of this as re-setting a cost, cij = ∞. The addition of such a constraint leaves
us with a valid travelling salesman problem and a valid assignment problem which
provides a corresponding lower bound.

A natural way to select an xij = 0 constraint is to choose one or more of the
subtours and eliminate one of their arcs.

If the current assignment problem has a unique optimal solution, this solution
becomes infeasible with the addition of a constraint during branching. Hence, the
optimal cost of each subproblem is strictly larger, and increasing lower bounds
are obtained.

15.5 Approximation algorithm for the TSP

Definition 15.1 An ǫ-approximation algorithm for a minimization problem
with optimal cost Zopt runs in polynomial time and returns a feasible solution with
cost Zapp, such that

Zapp ≤ (1 + ǫ)Zopt .

It is usually difficult to determine approximation algorithms for any ǫ > 0 and
we shall develop one for the TSP only for ǫ = 1, and when the costs cij satisfy
the triangle inequality.

Consider the undirected TSP with costs satisfying

cij ≤ cik + ckj , for all i, j, k .

Now suppose that M is the cost of the minimal spanning tree. This can be
obtained easily using Prim’s greedy algorithm. Consider any starting node and
traverse the minimal spanning tree to visit all the nodes. This uses each arc of
the spanning tree exactly twice, with total cost 2M .

This path can be converted into a tour visiting all the cities by skipping any
intermediate node that has already been visited. By the triangle inequality, the
resulting tour will have cost bounded above by 2M . Also, every tour contains a
spanning tree (since dropping any one arc leaves a spanning tree) and so has cost
at least M .

Thus a straight-forward algorithm based on the minimal spanning gives

Zapp ≤ 2M ≤ 2Zopt .

It is an approximation algorithm with ǫ = 1. Observe the essential importance
played by the triangle inequality.



16 Heuristic Algorithms

16.1 Heuristics for the TSP

Nearest neighbour heuristic. Start at some city and then visit the nearest
city. Continue to visit the nearest city that has not yet been visited, continuing
until a tour is complete.

Although usually rather bad, such tours may only contain a few severe mis-
takes. They can serve as good starts for local search methods.

Cheapest insertion heuristic. This is also a greedy algorithm. Start with a
single node and then, one by one, add the node whose insertion makes the smallest
increase to the length of the tour.

Furthest insertion heuristic. Insert the node whose minimal distance to the
exisiting tour node is greatest. The idea is to determine the overall layout of the
tour early in the process.

Savings heuristic. Rank the arcs in ascending order of cost. Add the arcs in
this order, so long as they do not violate any constraints, and until all cities have
been visited.

16.2 Neighbourhood search

Consider the general problem

minimize c(x), subject to x ∈ X.

Suppose that for any point x ∈ X we have a set of ‘neighbouring points’, N(x) ⊂
X . The basic approach of local search is as follows

1. Select some x ∈ X .
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2. Evaluate c(x).

3. Pick some y ∈ N(x) and evaluate c(y).

If c(y) < c(x) then select y as new value for x and return to step 2.

If there is no such y ∈ N(x) with c(y) < c(x) then stop with solution x.

Remarks

1. A specific implementation must specify, in a problem-dependent way:

(a) the neighbourhood sets, N(x), for all x ∈ X ;

(b) the procedure for selecting y ∈ N(x).

2. There are various ways to modify local search.

(a) We might use some rule to guess a good starting point or try multiple
starting points.

(b) We might choose the best neighbour y ∈ N(x) with least value of c(y) not
just the first y that improves the solution.

(c) We might choose the best neighbour amongst the first r considered.

3. The simplex algorithm for linear programs is a local search method. We can
say that two basic feasible solutions are neighbours if they are connected by
an edge of the constraint set.

In linear programming any local optimum is the global optimum.

16.3 Neighbourhood search methods for TSP

Consider the TSP. By a feasible solution x, we mean the indicator function for
the arcs in some tour of the network.

There is a fairly natural family of neighbourhoods for any tour x generated
by the operation of removing any k ≥ 2 arcs from the tour and replacing them
with k new arcs that also make a new tour. For example, when k = 2 (known as
2OPT) each tour has O(n2) neighbours. For k = 3 there are O(n3) neighbours
for each tour x.
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Note that it only takes time that is O(1) to compute the change in cost between
neighbouring tours.

Empirical evidence is that 3OPT performs better than 2OPT, but there is
little further gain in taking k > 3.

In general, there is trade-off of solution quality and speed. The larger the
neighbourhoods N(x) the fewer local minima there are, and the better the solu-
tion. However, more work must be done per iteration so the method is slower for
larger neighbourhoods.

In practice, we fix on a certain neighbourhood size but then repeat the algo-
rithm with a variety of starting values.

Example TSP using 2OPT

Suppose we have a distance matrix

A B C D E

A - 1 0 4 4
B 4 - 1 0 4
C 4 4 - 1 0
D 0 4 4 - 1
E 1 0 4 4 -

A feasible solution is a cycle that visits all the nodes (without re-using the arcs).
Here are the 4! = 24 feasible tours and costs c(x)

ABCDE ( 5) ACBDE ( 6) ADBCE (10) AEBCD ( 6)
ABCED ( 6) ACBED (12) ADBEC (20) AEBDC (12)
ABDCE ( 6) ACDBE (10) ADCBE (17) AECBD (12)
ABDEC (10) ACDEB ( 6) ADCEB ( 9) AECDB (17)
ABECD (10) ACEBD ( 0) ADEBC (10) AEDBC (17)
ABEDC (17) ACEDB (12) ADECB (17) AEDCB (20)

So, ACEBD is global optimum but we can get stuck in ABCDE since none of its
neighbours (under 2OPT) is better.

16.4 Simulated annealing

In this method we try to overcome difficulties of getting stuck in potentially poor
local minima by permitting the algorithm to jump out of them.

The basic idea is to allow up jumps to worse neighbours in initial phase but
get gradually more reluctant to permit up jumps.

The simulated annealing method permits a move from x to y ∈ N(x) with
probability

pxy = min

(
1 , exp

[
−c(y) − c(x)

T

])
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where T starts large and decreases with each iteration. It can be shown, under
suitable conditions, that if you start with T large enough and decrease it slowly
enough then

lim
t→∞

P (x(t) is optimal ) = 1 .

As motivation for this claim, imagine that all solutions have k neighbours, and
at each step of the algorithm one of these neigbours is chosen at random. Then
x moves next to its neightbour y with probability Pxy = pxy/k. By checking that
the ‘detailed balance’ of π(x)Pxy = π(y)Pyx holds we have that the stationary
distribution of this Markov chain is

π(x) =
e−c(x)/T

A
, where A =

∑

z∈X

e−c(z)/T .

Let Y be the set of optimal solutions. In this stationary distribution π(Y )/(1 −
π(Y )) → ∞ as T → 0.

A common temperature schedule is to let T decrease with iteration number,
t, according to

T (t) =
c

log t
.

16.5 Genetic algorithms

Genetic algorithms can be applied to many problems, are often easy to imple-
ment, but may get stuck in a local optimum. We illustrate the basic steps for the
TSP.

Create a random initial state. This is a population of tours, each of which
is list of cities, analagous to a list of chromosomes.

Evaluate fitness. A value for fitness is assigned to each solution, e.g., the
length of the tour.

Reproduce. Those chromosomes with a higher fitness value are more likely to
reproduce offspring E.g. ‘greedy crossover’ selects the first city of one parent,
compares the cities leaving that city in both parents, and chooses the closer one
to extend the tour. If one city has already appeared in the tour, choose the other
city. If both cities have appeared, randomly select a non-selected city.

Mutate. Randomly swap over a pair of cities.



17 Two-person Zero-sum Games

17.1 Terminology

Game theory is the study of multi-player decision problems. The common theme
is conflicts of interest between the different players. It assumes that each player
plays the ‘best way’ he can. This may not happen in practice. Game-theoretic
analysis is often more descriptive than prescriptive.

• Players. Labelled 1, 2, 3, . . ., or I, II, III, . . .

• Moves. A move is either a decision by a player or the outcome of a chance
event.

• Game. A game is a sequence of moves, some of which may be simultaneous.

• Payoffs. At the end of a game each player receives a return. The payoff to
each player is a real number. If a move has a random outcome we use an
expected payoff.

• Strategy. A strategy is a description of the decisions that a player will make
at all possible situations that can arise in the game.

• Zero-sum. The game is said to be zero-sum if the sum of the players’ payoffs
is always zero.

• Perfect information. A game is said to have perfect information if at
every move in the game all players know all the moves that have already been
made (including any random outcomes.)

17.2 Two-person zero-sum games

We begin with zero-sum games between two players, labelled I and II. Each player
has a finite collection of pure strategies. Player I has strategies I1, I2, . . . , In
and player II has strategies II1, II2, . . . , IIm.

Let eij denote the (expected) payoff to player I when he uses strategy Ii and
player II uses strategy IIj . The normal form representation of the game is
given by the matrix of payoffs (eij).

This representation is in terms of strategies. It does not include detailed
information about the sequences of moves or whether or not the players have
perfect information.
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17.3 Maximin criterion

In a non-zero-sum game, we must record both players’ payoffs, say e1(i, j) and
e2(i, j). So in a zero-sum game e1(i, j) = −e2(i, j) = eij . Player I wins what
player II loses. Thus when player II tries to maximize his payoff he is also trying
to minimize the payoff of player I. This means that player I should look at
the payoff he would receive if he plays strategy Ii, i.e., minj eij , and choose the
strategy which has the largest of these minimum payoffs. This is known as the
maximin criterion.

Using this criterion, player I can guarantee that his payoff is at least, vL, the
lower value of the game, where

vL = max
i

min
j

eij .

Similarly, player II can guarantee that player I’s payoff is no more than, vU ,
the upper value of the game,

vU = min
j

max
i

eij .

Example (a)

II1 II2 II3 II4 II5 II6 min using Ii

I1
I2
I3




1 1 −1 1 1 −1

−1 1 −1 −1 1 −1
1 1 1 −1 −1 −1




−1
−1
−1

max using IIj 1 1 1 1 1 −1

Thus, vL = max{−1,−1,−1} = −1 and vU = min{1, 1, 1, 1, 1,−1} = −1. When,
as in this example, we have vL = vU for a pair of pure strategies, there is said
to be a saddle point solution.

Example (b)

II1 II2 min using Ii

I1
I2

(
0 −1

−1/2 0

)
−1
−1/2

max using IIj 0 0

Thus, vL = max{−1,−1/2} = −1/2 and vU = min{0, 0} = 0.
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17.4 Mixed strategies

In Example (b) vL is strictly less than vU . Suppose we enlarge the set of pos-
sible strategies by randomization, allowing player I to choose strategy Ii with
probability pi and player II to choose strategy IIj with probability qj . We say
that player I adopts the strategy p = (p1, p2, . . . , pn) and II adopts the strategy
q = (q1, q2, . . . , qm). The expected payoff to I is

e(p,q) =

n∑

i=1

m∑

j=1

pieijqj .

Suppose that in Example (b) player I takes p = (p, 1 − p) and player II takes
q = (q, 1 − q). Then the expected payoff to player I is

e(p, q) = 0p1q1 − 1p1q2 − 1
2p2q1 + 0p2q2

= −p1 − 1
2q1 + 3

2p1q1

= 3
2 (p1 − 1

3 )(q1 − 2
3 ) − 1

3 .

Define
vM

L = max
p

min
q

e(p, q) and vM
U = min

q
max

p
e(p, q) .

Notice that if I plays p∗ = (1/3, 2/3) and II plays q∗ = (2/3, 1/3) then

e(p∗, q) = −1/3 for all q , and e(p, q∗) = −1/3 for all p .

It is clear that vM
L ≤ vM

U . Playing p∗ guarantees I at least −1/3, so vM
L ≥ −1/3.

If II plays q∗ then I will be restricted to no more than −1/3, so vM
U ≤ −1/3. Hence,

we must have
vM

L = vM
U .

17.5 Minimax theorem

Theorem 17.1 (Minimax theorem) Consider a two-person zero-sum game in
which I has n strategies and II has m strategies (both finite). Then

vM
L = max

p
min

q
e(p, q) = min

q
max

p
e(p, q) = vM

U .

If p∗ and q∗ achieve the maximin criterion of the theorem then

e(p∗, q∗) = vM
L = vM

U = v .

We say that v is the value of the game and that the value together with the
optimal strategies, p∗ and q∗ are the solution to the game.
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17.6 Dominating strategies

Consider the payoff matrix

II1 II2 II3 II4

I1
I2
I3




4 5 6 4
4 2 3 4
2 4 5 5





No matter which strategy player I follows his payoff is always the same or less
under II1 than II4. Thus, II will always do as well to use II1 rather than II4.
We say that II1 dominates II4, and we may remove it from the strategy set.
Similarly, II2 dominates II3. So the game reduces to

II1 II2

I1
I2
I3




4 5
4 2
2 4





But now we may iterate this procedure. Since I1 dominates both I2 and I3 in
the reduced game, though not in the original game, we have

II1 II2

I1
(

4 5
)

Lemma 17.1 If a dominated strategy is removed from a game then the solution
of the reduced game is a solution of the original game.

Suppose that I2 dominates I1 in the original n× m game and that p∗, q∗ and
v is a solution to the reduced game when I1 is omitted.

Then e(p∗, q) ≥ v for all q and e(p, q∗) ≤ v for all p = (0, p2, . . . , pn). We need
to show that

e(p∗, q) ≥ v , for all q , and e(p, q∗) ≤ v , for all p .

Take any p = (p1, p2, . . . , pn) then

e(p, q∗) =
n∑

i=1

m∑

j=1

pieijq
∗
j = p1

m∑

j=1

e1jq
∗
j +

n∑

i=2

m∑

j=1

pieijq
∗
j

≤ p1

m∑

j=1

e2jq
∗
j +

n∑

i=2

m∑

j=1

pieijq
∗
j = e(p′, q∗)

where p′ = (0, p1 + p2, p3, . . . , pn) is a strategy in the reduced game. Thus

e(p, q∗) ≤ e(p′, q∗) ≤ v , for all p = (p1, p2, . . . , pn) .

Simlarly, we can show e(p∗, q) ≥ v for all q.



18 Solution of Two-person Games

18.1 Equilibrium pairs

A pair of strategies p∗ and q∗ is an equilibrium pair if for any p and q

e(p, q∗) ≤ e(p∗, q∗) ≤ e(p∗, q) .

It is possible for there to be more than one equilibrium pair. In the game

II1 II2 II3

I1
I2

(
1 4 1
0 2 −1

)

both (I1, II1) and (I1, II3) are equilibrium pairs. Indeed, p∗ = (1, 0) and q∗ =
(q, 0, 1 − q) are equilibrium pairs for any 0 ≤ q ≤ 1. But in all such cases
e(p∗, q∗) = 1.

Lemma 18.1 If (p, q) and (p′, q′) are both equilibrium pairs then e(p, q) = e(p′, q′).

Proof. Since (p, q) and (p′, q′) are both equilibrium pairs, we have

e(p′, q) ≤ e(p, q) ≤ e(p, q′) and e(p, q′) ≤ e(p′, q′) ≤ e(p′, q) .

Together, these imply e(p, q) = e(p′, q′).

Theorem 18.1 A pair of strategies (p∗, q∗) in a two-person zero-sum game is an
equilibrium pair if and only if (p∗, q∗, e(p∗, q∗)) is a solution to the game.

Proof. If (p∗, q∗) is an equilibrium pair then

max
p

e(p, q∗) ≤ e(p∗, q∗) ≤ min
q

e(p∗, q) .

Then

vM
U = min

q
max

p
e(p, q) ≤ max

p
e(p, q∗) ≤ e(p∗, q∗)

≤ min
q

e(p∗, q) ≤ max
p

min
q

e(p, q) = vM
L .

So, since vM
L ≤ vM

U we must have vM
L = vM

U = e(p∗, q∗) so that (p∗, q∗, e(p∗, q∗))
is a solution of the game.
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Conversely, if (p∗, q∗, e(p∗, q∗)) is a solution of the game then

e(p, q∗) ≤ max
p

e(p, q∗) = min
q

max
p

e(p, q) = e(p∗, q∗)

= max
p

min
q

e(p, q) = min
q

e(p∗, q) ≤ e(p∗, q) .

Hence, (p∗, q∗) is an equilibrium pair.

18.2 Solving two-person zero-sum games

We want to find probability vectors p∗, q∗ and a v such that

e(p, q∗) ≤ e(p∗, q∗) = v ≤ e(p∗, q)

for any p and q. The first inequality implies that

e(Ii, q
∗) =

m∑

j=1

eijq
∗
j ≤ v , for all i = 1, 2, . . . , n .

Player II chooses q∗ so as to make v as small as possible. So his problem is

minimize




v :
m∑

j=1

eijqj ≤ v, qj ≥ 0,
m∑

j=1

qj = 1




 .

Let, Qj = qj/v then Q1 + Q2 + · · ·+ Qm =
∑m

j=1 qj/v = 1/v. Thus, assuming
v > 0, minimizing v is equivalent to maximizing 1/v so that the final problem is

maximize Q1 + Q2 + · · · + Qm

subject to

m∑

j=1

eijQj ≤ 1 , i = 1, . . . , n , and Qj ≥ 0 , j = 1, . . .m .

To ensure v > 0 we can add a constant to every payoff. This will not change the
optimal strategy only the value. Consider the dual problem given by

minimize P1 + P2 + · · · + Pn

subject to

n∑

i=1

Pieij ≥ 1 , j = 1, 2, . . . , m , and Pi ≥ 0 , i = 1, 2, . . . , n .

Interpret this as Pi = pi/v for i = 1, 2, . . . , n and rewrite as

maximize

{
v :

n∑

i=1

pieij ≥ v, pi ≥ 0,
n∑

i=1

pi = 1

}
.
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Thus we can solve the game by solving the primal (or dual) LP. Solving the
primal gives the value of the game and player II’s optimal strategy q∗ while the
dual problem gives player I’s optimal strategy p∗.

18.3 Two-person non-zero-sum games

The players are not completely antagonistic to one another and might both be
happier with one outcome than another. For non-zero-sum games, (a) a maximin
pair is not necessarily an equilibrium pair and vice versa; (b) equilibrium pairs
don’t necessarily have the same payoffs; (c) there is no obvious solution concept
for the game.

Write e1(·, ·) for player I’s payoffs and e2(·, ·) for player II’s payoffs. A pair of
strategies (p∗, q∗) is an equilibrium pair if for any p and q

e1(p, q∗) ≤ e1(p
∗, q∗); e2(p

∗, q) ≤ e2(p
∗, q∗) .

Example: Prisoner’s Dilemma

Don’t confess Confess
Don’t confess

Confess

(
( 5, 5) (0, 10)
(10, 0) ( 1, 1)

)

The equilibrium pair is (Confess, Confess) with payoffs (1, 1). However this is
worse for both players than (5, 5), where both players don’t confess. The ‘confess’
strategy dominates the ‘don’t confess’ strategy yet ‘most people’ would regard
(Don’t confess, Don’t confess) as the ‘best’ solution.

Example: Coordination game

Opera Football
Opera

Football

(
(1,4) (0,0)
(0,0) (4,1)

)

There are three equilibrium pairs: (Opera,Opera) with payoff (1, 4), (Football,
Football) with payoff (4, 1) and a third one consisting of the mixed strategies
(1/5, 4/5) and (4/5, 1/5) which gives payoffs of (4/5, 4/5). The difficulty is to
persuade the other player to do the same as you. Compare this with flipping
a coin and both going to the opera or both to football and sharing the payoffs
evenly; this requires cooperation.

Theorem 18.2 (Nash’ Theorem) Any two-person game (zero-sum or non-zero-
sum) with a finite number of pure strategies has at least one equilibrium pair.
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Proof. Set P = {p : pi ≥ 0,
∑

i pi = 1}, Q = {q : qj ≥ 0,
∑

j qj = 1} and
define

S = {(p, q) : p ∈ P, q ∈ Q} .

Then S is closed, bounded and convex. For any p ∈ P and q ∈ Q define

ci(p, q) = max{0, e1(Ii, q) − e1(p, q)} , i = 1, 2, . . . , n

as the amount I gets extra by playing Ii rather than p against q. Let

dj(p, q) = max{0, e2(p, IIj) − e2(p, q)} , j = 1, 2, . . . , m

be the amount II gets extra by playing IIj rather than q against p.
Define the function f(p, q) = (p′, q′), where

p′i =
pi + ci(p, q)

1 +
∑

i′ ci′(p, q)
and q′j =

qj + dj(p, q)

1 +
∑

j′ dj′ (p, q)

for all i = 1, 2, . . . , n, j = 1, 2, . . . , m. Then f is continuous so, by the Brouwer
Fixed Point theorem, there is a fixed point (p∗, q∗) such that

f(p∗, q∗) = (p∗, q∗) .

Observe that we cannot have e1(Ii, q
∗) > e1(p

∗, q∗) for all i = 1, 2, . . . , n since
that would imply

e1(p
∗, q∗) =

n∑

i=1

p∗i e1(Ii, q
∗) >

n∑

i=1

p∗i e1(p
∗, q∗) = e1(p

∗, q∗) .

Thus for some i we have that

ci(p
∗, q∗) = 0 .

But since (p∗, q∗) is a fixed point of f we have

p∗i =
p∗i + ci(p

∗, q∗)

1 +
∑

i′ ci′(p∗, q∗)

and for the choice of i with ci(p
∗, q∗) = 0 we see that

n∑

i′=1

ci′(p
∗, q∗) = 0 .

Thus, for all i′ = 1, 2, . . . , n we have that ci′(p
∗, q∗) = 0 and so

e1(p
∗, q∗) ≥ e1(Ii, q

∗) , i = 1, 2, . . . , n ,

and hence
e1(p

∗, q∗) ≥ e1(p, q∗) , for all p ∈ P .

A similar argument shows that e2(p
∗, q∗) ≥ e2(p

∗, q) for all q ∈ Q and so the fixed
point (p∗, q∗) is an equilibrium pair.
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19.1 Finding equilibrium pairs

Example. Consider

II1 II2

I1
I2

(
(3, 2) (2, 1)
(0, 3) (4, 4)

)

Suppose we fix q and find p to maximizes e1(p, q). If q is part of an equilibrium
pair we have constructed it’s partner strategy for player I. Then

e1(p, q) = p1(5q1 − 2) + 4 − 4q1 .

where p = (p1, p2) and q = (q1, q2). Thus the maximizing p1 is given by

p1 =






0 if q1 < 2/5

any 0 ≤ p1 ≤ 1 if q1 = 2/5

1 if q1 > 2/5 .

Similarly, for player II, we consider e2(p, q) = q1(2p1 − 1) + (4 − 3p1) . and
find the maximizing q1 as

q1 =






0 if p1 < 1/2

any 0 ≤ q1 ≤ 1 if p1 = 1/2

1 if p1 > 1/2 .

Thus we look for the mutual solutions to these two simultaneous maximization
problems to find the three equilibrium pairs:

1. p1 = 0, q1 = 0, corresponding to (I2, II2) with payoffs (4, 4);

2. p1 = 1, q1 = 1, corresponding to (I1, II1) with payoffs (3, 2);

3. p1 = 1/2, q1 = 2/5, corresponding to ((1/2, 1/2), (2/5, 3/5)) with payoffs
(2.4, 2.5).

Notice that the payoffs differ, but that given an equilibrium pair neither player
has any incentive to alter his strategy.
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19.2 Cooperative games

Consider the game
II1 II2

I1
I2

(
(0,0) (1,1)
(3,1) (1,3)

)

For cooperative games, the payoff region is larger than in the corresponding
non-cooperative game. If (u1, v1) and (u2, v2) are payoffs in the non-cooperative
game, then in the cooperative game the strategy which chooses strategies giving
payoffs (u1, v1) and (u2, v2) with probabilities β and (1 − β) has expected payoff

β(u1, v1) + (1 − β)(u2, v2) .

Thus the payoff region, R, for the cooperative game is the convex hull of the
payoff region for the non-cooperative game, i.e., it is the smallest convex region
that covers the payoff region for the non-cooperative game. In fact, R is most
simply obtained by constructing the convex hull of the points corresponding to
each player adopting one of his pure strategies. Points corresponding to the use of
pure strategies may be in the interior of the convex hull; e.g., the pair of strategies
(I1, II2) in the game above.

Notice the different way that randomization is used. In a non-cooperative
game each player randomizes over his choice of strategy. This is done to confuse
the opponent. In a cooperative game players jointly randomize over pairs of strate-
gies, which may themselves be mixed strategies for the game. Randomization it
is used to average between possible outcomes.

19.3 Bargaining

In a cooperative setting, there is a preplay stage or negotiating stage where the
players decide on the strategies to be used. Of the possible payoffs, which are the
players likely to agree on? We say that a pair of payoffs (u, v) in a cooperative
game is jointly dominated by (u′, v′) if

u′ ≥ u, v′ ≥ v and (u′, v′) 6= (u, v) .

A pair of payoffs (u, v) is said to be Pareto optimal if it is not jointly dominated.
Certainly, the players will only be interested in agreeing on Pareto optimal payoffs
since otherwise there is a payuoff such that both can do as well and one can do
better.

Players I and II can always guarantee themselves payoffs of at least

vI = max
p∈P

min
q∈Q

e1(p, q) and vII = max
q∈Q

min
p∈P

e2(p, q) .
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respectively. So, we would expect the solution of a cooperative game to lie within
the bargaining set (also called the negotiation set) given by

B = {(u, v) : u ≥ vI, v ≥ vII, and (u, v) is Pareto optimal in R} .

How ought the players agree which point of B is to be used?
Note that we must not make inter-player comparisons of payoffs, which we are

supposing are measured by their own utilities, not necessarily on the same scale.
We should not conclude that I prefers (4, 1) to (1, 10) by less than II prefers (1, 10)
to (4, 1).

Status quo point

Nash suggested that within the set of feasible payoffs, R, jointly available to the
players there is also a special payoff, (u0, v0) ∈ R called the status quo point,
which is the outcome the players will receive if they can’t agree by a process of
negotiation.

An arbitration procedure, Ψ, is defined as a map from the status quo point
and the region R to some point (u∗, v∗) ∈ R

Ψ((uo, v0), R) = (u∗, v∗) .

19.4 Nash bargaining axioms

1. feasibility. (u∗, v∗) ∈ R.

2. at least as good as status quo u∗ ≥ u0, v∗ ≥ v0.

3. Pareto optimality. If (u, v) ∈ R and u ≥ u∗, v ≥ v∗ then u = u∗, v = v∗.

4. symmetry. If R is symmetric, so that if (u, v) ∈ R =⇒ (v, u) ∈ R, and if
u0 = v0, then u∗ = v∗.

5. invariance under linear transformations. Let R′ be obtained from R by
the transformation

u′ = au + b , v′ = cv + d , a, c > 0 .

Then if (u∗, v∗) = Ψ((u0, v0), R) then Ψ((au0 +b, cv0+d), R′) = (au∗+b, cv∗+
d).

6. independence of irrelevant alternatives. If R′ is a subset of R, Ψ((u0, v0), R) =
(u∗, v∗) and (u∗, v∗) ∈ R′, then we must also have Ψ((u0, v0), R

′) = (u∗, v∗).



Nash’s arbitration procedure 78

19.5 Nash’s arbitration procedure

For (u, v) ∈ R with u > u0, v > v0 define the function

f(u, v) = (u − u0)(v − v0) .

If there exists points (u, v) ∈ R with u > u0, v > v0 then f attains a unique
maximum at some point (u∗, v∗) ∈ R. Define

Ψ((u0, v0), R) = (u∗, v∗) .

Nash showed that Ψ is the only function that satisfies the axioms (1–6).

19.6 Maximin bargaining solutions

Nash’s result specifies the arbitration procedure Ψ for a given status quo point
(u0, v0). A natural choice is to take the maximin values (vI, vII) as the status quo
point. This gives the Maximin bargaining solution.

Example. Consider the two-person non-zero sum game with payoffs

II1 II2
I1
I2

(
(1,2) (8,3)
(4,4) (2,1)

)

Consider the two zero-sum games for each player separately. Using the LP
approach we find the maximin values of vI = 3 1

3 and vII = 2 1
2 .

The negotiation set of Pareto optimal points is given by

B = {(u, v) : u + 4v = 20, 4 ≤ u ≤ 8} .

Thus we wish to maximize over B

f(u, v) = (u − u0)(v − v0) =

(
u − 3

1

3

)(
v − 2

1

2

)

=

(
u − 3

1

3

)(
5 − 1

4
u − 2

1

2

)
.

This gives (u∗, v∗) = (6 2
3 , 3 1

3 ) as the unique solution to the Nash arbitration
procedure for the maximin bargaining solution.



20 Coalitional Games

20.1 Characteristic function

We can extend our definition of (Nash) equilibrium pairs to n-person games. The
n-tuple of strategies p∗1, p

∗
2, . . . , p

∗
n, where player i plays mixed strategy p∗i is an

equilibrium n-tuple if for all other strategies, p1, p2, . . . , pn,

ei(p
∗
1, p

∗
2, . . . , p

∗
i , . . . , p

∗
n) ≥ ei(p

∗
1, p

∗
2, . . . , pi, . . . , p

∗
n) , i = 1, 2, . . . , n .

If there are n > 2 players in the game then there might be cooperation between
some, but not necessarily all, of the players. We can ask which coalitions of
players are likely to form and what are the relative bargaining strengths of the
coalitions that do form.

Label the players 1, 2, . . . , n. A coalition of players, S, is then a subset of
N = {1, 2, . . . , n}. The worst eventuality is that the rest of the players unite and
form a single opposing coalition N \ S. This is then a 2-person non-cooperative
game and we can calculate the maximum payoff that S can ensure for itself using
the maximin criterion.

Let v(S) denote the maximum value v(S) that coalition S can guarantee itself
by coordinating the strategies of its members, no matter what the other players
do. This is the called the characteristic function. By convention, we take
v(∅) = 0. The characteristic function measures the strengths of possible coalitions.
Note that for any two disjoint sets S and T , we have superadditivity, i.e.,

v(S ∪ T ) ≥ v(S) + v(T ) .

20.2 Imputations

Given that a coalition forms, how should v(S) be shared between its members?
The distribution of individual rewards will affect whether any coalition is likely to
form. Each individual will tend to join the coalition that offers him the greatest
reward.

An imputation in a n-person game with characteristic function v is a vector
x = (x1, x2, . . . , xn) satisfying

(1)

n∑

i=1

xi = v(N) , and (2) xi ≥ v({i}) for each i = 1, 2, . . . , n .

Think of xi as player i’s reward. Let E(v) be the set of imputations.
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Suppose that x and y are imputations. Then we know that

n∑

i=1

xi = v(N) =
n∑

i=1

yi ,

and so if xi > yi then there must be some j with yj > xj . So everyone cannot
be better off under x than under y. However, it is possible that all members of a
particular coalition are better off under x than under y.

Let x, y ∈ E(v). We say that y dominates x over S if

(3) yi > xi for all i ∈ S ; and (4)
∑

i∈S

yi ≤ v(S) .

(4) ensures v(S) is large enough to pay its members the amounts in y.

20.3 The core

The core of a game with characteristic function v is the set, C(v), of all im-
putations that are not dominated for any coalition. The idea is that only such
imputations can persist in pre-game negotiations.

Theorem 20.1 x is in the core if and only if

(5)

n∑

i=1

xi = v(N) ; (6)
∑

i∈S

xi ≥ v(S) for all S ⊂ N .

Proof. Let x satisfy (5) and (6). Putting S = {i} for each i = 1, . . . , n shows
that x is an imputation. To show that it is not dominated, suppose, there is a
coalition S with yi > xi for all i ∈ S. But using (6)

∑

i∈S

yi >
∑

i∈S

xi ≥ v(S) ,

which violates (4).

Conversely, suppose that x is in the core. It is an imputation and so (5) must
hold. Now suppose, if possible, that for some coalition S condition (6) doesn’t
hold so that

∑
i∈S xi < v(S). Define ǫ by

ǫ =
v(S) −∑i∈S xi

|S| > 0
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Then the imputation

yi =






xi + ǫ i ∈ S

v({i}) +
v(N) − v(S) −∑i6∈S v({i})

|N \ S| i 6∈ S

dominates x on S, contradicting the assumption that x is in the core.

20.4 Oil market game

Country 1 has oil which it can use to run its transportation networks at a profit
of £a per barrel. Country 2 wants to buy oil for use in farming, for a profit of
£b per barrel. Country 3 wants to buy oil for use in manufacturing, for a profit
of £c per barrel. Assume a < b < c. The characteristic function is

Coalition, S Characteristic function, v(S)
∅, {2}, {3}, {2, 3} 0

{1} a
{1, 2} b

{1, 3}, {1, 2, 3} c

Suppose x = (x1, x2, x3) is an imputation in the core. We must have

x1 + x2 + x3 = v(N) = v({1, 2, 3}) = c ;

and using
∑

i xi∈S ≥ v(S),

x1 ≥ a; x2 ≥ 0; x3 ≥ 0;
x1 + x2 ≥ b; x2 + x3 ≥ 0; x1 + x3 ≥ c.

Thus x2 = 0, x1 + x3 = c and x1 ≥ b and so the core is given by

C(v) = {(x, 0, c − x) : b ≤ x ≤ c} .

The interpretation is that countries 1 and 3 form a coalition, with 1 selling oil
to 3 for £x per barrel, which is at least £b per barrel (otherwise, country 1 would
be better off selling to country 2) and at most £c per barrel, otherwise, country
3 would pay more than it values the oil.
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20.5 The nucleolus

A major drawback of the core is that for many games it is empty.
For any imputation x = (x1, x2, . . . , xn) ∈ E(v) and for any coalition S ⊂ N

define
x(S) =

∑

i∈S

xi .

The quantity v(S)−x(S) measures the ‘unhappiness’ that coalition S feels for
the imputation x. The larger this value the larger the difference between what
the coalition could get and what it actually gets.

Define θ(x) to be the vector of 2n values taken by v(S) − x(S) as S varies
across the possible coalitions arranged in decreasing order. We use θ(x) to order
imputations x and y.

Writing θ(x) = (θ(x)1, θ(x)2, . . . , θ(x)n) we say that θ(x) < θ(y) if θ(x)1 <
θ(y)1 or if θ(x)k = θ(y)k for k = 1, 2, . . . , i − 1 and θ(x)i < θ(y)i.

The nucleolus is the smallest imputation under this ordering, written

N(v) = {x ∈ E(v) ; θ(x) < θ(y) for all y ∈ E(v)} .

It can be shown that the nucleolus always exists and is unique. Also, provided
the core is non-empty the nucleolus lies within the core. To see this, let x be in
the core. Then for any coalition S, v(S)−x(S) is zero or negative (by definition of
the core). Thus all the entries of θ(x) for an x in the core are zero or negative and
hence this property will have to hold for the minimal choice of θ(y) over choices
of imputation y. But this means that such a minimizing imputation y is in the
core.

Thus the nucleolus is a natural interpretation for a fair division of the reward
v(N). Consider again the oil market game. To construct the nucleolus we need
only consider imputations in the core, C(v) = {(x, 0, c − x) : b ≤ x ≤ c}.

Computing v(S) − x(S) for all possible coalitions gives

v(∅) − x(∅) = 0 v({1, 2})− x({1, 2}) = b − x
v({1}) − x({1}) = a − x v({2, 3})− x({2, 3}) = x − c
v({2}) − x({2}) = 0 v({1, 3})− x({1, 3}) = 0
v({3}) − x({3}) = x − c v({1, 2, 3})− x({1, 2, 3}) = 0

The largest nonzero element is either b−x or x− c. Thus we minimize the largest
nonzero unhappiness by setting b − x = x − c, i.e., x = (b + c)/2. Thus, the
nucleolus is the imputation x = ((c + b)/2, 0, (c− b)/2) and

θ(x) =
(
0, 0, 0, 0, 1

2 (b − c), 1
2 (b − c), 1

2 (b − c), a − 1
2 (b + c)

)
.



21 Shapley Value and Market Games

21.1 Shapley value

What might each player reasonably expect to receive as his share of the reward
in a cooperative game? Shapley proposed three axioms that one might require
for φi(v), player i’s expected share in a game with characteristic function v.

Shapley’s axioms

1. φi(v) should be independent of the player’s label, 1, 2, . . . , n.

2.
∑n

i=1 φi(v) = v(N).

3. If u and v are two characteristic functions then

φi(u + v) = φi(u) + φi(v) .

Theorem 21.1 (Shapley) The only function that satisfies Shapley’s axioms is
given by the Shapley values

φi(v) =
∑

S:i∈S

(|S| − 1)!(n − |S|)!
n!

[v(S) − v(S \ {i})] .

The values arise by imagining the players join the game in random order.
Player i receives the extra amount that he brings to the existing coalition of
players S \ {i}, i.e., v(S) − v(S \ {i}). This must then be averaged over all the
possible ways in which the players can arrive.

For the oil market game we have

φ1(v) = 1
2c + 1

3a − 1
6b , φ2(v) = 1

6b − 1
6a , φ3(v) = 1

2 c − 1
6a − 1

3b .

The Shapley values give another solution concept for the game. However, note
that this imputation is not in the core.

21.2 Market games

Some of the earliest examples of game theory can be found in the mathematical
economics which was developed to understand the bargaining involved in trading.
We will consider simple examples suggested by Edgeworth.
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Suppose there are just two commodities (A for apples and B for bread, say).
Assume there are M apple traders and N bread traders. A trader who has a units
of apples and b units of bread has utility

ui(a, b) , i = 1, 2, . . . , M + N .

Assume also that the functions are concave so that every trader prefers some
combination of the two commodities rather than either of the two extremes (a, 0)
or (0, b) for some a, b. Hence,

ui (λ(a1, b1) + (1 − λ)(a2, b2)) ≥ λui (a1, b1) + (1 − λ)ui (a2, b2)

for 0 ≤ λ ≤ 1 and i = 1, 2, . . . , M + N .
Suppose that each trader has the same utility function u(x, y) and that each

trader of type A or B starts with a and b units of commodities A and B respec-
tively. Suppose that coalition S consists of s1 traders of type A and s2 traders of
type B. The best S can ensure for itself is the highest possible sum of the utilities
of its members that can be obtained when they trade with each other. Thus,

v(S) = max
x1,...,xs1+s2

,y1,...,ys1+s2

s1+s2∑

i=1

u(xi, yi)

where
s1+s2∑

i=1

xi = s1a ;

s1+s2∑

i=1

yi = s2b .

By concavity of u(·, ·) we have

s1+s2∑

i=1

u(xi, yi) ≤ (s1 + s2)u

(
s1

s1 + s2
a,

s2

s1 + s2
b

)
= v(S) .

[1, 1]-market game. The characteristic function is

v({1}) = u(a, 0); v({2}) = u(0, b); v({1, 2}) = 2u

(
a

2
,
b

2

)
.

and so the set of imputations is given by

E(v) = {(u(a, 0) + pc, u(0, b) + (1 − p)c) : 0 ≤ p ≤ 1}

where c = 2u(a/2, b/2)− u(a, 0)− u(0, b).
We can think of p as the price of the goods, reflecting the number of units of

B exchanged for one unit of A.
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[1, N ]-market game. Think of trader A as a monopolist. We suspect he can
charge as high a price as he wants, provided that it is still worth the others trading.
We illustrate this by showing that imputation

x∗ =

(
(N + 1)u

(
a

N + 1
,

Nb

N + 1

)
− Nu(0, b), u(0, b), . . . , u(0, b)

)

is in the core. This means showing that for any set K of k type B traders,

x∗
1 +

∑

i∈K

x∗
i ≥ v(K ∪ {1}) .

Using our expression for v(S) this corresponds to showing that

(N + 1)u

(
a

N + 1
,

Nb

N + 1

)
− (N − k)u(0, b) ≥ (k + 1)u

(
a

k + 1
,

kb

k + 1

)

which follows directly from the concavity of u(·, ·).

21.3 Competition between firms

We now look at games of competition amongst firms. The case of two firms is
known as duopoly; the case of more than two firms it is known as oligopoly.
Duopoly can be regarded as a [2,∞]-market game and oligopoly can be regarded
as a [M,∞]-market game. The first type of traders are the firms who produce a
particular product. The second type are the buyers, or consumers, who exchange
money for the product.

We represent the consumer’s requirements by one utility function

u(p1, p2, . . . , pM , q1, q2, . . . , qM )

where pi is firm i’s price for the product and qi is the amount of that firm’s
product that is bought by consumers.

Let us assume that consumers are told the prices, pi, and then choose the
quantities, qi, so as to maximize the above utility. Hence, this reduces to a set
of price-demand equations which connect the demand qi for firm i’s product with
the (announced) prices p1, p2, . . . , pM , so that, say,

qi = fi(p1, p2, . . . , pM ) .

Firm i’s utility is given by its profit

ei(p1, p2, . . . , pM ) = piqi − ci(qi)

where ci(·) is the production cost function for firm i.
A similar story can be told if we suppose that firms decide on the quantities

qi that they will produce and then the consumers’ utility function determines the
prices pi they will pay for these products.
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21.4 Cournot equilibrium

A Cournot equilibrium is a vector of prices (pc
1, p

c
2, . . . , p

c
M ) such that

ei(p
c
1, p

c
2, . . . , p

c
M ) = max

pi

ei(p
c
1, p

c
2, . . . , pi, . . . , p

c
M )

for all firms i = 1, . . . , M . That is, pc is an equilibrium n-tuple in a n-person
non-cooperative game of price competition. Notice that we cannot apply Nash’s
theorem since there are an infinite number of possible choices of prices, i.e., of
pure strategies. Nevertheless, it can be shown that under reasonable assumptions
a Cournot equilibrium always exists.

Example. Consider a duopoly where the price-demand functions are

q1 = f1(p1, p2) = max
{
1 + 1

3p2 − 1
2p1, 0

}

q2 = f2(p1, p2) = max
{
1 + 1

4p1 − 1
2p2, 0

}

and suppose, for simplicity, that c1(q1) = c2(q2) = 0.
We have that 0 ≤ p1 ≤ 2 + 2

3p2 and 0 ≤ p2 ≤ 2 + 1
2p1. The profit functions

are then given by

e1(p1, p2) = p1 + 1
3p1p2 − 1

2p2
1

e2(p1, p2) = p2 + 1
4p1p2 − 1

2p2
2 .

To find the Cournot equilibrium we must solve

de1(p1, p
c
2)/dp1 = de2(p

c
1, p2)/dp2 = 0 .

This gives equations for (pc
1, p

c
2) of

de1(p1, p
c
2)

dp1
= 1 + 1

3pc
2 − pc

1 = 0 ,
de2(p

c
1, p2)

dp2
= 1 + 1

4pc
1 − pc

2 = 0 ,

which gives the Cournot equilibrium as pc
1 = 16

11 , pc
2 = 15

11 , and so

e1(
16
11 , 15

11 ) = 1.06 ; e2(
16
11 , 15

11 ) = 0.93 .

The maximization conditions dei(p1, p2)/dpi = 0 express the price firm 1 will
choose given firm 2’s price and vice versa. Thus,

p1 = g1(p2) = 1 + 1
3p2 , p2 = g2(p1) = 1 + 1

4p1 .

Suppose firm 1 must announce its price before firm 2. Firm 2 will choose its
price to maximize its profit given p1. Thus, it will choose p2 = g2(p1). Firm 1,
realizing this will happen, will maximize its profit by choosing p1 to maximize
e1(p1, g2(p1)). Firm 1 then announces this price.
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22.1 Stackleberg leadership

Stackleberg introduced the type of strategy introduced in Section 21.4 the firm
who announces their price first is called the leader and the one that reacts is
called the follower.

Continuing our earlier numerical example, if firm 1 is the leader he should
choose p1 to maximize

e1(p1, g2(p1)) = p1 + 1
3p1(1 + 1

4p1) − 1
2p2

1

which gives p1 = 8
5 . So, firm 2 will choose a price, p2 = g2(p1) = 7

5 . The
corresponding profits are

e1(
8
5 , 7

5 ) = 1.067 ; e2(
8
5 , 7

5 ) = 0.98 .

If firm 2 is the leader then p1 = p2 = 3
2 and the profits are

e1(
3
2 , 3

2 ) = 1.125 ; e2(
3
2 , 3

2 ) = 0.9375 .

What if they both try to be leader? They will choose prices p1 = 8
5 and p2 = 3

2
with profits

e1(
8
5 , 3

2 ) = 1.12 ; e2(
8
5 , 3

2 ) = 0.975 .

Thus, a firm does better than the Cournot equilibrium when it announces its
price, but does even better when the competing firm also announces its price.

A similar analysis can be made when firms 1 and 2 state the quantities they
plan to produce and then the prices adjust so that these quantities are sold. (The
names Cournot and Bertrand are sometimes uses to distinguish between models
of quantity competition and price competition, respectively. In fact, Cournot was
the first to study both types of model, so we also associate his name with the
price competition case.)

22.2 Joint maximization of profits

If we think of duopoly as a cooperative game then we are led to consider the joint
maximization of profits. The two firms choose their prices (p1, p2) to maximize

e1(p1, p2) + e2(p1, p2) .

This has the same value, when maximized, as the characteristic function value
v({1, 2}) for the game when considered as an n-person game. Such a price vector
is Pareto optimal but there are many other such Pareto optimal price vectors.
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Example. Continuing the numerical example, we wish to maximize

e1(p1, p2) + e2(p1, p2) = p1 + 1
3p1p2 − 1

2p2
1 + p2 + 1

4p1p2 − 1
2p2

2 .

Setting derivatives to zero gives

1 + 7
12p2 − p1 = 0 ; 1 + 7

12p1 − p2 = 0

which gives p1 = p2 = 12
5 . The profits are then

e1(
12
5 , 12

5 ) = 1.44 ; e2(
12
5 , 12

5 ) = 0.96 .

The maximin values for the prices are given by finding

max
p1

min
p2

e1(p1, p2) and max
p2

min
p1

e2(p1, p2) .

Thus, using the expressions for e1(p1, p2) and e2(p1, p2), we find that firm 1’s
maximin value ensures a profit of 0.5, where p1 = 1 and p2 = 0. Firm 2’s maximin
value ensures a profit of 0.5, where p1 = 0 and p2 = 1.

To find the negotiation set for the Nash bargaining game we must find all
Pareto optimal prices. That is, price vectors (p∗1, p

∗
2) such that there are no other

(p1, p2) with
ei(p1, p2) ≥ ei(p

∗
1, p

∗
2), i = 1, 2

and with strict inequality in at least one component.
We may find such price vectors by solving for all values of c the problem

maximize e1(p1, p2)

subject to
e2(p1, p2) ≥ c , p1, p2 feasible .

We could apply Lagrangian methods to solve this problem.

22.3 Evolutionary games

Suppose that some individual uses a (behavioural) strategy, x say, from some set
of possible strategies and that on meeting another individual who uses strategy y,
there is a payoff e(x,y) to the first individual. The payoff is a measure of fitness
describing the individual’s likely reproductive success.

No ‘rational thought’ is involved in selecting a strategy. Instead, the individual
whose genes make it use strategy x will have offspring with the same genes. If
payoffs resulting from strategy x, namely e(x, ·), are high then it will produce more
offspring using strategy x than a less successful gene type and will predominate
in the population.
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22.4 Evolutionary stable strategies

Suppose that changes to a strategy arise through mutation. As usual, we look
for equilibrium points, by which we mean strategies whose fitness is greater than
that of any mutant strategy that could arise. If this is so then the next generation
will have a smaller proportion of the mutant strategy and will eventually die out.

Definition 22.1 Let X be the set of strategies. A strategy x∗ ∈ X is an evolu-

tionary stable strategy (ESS) if for every y ∈ X, y 6= x∗ then

e(x∗,x) > e(y,x) (22.1)

where x = (1 − ǫ)x∗ + ǫy for sufficiently small ǫ > 0.

Consider y as the mutant strategy which affects a proportion ǫ of the popula-
tion.

Notice that as ǫ → 0, x → x∗ so for (∗) to hold for small ǫ we must have that

e(x∗,x∗) ≥ e(y,x∗) . (22.2)

If the inequality is strict then (22.1) certainly holds for small enough ǫ. However,
if

e(x∗,x∗) = e(y,x∗)

then we see from expanding (22.1) that we need

(1 − ǫ)e(x∗,x∗) + ǫe(x∗,y) > (1 − ǫ)e(y,x∗) + ǫe(y,y) .

and so that if e(x∗,x∗) = e(y,x∗) we must have that

e(x∗,y) > e(y,y) . (22.3)

Hence x∗ ∈ X is an ESS if and only if for every y ∈ X , y 6= x∗ (22.2) holds
and if e(x∗,x∗) = e(y,x∗) then (22.3) holds.

We can think of an evolutionary game as a two-person non-zero-sum game in
which the payoffs are e1(x,y) = e(x,y) and e2(x,y) = e(y,x). So, by the above,
if x∗ is an ESS then (x∗,x∗) is an equilibrium pair for the corresponding game.
However, not every equilibrium pair are ESSs.

Example. Consider the two pure strategies: ‘Hawk’ vs ‘Dove’. ‘Hawk’ means
keep fighting until you or your opponent is injured and ‘Dove’ means run away.
Suppose the winner earns V and injury means fitness decreases by D. Thus, the
payoff matrix is of the following form

Hawk Dove
Hawk
Dove

(
1
2 (V −D) V

0 1
2V

)
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Case V ≥ D. For example, V = 4, D = 2. So we get payoffs

Hawk Dove
Hawk
Dove

(
1 4
0 2

)

But then the pure Hawk strategy x∗ = (1, 0) is an ESS since for any y =
(y, 1 − y), y 6= 1

e(x∗,x∗) = 1 > y = e(y,x∗) .

Case V < D. For example, put V = 2, D = 4. Now injury outweighs the
advantage of winning and the payoffs are given by

Hawk Dove
Hawk
Dove

(
−1 2

0 1

)

For this game x∗ = (1
2 , 1

2 ) is an ESS. Note that y = (y, 1 − y), y 6= 1
2 then

e(x∗,x∗) = 1
2 = e(y,x∗) .

So we must check that e(x∗,y) > e(y,y). This follows as

e(y,y) = 1 − 2y2 ; e(x∗,y) = 3
2 − 2y .

e(x∗,y) − e(y,y) =
(

3
2 − 2y)− (1 − 2y2

)
= 2

(
y − 1

2

)2
> 0 .

More generally for V , D ≥ 0 we find the following

1. V ≥ D. The Hawk strategy x∗ = (1, 0) is always an ESS.

(For V = D, (22.2) holds, so we must check (22.3)).

2. V < D. The mixed strategy x∗ = (V/D, (D − V )/D) is an ESS.

Notice that as D increases, the ESS strategy tends to the ‘Dove’ strategy. This
is why snakes wrestle each other rather than bite!
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23.1 Types of auctions

Auctions are bidding mechanisms. They are described by a set of rules that
specify the way bidding occurs, what information the bidders have about the
state of bidding, how the winner is determined and how much he must pay. They
can be viewed as partial information games in which a bidder’s valuation of an
item is hidden from the auctioneer and other bidders. The game’s equilibrium is
a function of the auction’s rules. These rules can affect the revenue obtained by
the seller, as well as how much this varies in successive instants of the auction.
An auction is economically efficient, in terms of maximizing social welfare, if it
allocates items to bidders who value them most. The design of an auction for a
particular situation is an art. There is no single auctioning mechanism that is
provably efficient and can be applied in most situations.

Government contracts are often awarded through procurement auctions. Flow-
ers, wines, art, U.S. treasury bonds and real estate are sold in auctions (and in-
deed the Roman empire was auctioned by the Praetorian Guards in A.D. 193).
They are used to sell oil drilling rights, or other natural resources, such as mobile
telephone spectrum or satellite positions. Takeover battles for companies can be
viewed as auctions.

We can distinguish two important cases. In the private value model each
bidder knows the value he places on the item, but does not know the values placed
by other bidders. As bidding takes place, his valuation does not change, though
he gains information from the other players’ bids. In the common value model
the item’s actual value is the same for all bidders, but they have different a priori
information about that value. Think, for example, of a jar of coins. Each player
makes an estimate of the value of the coins in the jar, and as bidding occurs he
can adjust his estimate based on what other players say. In this case the winner
generally overestimates the value (since he had the highest estimate), and so he
pays more than the jar of coins is worth. This is called the winner’s curse.

Auctions can be oral (bidders hear each other’s bids and make counter-offers)
or written (bidders submit closed sealed-bids in writing). In an oral auction the
number of bidders may be known, but in a sealed-bid auction it may be unknown.
Some popular types of auction are the following.

1. English auction (or ascending price auction): bids increase in small in-
crements until only one bidder remains.

2. Dutch auction: the price decreases continuously until some bidder calls stop.

3. first price sealed-bid: the winner pays his bid.
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4. second price sealed-bid (or Vickrey auction): the winner pays the second
highest bid.

5. all pay sealed-bid auction: highest bidder wins, but all pay their bid.

It is not hard to see that 1 and 4 are equivalent (with the item selling for the
second greatest valuation), and that 2 and 3 are equivalent (with the item selling
for the greatest bid).

23.2 The revenue equivalence theorem

The symmetric independent private values model (SIPV) concerns the
auction of a single item, with risk neutral seller and bidders. Each bidder knows
his own valuation of the item, which he keeps secret, and valuations of the bidders
can be modelled as i.i.d. random variables. Important questions are

• what type of auction generates the most revenue for the seller?

• if seller or bidders are risk averse, which auction would they prefer?

• which auctions make it harder for the bidders to collude?

• can we compare auctions with respect to strategic simplicity?

Let us begin with an intuitive result.

Lemma 23.1 In any SIPV auction in which the bidders bid optimally and the
item is awarded to the highest bidder, the order of the bids is the same as the
order of the valuations.

Proof. Let e(p) be the minimal expected payment that a bidder can make if he
wants to win the item with probability p. A bidder who has valuation v and aims
to win with probability p can make expected profit π(v) = pv − e(p). Suppose
the best p is p∗ (which depends on v) so the maximal profit is defined by

π∗(v) = max
p

[pv − e(p)] = p∗v − e(p∗)
∂π

∂p

∣∣∣∣
p=p∗

= v − e′(p∗) = 0. (23.1)

Note that e(p) is convex and that at the stationary point, e′(p∗)p∗− e(p∗) > e(0).
Now as ∂π∗/∂p∗ = v − e′(p∗) = 0, we have

dπ∗

dv
=

∂π∗

∂v
+

∂π∗

∂p∗
dp∗

dv
= p∗ , (23.2)
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If the bidder had a valuation of v+δ he could make the same bid that he makes
with valuation v, in which he would win with the same probability and have
the same expected payment; his expected profit would increase by δp∗. Hence
π(v + δv) > π(v) + δπ′(v), implying π is convex in v. Hence dπ∗(v)/dv, and so
also p∗(v), must increase with v. Since the item goes to the highest bidder the
optimal bid must also increase with v.

We say that two auctions have the same bidder participation if any bidder
who finds it profitable to participate in one auction also finds it profitable to
participate in the other. The following is a remarkable result.

Theorem 23.1 (Revenue equivalence theorem) The expected revenue obtained
by the seller is the same for any two SIPV auctions that (a) award the item to
the highest bidder, and (b) have the same bidder participation.

It is remarkable, as various auctions can have completely different sets of rules
and strategies. Suppose there are n bidders and all participate.

Proof. From (23.1) we have de(p(v))/dv = vdp/dv. Integrating this gives

e(p(v)) = e(p(0)) +

∫ v

0

wp′(w) dw = vp(v) −
∫ v

0

p(w) dw , (23.3)

where clearly e(p(0)) = e(0) = 0, since there is no point in bidding for an item
of value 0. Thus e(p(v)) depends only on the function p(w). We know from
Lemma 23.1 that if bidders bid optimally then bids will be in the same order as
the valuations. It follows that if F is the distribution function of the valuations,
then p(w) = F (w)n−1, independently of the precise auction mechanism. The
expected revenue is

∑n
i=1 Evi

e(p(vi)) = nEve(p(v)).

Example 23.1 Assume valuations are i.i.d. with distribution function F (u).

(a) Suppose the item is simply offered at price p and sold if any player values it
above p. The seller computes x(p), the probability of making a sale if the price
posted is p, and seeks to maximize px(p). Then

x(p) = 1 − Fn(p) , and p − 1 − Fn(p)

nFn−1(p)f(p)
= 0 .

If the distributions are uniform on [0, 1], F (u) = u, the optimal price is p∗ =
n
√

1/n + 1, and the resulting (expected) revenue is [n/(n + 1)] n
√

1/n + 1. For

n = 2, p∗ =
√

1/3, and the expected revenue is (2/3)
√

1/3 = 0.3849.

(b) Suppose the item is auctioned by any of the five mechanisms above. Let n = 2.
If all bidders bid optimally then the probabilty that a bidder with valuation v
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wins is v, i.e. p(v) = v. From (23.3) we see that e(p(v)) = v2/2. So in all these
auctions the seller’s expected revenue is 2E[v2/2] = 1/3 = 0.3333.

Let us compute the optimal bids in our auctions. Clearly, in the all-pay sealed-
bid auction the optimal bid is e(p(v)) = v2/2. In the Dutch or first price sealed-bid
auctions, a bidder’s expected payment is p(v) times his bid. Since this must equal
v2/2 we find that the optimal bid must be v/2. In the second price sealed-bid
(Vickrey) auction, the winner pays the bid of the second highest bidder. If bidder
1 bids u, then his profit is (v1 − v2)1{u>v2}. For every possible value of v2, this is
maximized by bidding u = v1.

The seller prefers (a) to (b). However, in (a) he uses information about the
distribution of the valuations. In (b) he makes no use of such information.

23.3 Risk aversion

Participants in an auction can have different attitudes to risk. If a participant’s
utility function is linear then he is said to be risk-neutral. If his utility function
is concave then he is risk-averse; now a seller’s average utility is less than the
utility of his average revenue, and this discrepancy increases with the variability
of the revenue. Hence a risk-averse seller, depending on his degree of risk-aversion,
might choose an auction that substantially reduces the variance of his revenue,
even though this might reduce his average revenue.

The revenue equivalence theorem holds under the assumption that bidders
are risk-neutral. However, if bidders are risk-averse, then first-price sealed-bid
auctions give different results from second-price sealed-bid auctions. In a first-
price sealed-bid auction, a risk-averse bidder prefers to win more frequently even if
his average net benefit is less. Hence he will make higher bids than if he were risk-
neutral. This reduces his expected net benefit and increases the expected revenue
of the seller. If the same bidder participates in a second-price auction, then his bids
do not affect what he pays when he wins, and so his optimal strategy is to bid his
true valuation. Hence, a first-price auction amongst risk-averse bidders produces
a greater expected revenue for the seller than does a second-price auction.

The seller may also be risk-averse. In such a case, he prefers amongst auctions
with the same expected revenue those with a smaller variance in the sale price.

Let us compare auctions with respect to this variance. Suppose bidders are
risk-neutral. In the first price sealed-bid auction each bids half his valuation, so
the revenue is (1/2)max{V1, V2}. In the all-pay sealed-bid auction each pays half
the square of his valuation and the revenue is 1

2V 2
1 + 1

2V 2
2 , where V1, V2 ∼ U [0, 1].

In the Vickrey auction each bids his valuation and the revenue is min{V1, V2}. All
these have expectation 1/3, but the variances are 1/72, 2/45 and 1/18 respectively.
Thus a risk adverse seller preferse the first price auction to the all-pay auction,
which is preferred to the Vickrey auction.



24 Optimal and Multi-unit Auctions

24.1 Optimal auctions

Revenue-maximizing auctions are called optimal auctions and are achieved by
imposing a reserve price or a participation fee. This reduces the number
of participants, but leads to fiercer competition and higher bids on the average,
which compensates for the probability that no sale takes place.

Example 24.1 (Revenue maximization) As in Example 23.1, suppose that
there are two potential buyers, with unknown valuations, v1, v2, independent and
uniformly distributed on [0, 1]. Considers two more ways of selling the object.

(c) Suppose the item is auctioned with an English auction, but with a participation
fee c (which must be paid if a player chooses to submit a bid). Each bidder
must choose whether or not to participate before knowing whether the other
participates. Clearly, there is a v0 such that a player will not participate if he
values the item at less than v0. A bidder whose valuation is exactly v0 will be
indifferent between participating or not. Hence P (winning | v = v0)v0 = c. Since
a bidder with valuation v0 wins only if the other bidder has a valuation less than
v0, we must have P (winning | v = v0) = v0, and hence v2

0 = c. Thus v0 =
√

c.
We note that there are two ways that revenue can accrue to the seller. Either

only one bidder participates and the sale price is zero, but the revenue is c. Or
both bidders have valuations above v0, in which case the revenue is 2c plus the
sale price of min{v1, v2}. The expected revenue is

2v0(1 − v0)c + (1 − v0)
2[2c + v0 + (1 − v0)/3] .

This is maximized for c = 1/4 and takes the value 5/12 (= 0.4167).

(d) Suppose the item is auctioned with an English auction, but with a reserve price
p, such that the bidding starts with a minimum bid of p. There is no sale with
probability p2. The revenue is p with probability 2p(1 − p). If min{v1, v2} > p,
then the sale price is min{v1, v2}. The expected revenue is

2p2(1 − p) + (1
3 + 2

3p)(1 − p)2 .

This is maximized by p = 1/2 and the expected revenue is again 5/12, exactly
the same as in (c).

That cases (c) and (d) give the same expected revenue is not a coincidence. In
both auctions a bidder participates if and only if his valuation exceeds 1/2. Let
us consider more generally an auction in which a bidder participates only if his
valuation exceeds some v0. Suppose that with valuation v it is optimal to bid so
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as to win with probability p(v), and the expected payment is then e(p(v)). By a
simple generalization of (23.3), we have

e(p(v)) = e(p(v0)) +

∫ v

v0

w
dp(w)

dw
dw = vp(v) −

∫ v

v0

p(w) dw .

Assuming the SIPV model, this shows that a bidder’s expected payment depends
on the auction mechanism only through the value of v0 that it implies. The seller’s
expected revenue is

nEv[e(p(v))] = n

∫ ∞

v=v0

[
vp(v) −

∫ v

w=v0

p(w) dw

]
f(v) dv

= n

∫ ∞

v=v0

vp(v)f(v) dv − n

∫ ∞

w=v0

∫ ∞

v=w

p(w)f(v) dw dv

= n

∫ ∞

v=v0

{
vf(v) − [1 − F (v)]

}
F (v)n−1 dv .

Now differentiating with respect to v0, to find the stationary point, we see that
the above is maximized where

v0f(v0) − [1 − F (v0)] = 0 .

We call v0 the optimal reservation price. Note that it does not depend on the
number of bidders. For example, if valuations are uniformly distributed on [0, 1],
then v0 = 1/2, consistent with the answers found for (c) and (d) above.

If bidders’ valuations are independent, but not identically distributed, we can
proceed similarly. Let pi(v) be the probability that bidder i wins when his valu-
ation is v. Let ei(p) be the minimum expected amount he can pay if he wants to
win with probability p. Suppose that bidder i does not participate if his valuation
is less than v0i. Just as above, one can show that the seller’s expected revenue is

n∑

i=1

Evi
ei(pi(vi)) =

n∑

i=1

∫ ∞

v=v0i

[
v − 1 − Fi(v)

fi(v)

]
fi(v)pi(v) dv . (24.1)

The term in square brackets can be interpreted as ‘marginal revenue’, in the
sense that if a price p is offered to bidder i, he will accept it with probability
xi(p) = 1 − Fi(p), and so the expected revenue obtained by this offer is pxi(p).
Therefore, differentiating pxi(p) with respect to xi, we define

MRi(p) =
d

dxi

(
pxi(p)

)
=

d

dp

(
pxi(p)

)/dxi

dp
= p − 1 − Fi(p)

fi(p)
.

The right hand side of (24.1) is simply E[MRi∗(vi∗)], where i∗ is the winner of
the auction. This can be maximized simply by ensuring that the object is always
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awarded to the bidder with the greatest marginal revenue, provided that marginal
revenue is positive. We can do this, provided bidders reveal their true valuations.
Let us assume that MRi(p) is increasing in p for all i. Clearly, v0i should be the
least v such that MRi(v) is nonnegative. Consider the auction rule that always
awards the item to the bidder with the greatest marginal revenue, and then asks
him to pay the maximum of v0i and the smallest v for which he would still remain
the bidder with greatest marginal revenue v0i. This has the character of a second-
price auction in which the bidder’s bid does not affect his payment, given that he
wins. So bidders will bid their true valuations and (24.1) will be maximized.

Example 24.2 An interesting property of optimal auctions with heterogeneous
bidders is that the winner is not always the highest bidder.

Consider first the case of homogeneous bidders with valuations uniformly dis-
tributed on [0, 1]. In this case MRi(vi) = vi − (1 − vi)/1 = 2vi − 1. The object
is sold to the highest bidder, but only if 2vi − 1 > 0, i.e., if his valuation exceeds
1/2. The winner pays either 1/2 or the second greatest bid, whichever is greatest.
In the case of two bidders with the identical uniformly distibuted valuations the
seller’s expected revenue is 5/12. This agrees with what we have found previously.

Now consider the case of two heterogeneous bidders, say A and B, whose val-
uations are uniformly distributed on [0, 1] and [0, 2] respectively. So MRA(vA) =
2vA − 1, v0A = 1/2, and MRB(vB) = 2vB − 2, v0B = 1. Under the bidding rules
described above, bidder B wins only if 2vB − 2 > 2vA − 1 and 2vB − 2 > 0, i.e.,
if and only if vB − vA > 1/2 and vB > 1; so the lower bidder can sometimes win.
For example, if vA = 0.8 and vB = 1.2, then A wins and pays 0.7 (which is the
smallest v such that MRA(v) = 2v − 1 ≥ 2vB − 2 = 0.4).

24.2 Multi-unit and combinatorial auctions

Multi-unit auctions are of great practical importance, and have been applied
to selling units of bandwidth in computer networks and satellite links, MWs of
electric power, capacity of natural gas and oil pipelines. These auctions can
be homogeneous or heterogeneous. In a homogeneous auction a number of
identical units of a good are to be auctioned, and we speak of a multi-unit
auction. In the simplest multi-unit auction, each buyer wants only one unit. The
auction mechanisms above can be generalized. For example, in a simultaneous
auction of k units, all bidders could make closed sealed-bids, and the k objects
could be awarded to the k highest bidders. In a first-price auction each bidder
would pay his own bid. In a generalization of the Vickrey auction the k highest
bidders would pay the value of the highest losing bid. It can be shown that the
revenue-equivalence theorem still holds for these auctions. Note that in the first-
price auction the successful bidders pay differently for the same thing; we call
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this is a discriminatory auction. By contrast, the Vickrey auction is called
a uniform auction, because all successful bidders pay the same. A uniform
auction is intuitively fairer, and also more likely to reduce the winner’s curse.

Things are more complex if bidders want to buy more than one object, or
if objects are different, and perhaps complementary. For example, the value
of holding two cable television licenses in contiguous geographic regions can be
greater than the sum of their values if held alone. This means that it can be
advantageous to allow combinatorial bidding. Here, bidders may place bids on
groups of objects as well as on individual objects. A generalization of the Vickrey
auction that can be used with combinatorial bidding is the Vickrey-Clarke-
Groves (VCG) mechanism. Each bidder submits bids for any combinations of
objects he wishes. The auctioneer allocates the objects to maximize the aggregate
total of their values to the bidders. Each bidder who wins a subset of the objects
pays the ‘opportunity cost’ that this imposes on the rest of the bidders.

More specifically, let L be the set of objects and P be the set of their possible
assignments amongst the bidders. Each bidder submits a bid that specifies a value
vi(T ) for each non-empty subset T of L. An assignment S ∈ P is a partition of
L into subsets Si, with one such subset per bidder i (possibly empty). If social
welfare maximization is the objective, then the auctioneer chooses the partition
S∗ = {S∗

1 , . . . , S∗
n} that maximizes

∑n
i=1 vi(S

∗
i ). Bidder i pays pi, where

pi = max
S∈P

∑

j 6=i

vj(Sj) −
∑

j 6=i

vj(S
∗
j ) . (24.2)

The first term on the right of (24.2) is the greatest value that could be obtained
by the other bidders if i were not bidding. The final term is the value that is
obtained by the other bidders when bidder i does participate, and so influences
the optimal allocation and takes some value for himself.

This type of auction is incentive compatible, in the sense that bidders
are incentivized to submit their true valuations, and it leads to an economically
efficient allocation of the objects. It has the advantage that the whole market is
available to bidders and they can freely express their preferences for substitutable
or complementary goods. However, there are drawbacks. Firstly, the complex
mechanism of a VCG auction can be hard for bidders to understand. It is not
intuitive and bidders may well not follow the proper strategy. Secondly, it is
very hard to implement. This is because each bidder must submit an extremely
large number of bids, and the auctioneer must solve a NP -complete optimization
problem to determine the optimal partition (and also each of the pi), so the
‘winner determination’ problem can be unrealistically difficult to solve. There
are several ways that bidding can be restricted so that the optimal partitioning
problem becomes solvable in polynomial time. Unfortunately, these restrictions
are rather strong, and are not applicable in many cases of practical interest.
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