
Mathematics of Operational Research

R.R. Weber

This course is accessible to a candidate with mathematical maturity who has
no previous experience of operational research; however it is expected that most
candidates will already have had exposure to some of the topics listed below.

• Lagrangian sufficiency theorem. Strong Lagrangian problems. Supporting
hyperplane theorem. Sufficient conditions for convexity of the optimal value
function. Fundamentals of linear programming. Dual linear program. Shadow
prices. [2]

• Simplex algorithm. Two-phase method. Dual simplex algorithm. Gomory’s
cutting plane methods for integer linear programming. [3]

• Complexity of algorithms: typical and worst-case behaviour. Classes of NP-
hard and NP-complete. Exponential complexity of the simplex algorithm.
Polynomial time algorithms for linear programming. Ellipsoid algorithm. [2]

• Network simplex algorithm, transportation and assignment problems, general
minimum-cost circulation problems. Ford-Fulkerson algorithm, max-flow/min-
cut theorem. Shortest and longest path problems, Dijkstra’s algorithm, project
management, critical paths. Minimal spanning tree problem, Prim’s algo-
rithm. MAX CUT. Semidefinite programming. Rendezvous problem. Interior
point methods. [5]

• Branch and bound method. Dakin’s method. The travelling salesman prob-
lem. Heuristic methods. Neighbourhood search. Simulated annealing. [3]

• Two-person zero-sum games. Cooperative and non-cooperative games. Nash
equilibria: existence and construction. Lemke-Howson algorithm. Bargaining
games. Coalitional games: core, nucleolus, Shapley value. Market games.
Auctions, revenue equivalence theorem, optimal auctions. Mechanism design.
Pricing and auction methods for decentralized control. [9]

ii

Books

1. L.C. Thomas, Games, Theory and Application, Wiley, Chichester (1984).

2. M.S. Bazaran, J.J. Harvis and H.D. Shara’i, Linear Programming and Network
Flows, Wiley (1988).

3. D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, Athena
Scientific (1997). Undoubtedly the best book on the market.

Contents

1 Lagrangian Methods 1

1.1 Lagrangian methods . 1

1.2 The dual problem . 2

1.3 Strong Lagrangian . 2

1.4 Hyperplanes . 2

2 Linear Programming 5

2.1 Convexity and Lagrangian methods 5

2.2 Linear programs . 6

2.3 Duality of linear programs . 6

2.4 Derivation of the dual LP problem 7

2.5 Shadow prices . 7

2.6 Conditions for optimality . 7

2.7 Basic insight . 8

2.8 Basic solutions . 8

3 The Simplex Algorithm 9

3.1 Algebraic viewpoint . 9

3.2 Simplex tableau . 9

3.3 Test for optimality . 10

3.4 Choice of new bfs . 10

3.5 Simplex algorithm . 10

3.6 Simplex algorithm: tableau form 11

4 Advanced Simplex Procedures 13

4.1 Two phase simplex method . 13

4.2 Primal and dual algorithms . 15

4.3 Dual simplex algorithm . 16

5 Complexity of Algorithms 19

5.1 Theory of algorithmic complexity 19

5.2 The Travelling Salesman Problem 20

5.3 Decision Problems . 20

5.4 P and NP problems . 20

5.5 Polynomial reduction . 21

5.6 NP-completeness . 21

5.7 Examples of NP -complete problems 22

iii

CONTENTS iv

6 Computational Complexity of LP 23

6.1 Running time of the simplex algorithm 23

6.2 The size of an LP instance . 24

6.3 Equivalent feasibility problem . 25

6.4 Preliminaries for ellipsoid method 25

6.5 Intuitive description of the ellipsoid method 26

7 Ellipsoid Method 27

7.1 Khachiyan’s ellipsoid algorithm . 27

7.2 Sketch proof for the ellipsoid algorithm 28

8 The Network Simplex Algorithm 31

8.1 Graph terminology . 31

8.2 The minimum cost flow problem 31

8.3 Spanning tree solutions . 32

8.4 Optimality conditions . 32

8.5 Pivoting to change the basis . 33

8.6 Finding the initial feasible tree solution 34

8.7 Integrality of optimal solutions . 34

9 Transportation and Assignment Problems 35

9.1 Transportation problem . 35

9.2 Tableau form . 36

9.3 Assignment problem . 37

9.4 Integer constraints . 38

9.5 Maximum flow problem . 38

10 Maximum Flow and Shortest Path Problems 39

10.1 Max-flow min-cut theorem . 39

10.2 Project management . 40

10.3 The shortest path problem . 41

10.4 Bellman’s equations . 42

11 Algorithms for Shortest Path Problems 43

11.1 Bellman-Ford algorithm . 43

11.2 Dijkstra’s algorithm . 43

11.3 Reformulation with non-negative cij 45

11.4 Minimal spanning tree problem . 45

11.5 Prim’s greedy algorithm for MST 46

v CONTENTS

12 Semidefinite Programming 47

12.1 MAX CUT problem . 47

12.2 Semidefinite programming problem 47

12.3 Symmetric rendezvous search game 48

12.4 Interior point methods for LP and SDP 49

13 Branch and Bound 51

13.1 Branch and Bound technique . 51

13.2 A knapsack problem . 52

13.3 Dakin’s method . 54

14 Travelling Salesman Problem 55

14.1 Categories of algorithms . 55

14.2 Exact methods . 55

14.3 Polynomial formulation of TSP . 56

14.4 Solution using branch and bound 57

14.5 Approximation algorithm for the TSP 58

15 Heuristic Algorithms 59

15.1 Heuristics for the TSP . 59

15.2 Neighbourhood search . 59

15.3 Neighbourhood search methods for TSP 60

15.4 Simulated annealing . 61

15.5 Genetic algorithms . 62

16 Two-person Zero-sum Games 63

16.1 Terminology . 63

16.2 Two-person zero-sum games . 63

16.3 Maximin criterion . 64

16.4 Mixed strategies . 65

16.5 Minimax theorem . 65

16.6 Equilibrium pairs . 66

17 Solution of Two-person Games 67

17.1 LP formulation of a zero-sum game 67

17.2 Two-person non-zero-sum games 68

17.3 Nash’s theorem . 68

17.4 Finding an equilibrium pair . 70

CONTENTS vi

18 Construction of a Nash Equilibrium 71

18.1 Symmetric games . 71

18.2 Lemke-Howson algorithm . 71

18.3 Bimatrix games . 72

18.4 Linear complementarity problem 73

18.5 Linear programming as a LCP . 74

18.6 Lemke’s algorithm . 74

19 Cooperative Games 75

19.1 Quadratic programming as a LCP 75

19.2 Cooperative games . 75

19.3 Bargaining . 76

19.4 Nash bargaining axioms . 77

19.5 Nash’s arbitration procedure . 77

19.6 Maximin bargaining solutions . 78

20 Coalitional Games 79

20.1 Characteristic function . 79

20.2 Imputations . 79

20.3 The core . 80

20.4 Oil market game . 81

20.5 The nucleolus . 81

21 Shapley Value and Market Games 83

21.1 Shapley value . 83

21.2 Market games . 83

21.3 Competition between firms . 85

21.4 Cournot equilibrium . 86

22 Auctions 87

22.1 Types of auctions . 87

22.2 The revenue equivalence theorem 88

22.3 Risk aversion . 90

23 Auction Design 91

23.1 The revelation principle . 91

23.2 Optimal auctions . 91

23.3 Multi-unit auctions . 94

vii CONTENTS

24 Games and Mechanism Design 95
24.1 Combinatorial auctions . 95
24.2 Distributed decisions via price mechanisms 96
24.3 Mechanism design for shared infrastructures 97
24.4 The price of anarchy . 98

Index 99

CONTENTS viii

1 Lagrangian Methods

1.1 Lagrangian methods

Let P (b) denote the optimization problem

minimize f(x) , subject to h(x) = b, x ∈ X .

Let x ∈ X(b) = {x ∈ X : h(x) = b}. We say that x is feasible if x ∈ X(b).
Define the Lagrangian as

L(x, λ) = f(x)− λ⊤(h(x)− b) .

Typically, X ⊆ R
n, h : Rn 7→ R

m, with b, λ ∈ R
m. Here λ is called a Lagrangian

multiplier.

Theorem 1.1 (Lagrangian Sufficiency Theorem) If x̄ is feasible for P (b)
and there exists λ̄ such that

inf
x∈X

L(x, λ̄) = L(x̄, λ̄)

then x̄ is optimal for P (b).

Proof of the LST. For all x ∈ X(b) and λ we have

f(x) = f(x)− λ⊤(h(x) − b) = L(x, λ) .

Now x̄ ∈ X(b) ⊆ X and so by assumption,

f(x̄) = L(x̄, λ̄) ≤ L(x, λ̄) = f(x) , for all x ∈ X(b) .

Thus x̄ is optimal for the optimization problem P (b).

Example 1.1 Minimize x2
1 + x2

2 subject to a1x1 + a2x2 = b, x1, x2 ≥ 0. Let us
suppose a1, a2, and b are all nonnegative.

Here L = x2
1 + x2

2 − λ(a1x1 + a2x2 − b). We consider the problem

minimize
x1,x2≥0

[x2
1 + x2

2 − λ(a1x1 + a2x2 − b)] .

This has a stationary point where (x1, x2) = (λa1/2, λa2/2). Now we choose
λ such that a1x1 + a2x2 = b. This happens for λ = 2b/(a21 + a22). We have
a minimum since ∂2L/∂x2

i > 0, ∂2L/∂x1∂x2 = 0. Thus with this value of λ
the conditions of the LST are satisfied and the optimal value is b2/(a21 + a22) at
(x1, x2) = (a1b, a2b)/(a

2
1 + a22).

1

The dual problem 2

1.2 The dual problem

Let us define

φ(b) = inf
x∈X(b)

f(x) and g(λ) = inf
x∈X

L(x, λ) .

Then for all λ

φ(b) = inf
x∈X(b)

L(x, λ) ≥ inf
x∈X

L(x, λ) = g(λ) . (1.1)

Thus g(λ) is a lower bound on φ(b), i.e., a lower bound on the solution value of
P (b). As this holds for all λ it is interesting to make this lower bound as large
as possible. Of course we can restrict ourselves to λ for which g(λ) > −∞. This
motivates the dual problem, defined as

maximize g(λ) , subject to λ ∈ Y ,

where Y = {λ : g(λ) > −∞}. In (1.1) we have a proof of the so-called weak
duality theorem that

inf
x∈X(b)

f(x) ≥ max
λ∈Y

g(λ) . (1.2)

The left hand side of (1.2) poses the primal problem.

1.3 Strong Lagrangian

We say that P (b) is Strong Lagrangian if there exists λ such that

φ(b) = inf
x∈X

L(x, λ) . (1.3)

In other words, P (b) is Strong Lagrangian if it can be solved by the Lagrangian
method. But when does this happen? Usually we just try the method and see.
If we are lucky, as in Example 1.1, then we will be able to establish that there
exists a λ that lets us solve P (b) this way. However, there are important classes
of problems for which we can guarantee that Lagrangian methods always work.

Note that (1.3) says that there is a λ such that φ(b) = g(λ). Combining this
with (1.2), we see that if the problem is Strong Lagrangian then min of primal =
max of dual. I.e. the inequality in (1.2) is actually an equality.

1.4 Hyperplanes

Let the hyperplane (c, α) be given by

α = β − λ⊤(b − c) .

3 Lagrangian Methods

It has intercept at β on the vertical axis through b, and has slope(s) λ. Consider
the following approach to finding φ(b):

1. For each λ, find βλ ≡ maxβ such that the hyperplane lies completely below
the graph of φ.

2. Now choose λ to maximize βλ.

φ(c)φ(c)
Case 1 Case 2

βλ = φ(b) βλ < φ(b)

bb

Lagrangian methods work in Case 1 because of the existence of a tangent to
φ at b. Define a supporting hyperplane (c, α) at b as

α = φ(b) − λ⊤(b− c) , where φ(c) ≥ φ(b)− λ⊤(b − c) for all c ∈ R
m .

In fact, βλ = g(λ) = minx∈X L(x, λ). To see this, we argue

g(λ) = inf
x∈X

L(x, λ)

= inf
c∈Rm

inf
x∈X(c)

[f(x)− λ⊤(h(x) − b)]

= inf
c∈Rm

[φ(c) − λ⊤(c− b)]

= sup{β : β − λ⊤(b− c) ≤ φ(c) , for all c ∈ R
m}

= βλ .

Hence, the dual problem is maxβλ. Again, we see the weak duality result of
max βλ ≤ φ(b), with equality if the problem is Strong Lagrangian.

Theorem 1.2 The following are equivalent:

(a) there exists a (non-vertical) supporting hyperplane to φ at b;

(b) the problem is Strong Lagrangian.

Hyperplanes 4

This is important since a (non-vertical) supporting hyperplane exists if φ(b) is a
convex function of b. We can find conditions that make φ convex.

Proof. Suppose there exists a (non-vertical) supporting hyperplane to φ at b.
This means that there exists λ such that

φ(b)− λ⊤(b − c) ≤ φ(c) for all c ∈ R
m .

This implies

φ(b) ≤ inf
c∈Rm

[
φ(c)− λ⊤(c− b)

]

= inf
c∈Rm

inf
x∈X(c)

[
f(x)− λ⊤(h(x) − b)

]

= inf
x∈X

L(x, λ)

= g(λ)

However, we have the opposite inequality in (1.1). Hence φ(b) = g(λ). This
means that P (b) is Strong Lagrangian, i.e., can be solved by minimizing L(x, λ)
with respect to x.

Conversely, if the problem is Strong Lagrangian then there exists λ such that
for all x ∈ X

φ(b) ≤ f(x)− λ⊤(h(x)− b) .

Imagine minimizing the right hand side over x ∈ X(c), where h(x) = c. This
gives

φ(b) ≤ φ(c)− λ⊤(c− b) .

This is true for all c, and hence

φ(b)− λ⊤(b − c) ≤ φ(c) for all c ∈ R
m .

Hence, φ has a (non-vertical) supporting hyperplane at b.

2 Linear Programming

2.1 Convexity and Lagrangian methods

1. A set S is a convex set if for all 0 ≤ δ ≤ 1

x, y ∈ S =⇒ δx+ (1 − δ)y ∈ S .

2. A real-valued f is a convex function if for all x, y ∈ S and 0 ≤ δ ≤ 1

δf(x) + (1− δ)f(y) ≥ f(δx+ (1− δ)y) .

3. A point x is an extreme point of S if whenever

x = δy + (1− δ)z

for some y, z ∈ S and 0 < δ < 1 then x = y = z.

Theorem 2.1 (Supporting Hyperplane Theorem) Suppose φ is convex and
b lies in the interior of the set of points where φ is finite. Then there exists a
(non-vertical) supporting hyperplane to φ at b.

So, we are interested in conditions on the problem that make φ convex.

Theorem 2.2 Consider the problem P (b), defined as

minimize
x∈X

f(x) subject to h(x) ≤ b .

If X is a convex set and f and h are convex then φ is convex.

Proof. Take b1, b2 and b = δb1+(1− δ)b2 for 0 < δ < 1 with b1, b2 such that φ is
defined. Take xi feasible for P (bi) for i = 1, 2 and consider x = δx1 + (1 − δ)x2.
Then X convex, x1, x2 ∈ X implies that x ∈ X . Also, h convex gives

h(x) = h(δx1 + (1− δ)x2)

≤ δh(x1) + (1− δ)h(x2)

≤ δb1 + (1− δ)b2

= b .

So x is feasible for P (b). So, if f is convex

φ(b) ≤ f(x) = f(δx1 + (1− δ)x2) ≤ δf(x1) + (1 − δ)f(x2) .

5

Linear programs 6

This holds for all x1 ∈ X(b1) and x2 ∈ X(b2) so taking infimums gives

φ(b) ≤ δφ(b1) + (1− δ)φ(b2)

so that φ is convex.

Remark. Consider the constraint h(x) = b. This is the same as h(x) ≤ b and
−h(x) ≤ −b. So φ is convex under these constraints if X is a convex set and f ,
h and −h are all convex. Thus h should be linear in x.

2.2 Linear programs

We will study problems of the form1

minimize
{
c⊤x : Ax ≤ b , x ≥ 0

}

where x and c are n-vectors, b is a m-vector and A is a m × n matrix. Such
problems are also written out in the longer form

minimize c⊤x , subject to Ax ≤ b , x ≥ 0 .

Example

minimize −(x1 + x2)

subject to

x1 + 2x2 ≤ 6
x1 − x2 ≤ 3

x1, x2 ≥ 0 .

A
B

C

D

E

F

x2 = 0

x1 = 0

x1 − x2 = 3

x1 + 2x2 = 6

x1 + x2 =const

2.3 Duality of linear programs

The primal LP optimization problems

(LP =) : minimize{c⊤x : Ax = b, x ≥ 0}
(LP ≥) : minimize{c⊤x : Ax ≥ b, x ≥ 0}

1For a thorough introduction to the topic of linear programming see Richard Weber’s course
on Optimization, available at: http://www.statslab.cam.ac.uk/ rrw1/opt/

7 Linear Programming

have corresponding dual problems

Dual of (LP =) : maximize{b⊤λ : A⊤λ ≤ c}
Dual of (LP ≥) : maximize{b⊤λ : A⊤λ ≤ c, λ ≥ 0}

2.4 Derivation of the dual LP problem

Consider (LP ≥), and introduce slack variables z to form the problem

minimize c⊤x , subject to Ax− z = b, x ≥ 0, z ≥ 0 .

So the set X ⊂ R
m+n is given by

X = {(x, z) : x ≥ 0, z ≥ 0} .
We use a Lagrangian approach. The Lagrangian is

L ((x, z);λ) = c⊤x− λ⊤ (Ax− z − b) =
(
c⊤ − λ⊤A

)
x+ λ⊤z + λ⊤b

with finite minimum over (x, z) ∈ X if and only if

λ ∈ Y = {λ : λ ≥ 0, c⊤ − λ⊤A ≥ 0} .
The minimum of L((x, z);λ) for λ ∈ Y is attained where both

(
c⊤ − λ⊤A

)
x = 0

and λ⊤z = 0, so that
g(λ) ≡ inf

x∈X
L(x;λ) = λ⊤b .

Hence form of dual problem.

2.5 Shadow prices

The Lagrange multipliers play the role of prices since we have that

∂φ

∂bi
=

∂g(λ)

∂bi
= λi .

The variables λi are also known as shadow prices.

2.6 Conditions for optimality

For the (LP ≥) problem, x and λ are primal and dual optimal respectively if and
only if x is primal feasible, λ is dual feasible and, in addition, for any i = 1, . . . , n
and j = 1, . . . ,m

(c⊤ − λ⊤A)ixi = 0 = λj(Ax − b)j .

These are known as the complementary slackness conditions.

Basic insight 8

2.7 Basic insight

If an LP has a finite optimum then it has an optimum at an extreme point of the
feasible set.

There are a finite number of extreme points so an algorithm for solving the
LP is

• Find all the vertices of the feasible set.

• Pick the best one.

Our example has an optimum at C. However, there are

(
n+m
m

)
vertices, so this

algorithm could take a long time!

2.8 Basic solutions

A basic!solutionbasic solution to Ax = b is a solution with at least n−m zero
variables. The solution is non-degenerate if exactly n − m variables are zero.
The choice of the m non-zero variables is called the basis. Variables in the basis
are called basic; the others are called non-basic.

If a basic solution satisfies x ≥ 0 then it is called a basic feasible solution
(bfs). The following is a theorem.

The basic feasible solutions are the extreme points of the
feasible set.

In our example, the vertices A–F are basic solutions (and non-degenerate) and
A–D are basic feasible solutions.

3 The Simplex Algorithm

1. Start with a bfs.

2. Test whether this bfs is optimal.

3. If YES then stop.

4. If NO then move to an ‘adjacent’ bfs which is better. Return to step 2.

3.1 Algebraic viewpoint

A basis, B, is a choice ofm non-zero variables. For any x satisfying the constraints
Ax = b, we can write

ABxB +ANxN = b

where AB is a m×m matrix, AN is a m× (n−m) matrix, xB and b are m-vectors
and xN is a (n−m)-vector.

A basic solution has xN = 0 and ABxB = b and a basic feasible solution
has xN = 0, ABxB = b and xB ≥ 0.

As we have seen, if there exists a finite optimum then there exists a bfs that
is optimal.

Nondegeneracy assumptions

We will assume that the following assumptions hold. (If they do not, then they
will do so for a small perturbation of the data).

1. The matrix A has linearly independent rows, i.e., rank(A) = m.

2. Any m×m matrix formed from m columns of A is non-singular.

3. All basic solutions ABxB = b, xN = 0 have exactly m non-zero variables, i.e.,
xi 6= 0 for i ∈ B.

3.2 Simplex tableau

Now for any x with Ax = b, we have xB = A−1
B (b−ANxN). Hence,

f(x) = c⊤x = c⊤BxB + c⊤NxN

= c⊤BA
−1
B (b−ANxN) + c⊤NxN

= c⊤BA
−1
B b+ (c⊤N − c⊤BA

−1
B AN)xN .

We can assemble this information in a tableau.

9

Test for optimality 10

basic non-basic

I A−1
B AN A−1

B b

0 c⊤N − c⊤BA
−1
B AN −c⊤BA

−1
B b

3.3 Test for optimality

Suppose we want to maximize c⊤x and we find

(c⊤N − c⊤BA
−1
B AN) ≤ 0 and A−1

B b ≥ 0 .

Then for all feasible x (since x ≥ 0 =⇒ xN ≥ 0)

f(x) = c⊤BA
−1
B b+ (c⊤N − c⊤BA

−1
B AN)xN ≤ c⊤BA

−1
B b .

But for bfs x̂ with x̂B = A−1
B b and x̂N = 0 we have f(x̂) = c⊤BA

−1
B b. So, x̂ is

optimal.

This gives us an easy way to check if a given bfs is optimal.

3.4 Choice of new bfs

Alternatively, if some (c⊤N − c⊤BA
−1
B AN)i is positive we can increase the value of

the objective function by increasing from zero the value of (xN)i.

We would like to increase (xN)i by as much as possible. However, we need to
keep the constraints satisfied. So as we alter (xN)i the other variables alter and
we must stop increasing (xN)i if one becomes zero.

The net effect is that we interchange one basic variable with one non-basic
variable.

3.5 Simplex algorithm

1. Find an initial bfs with basis B.

2. Check the sign of (c⊤N − c⊤BA
−1
B AN)i for i ∈ N . Are all components non-

positive?

3. If YES then we are at an optimum. Stop.

4. If NO, so that (c⊤N − c⊤BA
−1
B AN)i > 0, say with i ∈ N , increase (xN)i as

much as possible.

11 The Simplex Algorithm

Either we can do this indefinitely, which means the maximum is
unbounded. Stop.

or one of xB variables becomes zero, giving a new new bfs. Repeat from
step 2.

3.6 Simplex algorithm: tableau form

0. Find an initial basic feasible solution.

The tableau takes the form

(aij) ai0

a0j a00

This is easy when the constraints are of the form

Ax ≤ b , b ≥ 0 .

We can write this as
Ax + z = b , z ≥ 0

and take an initial basic feasible solution of

x = 0 , z = b ≥ 0 .

It is best to think of this as extending x to (x, z) and then setting

(xB, xN) = (z, x) = (b, 0) .

1. Choose a variable to enter the basis

Look for a j such that a0j > 0. Column j is called the pivot column and the
variable corresponding to column j will enter the basis. If a0j ≤ 0 for all j ≥ 1
then the current solution is optimal. If there is more than one j such that a0j > 0
choose any one. A common rule-of-thumb is to choose the j for which a0j is most
positive. Alternatively, we could choose the least j ≥ for which a0j > 0.

2. Find the variable to leave the basis

Choose i to minimize ai0/aij from the set {i : aij > 0}. Row i is called the
pivot row and aij is called the pivot. If aij ≤ 0 for all i then the problem is
unbounded and the objective function can be increased without limit.

Simplex algorithm: tableau form 12

If there is more than one i minimizing ai0/aij the problem has a degenerate
basic feasible solution.

In our example we have at this point

x1 x2 z1 z2 ai0

z1 basic 1 2 1 0 6

z2 basic 1 −1 0 1 3

a0j 1 1 0 0 0

3. Pivot on the element aij

The purpose of this step is to get the equations into the appropriate form for the
new basic feasible solution.

• Multiply row i by 1/aij .

• Add −(akj/aij)× (row i) to each row k 6= i, including the objective function
row.

The new tableau form: (after re-arranging rows and columns), is as at the end
of Section 3.6. In our example we reach

x1 x2 z1 z2 ai0

z1 basic 0 3 1 −1 3

x1 basic 1 −1 0 1 3

a0j 0 2 0 −1 −3

Now return to Step 1.

In our example, one further iteration brings us to the optimum.

x1 x2 z1 z2 ai0

x2 basic 0 1 1
3 − 1

3 1

x1 basic 1 0 1
3

2
3 4

a0j 0 0 − 2
3 − 1

3 −5

This corresponds to the bfs x1 = 4, x2 = 1, z1 = z2 = 0, i.e., vertex C.

4 Advanced Simplex Procedures

4.1 Two phase simplex method

Suppose we do not have the obvious basic feasible solution. Consider

maximize − 6x1 − 3x2

subject to

x1 + x2 ≥ 1
2x1 − x2 ≥ 1

3x2 ≤ 2
x1, x2 ≥ 0

≡

maximize − 6x1 − 3x2

subject to

x1 + x2 − z1 = 1
2x1 − x2 − z2 = 1

3x2 + z3 = 2
x1, x2, z1, z2, z3 ≥ 0

Unfortunately, the basic solution

x1 = 0 x2 = 0 z1 = −1 z2 = −1 z3 = 2

is not feasible. The trick is to add artificial variables, y1, y2 to the constraints
and then minimize y1 + y2 subject to

x1 + x2 − z1 + y1 = 1

2x1 − x2 − z2 + y2 = 1

3x2 + z3 = 2

x1, x2, z1, z2, z3, y1, y2 ≥ 0

We can take the ‘easy’ initial bfs of y1 = 1, y2 = 1, z3 = 2, x1 = 0, x2 = 0.
In Phase I we minimize y1 + y2, starting with y1 = 1, y2 = 1 and z3 = 2.

(Notice we did not need an artificial variable in the third equation.) Provided
the original problem is feasible we should be able to obtain a minimum of 0 with
y1 = y2 = 0 (since y1 and y2 are not needed to satisfy the constraints if the
original problem is feasible). At the end of Phase I the simplex algorithm will
have found a bfs for the original problem. Phase II proceeds with the solution
of the original problem, starting from this bfs.

Note: the original objective function doesn’t enter into Phase I, but it is
useful to carry it along as an extra row in the tableau since the algorithm will
then arrange for it to be in the appropriate form to start Phase II.

We start with
x1 x2 z1 z2 z3 y1 y2

y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1

z3 0 3 0 0 1 0 0 2

Phase II −6 −3 0 0 0 0 0 0

Phase I 0 0 0 0 0 −1 −1 0

13

Two phase simplex method 14

Preliminary step. The Phase I objective must be written in terms of the non-
basic variables. This is accomplished by adding rows 1 and 2 to the bottom row,
to give

x1 x2 z1 z2 z3 y1 y2
y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1

z3 0 3 0 0 1 0 0 2

Phase II −6 −3 0 0 0 0 0 0

Phase I 3 0 −1 −1 0 0 0 2

Begin Phase I. Pivot on a21 to get

x1 x2 z1 z2 z3 y1 y2

y1 0 3
2 −1 1

2 0 1 − 1
2

1
2

x1 1 − 1
2 0 − 1

2 0 0 1
2

1
2

z3 0 3 0 0 1 0 0 2

0 −6 0 −3 0 0 3 3

0 3
2 −1 1

2 0 0 − 3
2

1
2

Pivot on a14 to get

x1 x2 z1 z2 z3 y1 y2

z2 0 3 −2 1 0 2 −1 1

x1 1 1 −1 0 0 1 0 1

z3 0 3 0 0 1 0 0 2

0 3 −6 0 0 6 0 6

0 0 0 0 0 −1 −1 0

End of Phase I. y1 = y2 = 0 and we no longer need these variables, and so drop
the last two columns and Phase I objective row. We have a bfs with which to
start Phase II, with x1 = 1, z2 = 1, z3 = 2. The rest of the tableau is already
in appropriate form. So we rewrite the preceeding tableau without the y1, y2
columns.

Begin Phase II. x1 x2 z1 z2 z3

z2 0 3 −2 1 0 1

x1 1 1 −1 0 0 1

z3 0 3 0 0 1 2

0 3 −6 0 0 6

15 Advanced Simplex Procedures

In one more step we reach the optimum, by pivoting on a12.

x1 x2 z1 z2 z3

x2 0 1 − 2
3

1
3 0 1

3

x1 1 0 − 1
3 − 1

3 0 2
3

z3 0 0 2 −1 1 1

0 0 −4 −1 0 5

In general, artificial variables are needed when there are constraints like

≤ −1, or ≥ 1, or = 1,

unless they happen to be of a special form for which it is easy to spot a bfs. If
the Phase I objective cannot be minimized to zero then the original problem is
infeasible.

The problem we have solved is the dual of the problem P that we considered in
Chapters 2–3, augmented by the constraint 3x2 ≤ 2. It is interesting to compare
the final tableau above with the tableau obtained in solving the primal. They are
essentially transposes of one another.

4.2 Primal and dual algorithms

Consider the problem (LP =), defined as minimize{c⊤x : Ax = b, x ≥ 0}. This
has dual maximize{λ⊤b : c⊤ − λ⊤A ≥ 0}. At each stage of the primal simplex
algorithm, we have a tableau,

basic, xB ≥ 0 non-basic, xN = 0

I A−1
B AN A−1

B b ≥ 0

c⊤B − c⊤BA
−1
B AB = 0 c⊤N − c⊤BA

−1
B AN , free −c⊤BA

−1
B b

Here we have a basic feasible solution for the primal, xB = A−1
B b, and a basic

(though not necessarily feasible) solution for the dual, λ⊤
B = c⊤BA

−1
B . We always

have primal feasibility and complementary slackness. Recall

primal

feasibility

Ax = b and x ≥ 0

+

dual

feasibility

(c⊤ − λ⊤A) ≥ 0

+

complementary

slackness

(c⊤ − λ⊤A)x = 0

=⇒ optimality.

Dual simplex algorithm 16

Primal algorithms maintain primal feasibility and complementary slackness
and seek dual feasibility. Dual algorithms maintain dual feasibility and com-
plementary slackness and seek primal feasibility.

4.3 Dual simplex algorithm

The dual simplex algorithm starts with and maintains a primal/dual basic
solution that is dual feasible and satisfies complementary slackness while seeking
primal feasibility. This can be useful.

It may be easier to spot a dual feasible solution

minimize 2x1 + 3x2 + 4x3 s.t.
x1 + 2x2 + x3 ≥ 3

2x1 − x2 − 3x3 ≥ 4

x1, x2, x3 ≥ 0

Note ci ≥ 0 for all i. Let us add slack variables, zi ≥ 0 to obtain

x1 + 2x2 + x3 − z1 = 3

2x1 − x2 − 3x3 − z2 = 4

The primal algorithm must use two-phases since z1 = −3, z2 = −4 is not
primal feasible. However, the tableau contains a dual feasible solution, λ1 = λ2 =
0, and c⊤ − λ⊤A = (2, 3, 4, 0, 0) ≥ 0.

−1 −2 −1 1 0 −3

−2 1 3 0 1 −4

2 3 4 0 0 0

Rule: for rows, i, with ai0 < 0 pick column j with aij < 0 to minimize a0j/−aij.
Pivoting on a21 gives

0 − 5
2 − 5

2 1 − 1
2 −1

1 − 1
2 − 3

2 0 − 1
2 2

0 4 7 0 1 −4

and then on a12 gives

0 1 1 − 2
5

1
5

2
5

1 0 −2 − 1
5 − 2

5
11
5

0 0 3 8
5

1
5 − 28

5

17 Advanced Simplex Procedures

So the optimum is 28
5 , with x1 = 11

5 , x2 = 2
5 , x3 = 0.

Notice that for problems of the form Ax ≥ b we can write

Ax− z = b z ≥ 0

A

(
x

z

)
=

(
· · · −1 0

· · · 0 −1

)(
x

z

)
= b

Hence

(c⊤ − λ⊤A) =
(
2 3 4 0 0

)
−
(
λ1 λ2

)(· · · −1 0

· · · 0 −1

)

=
(
· · · λ1 λ2

)

So the dual variables, λ, can be found in the objective function row under the
slack variables in the optimal tableau. E.g., λ = (85 ,

1
5).

We may wish to add constraints to optimal solutions

Suppose we have solved an LP and have the final tableau

non-basic basic

I +ve

+ve 0

Now we wish to add a new constraint

a1x1 + a2x2 + · · ·+ anxn ≤ b .

If the optimal solution satisfies this constraint the solution remains optimal for
the new problem. Otherwise, we add it to the tableau to give

0

I
... +ve
0

aN aB 1 b

+ve 0 0

−→

0

I
... +ve
0

0 1 -ve?

+ve 0 0

Notice that we still have a dual feasible solution. The problem solution may
not be primal feasible. However, we can apply the dual simplex algorithm to find
the new optimum under this additional constraint.

Dual simplex algorithm 18

Gomory’s cutting plane method

The addition of new constraints is useful in Gomory’s cutting plane method
for integer linear programming. Consider the final tableau on page 16. Pick a
row in which the far right hand element is not an integer, say row 1. This says

x2 + x3 − 2
5z1 +

1
5z2 =

2
5 .

Suppose x1, x2, x3, z1, z2 are restricted to be non-negative integers. Then we must
have

x2 + x3 − 1z1 + 0z2 ≤ x2 + x3 − 2
5z1 +

1
5z2 = 2

5 .

This is because z1, z2 ≥ 0 and we have replaced − 2
5 and 1

5 by the integers that lie
just below them.

Since the left hand side is an integer, it can be no more than the integer just
below 2

5 . So a solution in integers must satisfy

x2 + x3 − z1 ≤ 0 .

However, the present solution does not satisfy this, since x2 = 2
5 , x3 = z1 = z2 =

0. Thus we can add this new constraint (or cutting plane) to give

0 1 1 − 2
5

1
5 0 2

5

1 0 −2 − 1
5 − 2

5 0 11
5

0 1 1 −1 0 1 0

0 0 3 8
5

1
5 0 − 28

5

which is written into standard form

0 1 1 − 2
5

1
5 0 2

5

1 0 −2 − 1
5 − 2

5 0 11
5

0 0 0 − 3
5 − 1

5 1 − 2
5

0 0 3 8
5

1
5 0 − 28

5

Applying the dual simplex algorithm to this, and repeating the process, we
will eventually arrive at the optimal integer solution. In this example we reach
the optimum of x1 = 3, x2 = x3 = 0 in just one more interation.

0 1 1 −1 0 1 0
1 0 −2 1 0 −2 3
0 0 0 3 1 −5 2

0 0 3 1 0 1 −6

5 Complexity of Algorithms

5.1 Theory of algorithmic complexity

An instance of an optimization problem is defined by its input data. E.g., an
instance of linear programming with n variables and m constraints is described
by the inputs c, A and b. There are mn+m+ n numbers and if all of them can
be expressed in no more than k bits, the instance can be described in a string of
(mn+m+ n)k bits. This is the instance size.

An optimization problem is solved by a computational algorithm whose run-
ning time depends on how it is programmed and the speed of the hardware. A
large instance can be easy to solve, such as LP with A = I. However, in general,
we expect an algorithm’s running time to increase with size of the instance. Ig-
noring details of the implementation, the running time depends on the number of
arithmetic operations involved. For example, the linear system Ax = b, with A
being n×n, can be solved by the algorithm of Gaussian elimination, using O(n3)
operations of addition, subtraction, multiplication and division. We define

• f(n) = O(g(n)) if there exists a c such that f(n) ≤ cg(n) for all n.

• f(n) = Ω(g(n)) if there exists a c such that f(n) ≥ cg(n) for all n.

• f(n) = Θ(g(n)) if f(n) is both O(g(n)) and Ω(g(n)).

Of course multiplication is more difficult than addition and so in computing
running time we might count operations according more elementary computer
instructions. In what follows we make use of Turing’s famous proof that the
class of things that can be computed is the class things that can be computed
by a Deterministic Turing Machine (DTM). A DTM is essentially a finite-state
machine that can read and write to an external storage medium.

When a DTM is given an input x it runs for some number of steps and then
outputs an asnwer, f(x). This number of steps is its running time. There are many
Turing machines. Let TM (n) be the worst-case running time of some Turning
machine, say M , over inputs x of size |x| = n. We say that a function f(x) is
computable in polynomial time if there exists some Turing machine that can
compute f(x) within |x|k steps (for some fixed k). The definition is robust, since
different Turing machines can simulate one another and more efficient models
of computation, by at most squaring or cubing the the computation time. In
contrast, if TM (n) = Ω(2cn) for all M , then f(x) is said to be computable in
exponential time.

19

The Travelling Salesman Problem 20

5.2 The Travelling Salesman Problem

Given a finite set of points S in the plane, the TSP asks for the shortest tour of
S. More formally, given S = {s1, s2, . . . , sn} a shortest tour that visits all points
of S is specified by a permutation σ that minimizes the sum of distances

d(sσ(1), sσ(2)) + d(sσ(2), sσ(3)) + · · ·+ d(sσ(n−1), sσ(n)) + d(sσ(n), sσ(1))

where d(si, sj) is the distance between points sii and sj .
In general, it is difficult to prove that a problem does not have a polynomial

time algorithm. No polynomial time algorithm is known for TSP. But there is
also no proof that a polynomial time algorithm for TSP does not exist. We see in
Lecture 6 that the simplex algorithm for LP is an exponential time algorithm. It
was not until the 1970s that a polynomial time algorithm was discovered for LP.

5.3 Decision Problems

A decision problem (or recognition problem) is one that takes the form of a
question with a yes/no answer. For example, decision-TSP is

Given the points S, and L is there a tour of length ≤ L? (5.1)

This differs from optimization-TSP: find the shortest tour, or the evaluation-TSP:
find the length of the shortest tour. Of course the three types of problem are closely
related. We focus on decision problems. This avoids problems in which the size
of the input or output causes non-polynomial time behaviour.

5.4 P and NP problems

A decision problem in is P if its answer is computable in polynomial time. I.e.,
there exists a deterministic Turing machine which, given any instance (with input
data x), can compute the answer within a number of steps bounded by |x|k (for
some fixed k).

A decision problem belongs to NP if there exists a checking function r(x, y)
such that the answer to the decision problem is yes iff there exists a y (called a
certificate) such that r(x, y) = 1 and r(x, y) is computable in polynomial time.
For example, if the answer to (5.1) is yes then y could be the order in which the
points should be visited. It takes only time O(n) to add up the length of this tour
and check it is less than L (this being the computation r(x, y)).

‘NP ’ stands for nondeterministic polynomial. An equivalent definition of
NP is that it is the class of decision problems whose answers can be computed
in polynomial time on a ‘nondeterministic Turing machine’ (NDTM). A NDTM

21 Complexity of Algorithms

consists of many DTMs working in parallel, any one of which can answer yes in
polynomial time without consulting the others. Essentially, these computers are
carrying out parallel calculations of r(x, y) for all possible y. Either one of them
produces the answer yes within time nk, or the answer is no. A NDTM for (5.1)
could consist of (n− 1)! DTMs, each of them checking one possible tour to see if
its length is less than L. Clearly, P ⊆ NP . It is believed that P ⊂ NP : that is,
there are problems in NP which are not in P . However, this is a major unsolved
problem.

NP -complete

NP -hard
NP

P

5.5 Polynomial reduction

When is problem Π1 no harder than another problem Π2? We say that Π1 re-
duces to Π2 if we can construct an algorithm for Π1 as follows.

1. Make a (polynomial time) transformation of the instance of Π1 into an instance
of Π2.

2. Apply some algorithm to solve this instance of Π2.

3. Make a (polynomial time) transformation of this solution of Π2 back into a
solution of Π1.

The idea is that we can use an algorithm that solves Π2 to solve Π1, with additional
work in steps 1 and 3 that requires at most polynomial time. Thus Π1 is really
no harder than Π2.

5.6 NP-completeness

Now we can talk about the hardest problems in NP . A problem Π is said to
be NP-hard if every problem in NP can be reduced to it. It is said to be NP-
complete if moreover Π ∈ NP . Thus all NP-complete problems can be reduced
to one another and are as difficult as all problems in NP .

There are manyNP-complete problems. LP in which all variable are restricted
to be 0 or 1 is NP-complete. TSP is NP-complete. So all problems in NP are no

Examples of NP -complete problems 22

harder than either of these problems. If you can find a polynomial time algorithm
for TSP then you have found a polynomial time algorithm for all problems in
NP and it would be true that P = NP . As we said, since no one has ever found
a polynomial time algorithm for any NP-complete problem, it is believed that
P 6= NP . To show that a new problem, Π, is NP-complete we must(i) show that
Π ∈ NP , and (ii) show that a known NP-complete problem reduces to Π.

5.7 Examples of NP -complete problems

Satisfiability (Cook (1971) Given a propositional formulae with AND’s, NOT’s,
OR’s and Boolean (T or F) variables X1, X2, . . . , Xr, for example,

(X1 ORNOTX2)AND (X3 ANDX4)

is there an assignment of truth values to the variables that makes the formulae
true? (e.g. X1 = X2 = X3 = X4 = T in the above example.)

Hamiltonian circuit Given a graph G. Is there a set of edges forming a tour
of all the vertices? To see that an instance of this is no harder than as TSP, think
of a TSP instance with d(si, sj) = 1 if there is an edge from i to j and d(si, sj) = 2
if there is not. Ask, ‘is there a tour of length ≤ n?’

Subgraph isomorphism Given two graphs G, G′. Does G contain a subgraph
isomorphic to G′? Interestingly, Graph ismorphism (i.e., ‘Are graphs G and G′

isomorphic?’) is known to be in NP , but it is suspected to be neither in P or
NP-complete.

Clique decision problem Given a graph G and number k. Does G contain a
clique of size k? (i.e., k vertices all pairs of which are connected together). E.g.,
below left: k = 3, yes ; k = 4, no.

Vertex cover decision problem Given a graph G and number k. Is there a
set of k vertices such that every edge of G starts or finishes at one of them? Such
a set of vertices is called a vertex cover. E.g., above right: k = 2, no; k = 3, yes.

6 Computational Complexity of LP

6.1 Running time of the simplex algorithm

The simplex algorithm moves from one basic feasible solution to an adjacent one
such that the value of the objective function improves. However, in the worst-
case it can take an exponentially large number of steps to terminate.

Suppose the feasible region is the cube in R
d defined by the constraints

0 ≤ xi ≤ 1 , i = 1, . . . , d

and we seek to maximize xd. There are 2d vertices. The paths shown below visit
all vertices before terminating at (0, 0, . . . , 1).

d = 2 d = 3

x1 x1

x2 x2

x3

Given 0 < ǫ < 1/2, consider the perturbed unit cube given by the constraints

ǫ ≤ x1 ≤ 1 , ǫxi−1 ≤ xi ≤ 1− ǫxi−1 i = 2, . . . , d .

It can be verified that the cost function increases strictly with each move along
the path. For example, for d = 2 we have

(ǫ, ǫ2)

(1, 1− ǫ)

(1, ǫ)

(ǫ, 1− ǫ2)

A B

C
D

x1

x2

0

Note that x2 increases along the route ABCD. So if our pivoting rule is always to
move to the adjacent bfs for which the entering variable has the least index (so-
called Bland’s rule), then the simplex algorithm will require 2d − 1 pivoting steps

23

The size of an LP instance 24

before terminating. With this pivoting rule the simplex algorithm has exponential
worst-case time complexity. Observe that the initial and final vertices are adjacent
and a different pivoting rule could reach the optimum in only one step. However,
for all common pivoting rule that have been studied there is some instance for
which the number of steps until termination is exponential. It is unknown whether
there is a pivoting rule that might make the simplex algorithm more efficient.
This is related to the Hirsch Conjecture (1957): that the diameter of a polytope
with dimension d with n facets cannot be greater than n − d. This conjecture
was disproved in 2010 by Francisco Santos, who found a 43-dimensional polytope
with 86 facets and diameter more than 43. However, it remains open whether or
not the diameter might be bounded by some polynomial function of n and d.

The fact that an algorithm performs badly in the worst-case does not necessar-
ily mean that it is bad in practice. In fact, the average-case running time of
the simplex algorithm appears to linear in problem size. The difficulty is defining
what is meant by ‘on average’.

6.2 The size of an LP instance

We have seen that the simplex algorithm is not a polynomial-time algorithm.
However, there are other algorithms for solving LP. If we can find a polynomial-
time algorithm then LP ∈ P . There are two classes of methods for solving LP.

Boundary value methods Interior point methods

Any non-negative integer, r, (r ≤ U) can be written in binary form

r = ak2
k + ak−12

k−1 + · · ·+ a12
1 + a02

0 ≤ 2 log2 U

where a0, a1, . . . , ak are 0 or 1. The number k is at most ⌊log2 U⌋. Thus, using
an extra bit for the sign, we can represent any integer r where |r| ≤ U by at most
(⌊log2 U⌋+ 2) bits.

An instance of an LP problem is given by a m×n matrix A, a m-vector b and
a n-vector c. So, assuming that the largest magnitude of any of the components
is U , an LP instance has a size in bits of

(mn+m+ n)(⌊log2 U⌋+ 2) .

25 Computational Complexity of LP

6.3 Equivalent feasibility problem

Consider the primal/dual pair:

P : minimize {c⊤x : Ax ≥ b}
D : maximize {b⊤λ : A⊤λ = c, λ ≥ 0} .

By the strong duality of linear programming, each problem has an optimal
solution if and only there is a feasible solution to

b⊤λ = c⊤x Ax ≥ b, A⊤λ = c, λ ≥ 0 .

Thus we can solve LP if we can solve a feasibility problem like this. We shall
therefore focus on feasibility and the decision problem

Is the polyhedron P = {x ∈ R
n : Ax ≥ b} non-empty?

The algorithm that we shall use is known as the ellipsoid method.

6.4 Preliminaries for ellipsoid method

Definitions 6.1

1. Let D be a n× n positive definite symmetric matrix. The set

E = E(z,D) = {x ∈ R
n : (x− z)⊤D−1(x− z) ≤ 1}

is called an ellipsoid with centre at z ∈ R
n.

2. Let D be a n×n non-singular matrix and t ∈ R
n. The mapping S : Rn 7→ R

n

defined by S(x) = Dx+ t is called an affine transformation.

3. The volume of a set L ⊂ R
n, denoted by Vol(L), is defined by

Vol(L) =

∫

x∈L

dx .

We use the fact that if S is given by the affine transformation S(x) = Dx+ t then

Vol(S(L)) = | det(D)|Vol(L) .

Intuitive description of the ellipsoid method 26

6.5 Intuitive description of the ellipsoid method

We generate a sequence of ellipsoids {Et}. Et has centre xt, such that

• If xt ∈ P , then P is non-empty and the method stops.

• If xt 6∈ P , then there is a violated constraint with Aixt < bi, where Ai is some
row of A and bi is the matching element of b.

Thus, P is contained in the half-space {x ∈ R
n : Aix ≥ Aixt}. Call the intersec-

tion of this half-space with Et a half-ellipsoid.
We construct the ellipsoid Et+1 in such a way that it covers this half-ellipsoid

and has volume only a fraction of that of Et.
We repeat this procedure until either we find a point of P or we conclude that

the volume of P is very small and therefore can be taken as empty.

Et

Et+1

xt+1

xt A⊤
i x > bi

A⊤
i x > A⊤

i xt

P

The key result is as follows.

Theorem 6.1 Let E = E(z,D) be an ellipsoid in R
n, and a be a non-zero n-

vector. Consider the half-space H = {x ∈ R
n : a⊤x ≥ a⊤z} and let

z = z +
1

n+ 1

Da√
a⊤Da

,

D =
n2

n2 − 1

(
D − 2

n+ 1

Daa⊤D

a⊤Da

)
.

Then the matrix D is symmetric and positive definite and thus E′ = E(z,D) is
an ellipsoid. Moreover,

(a) E ∩H ⊂ E′,

(b) Vol(E′) < e−1/(2(n+1))Vol(E) .

7 Ellipsoid Method

7.1 Khachiyan’s ellipsoid algorithm

Khachiyan’s ellipsoid method (1979):

Input

• A and b defining the polyhedron P = {x ∈ R
n : A⊤

i x ≥ bi, i = 1, . . . ,m}.

• A ball E0 = E(x0, r
2I) with volume at most V , such that P ⊂ E0.

• A number v, such that either P is empty or Vol(P) > v.

Output A feasible point x∗ ∈ P if P is non-empty, or a statement that P is
empty.

Initialize step Let

t∗ = ⌈2(n+ 1) log(V/v)⌉ , E0 = E(x0, r
2I) , D0 = r2I , t = 0 .

Main iteration

(i) If t = t∗ stop; P is empty.

(ii) If xt ∈ P stop; P is non-empty.

(iii) If xt 6∈ P find a violated constraint, i, such that A⊤
i xt < bi.

(iv) Let Ht = {x ∈ R
n : A⊤

i x ≥ A⊤
i xt}.

Construct an ellipsoid Et+1 = E(xt+1, Dt+1) containing Et ∩Ht with

xt+1 = xt +
1

n+ 1

DtAi√
A⊤

i DtAi

,

Dt+1 =
n2

n2 − 1

(
Dt −

2

n+ 1

DtAiA
⊤
i Dt

A⊤
i DtAi

)

(v) t := t+ 1, return to (i).

27

Sketch proof for the ellipsoid algorithm 28

7.2 Sketch proof for the ellipsoid algorithm

To prove that the algorithm runs in polynomial time we show the following.

(a) Et+1 as defined in (iv) above, does in fact contain Et ∩Ht.

Suppose E0 = {x ∈ R
n : x⊤x ≤ 1} and H0 = {x ∈ R

n : x1 ≥ 0}. Let
e⊤1 = (1, 0, . . . , 0). Then

E1 = E

(
e1

n+ 1
,

n2

n2 − 1

(
I − 2

n+ 1
e1e

⊤
1

))

=

{
x ∈ R

n :
n2 − 1

n2

n∑

i=1

x2
i +

1

n2
+

2(n+ 1)

n2
x1(x1 − 1) ≤ 1

}
.

One can now check that if x ∈ E0 ∩H0 =⇒ x ∈ E1.

(b) Vol(Et+1) < e−1/(2(n+1))Vol(Et).

Suppose E0 and E1 are as in (a), and E1 = F (E0), where

F (x) =
e1

n+ 1
+

(
n2

n2 − 1

(
I − 2

n+ 1
e1e

⊤
1

))1/2

x.

Then, for some affine map G(x) = t+ Sx,

Vol(Et+1)

Vol(Et)
=

Vol(G(E1))

Vol(G(E0))
=

Vol(E1)

Vol(E0)
=

√
det

(
n2

n2 − 1

(
I − 2

n+ 1
e1e⊤1

))

=

(
n2

n2 − 1

)n/2(
1− 2

n+ 1

)1/2

=
n

n+ 1

(
n2

n2 − 1

)(n−1)/2

=

(
1− 1

n+ 1

)(
1 +

1

n2 − 1

)(n−1)/2

< e−1/(n+1)
(
e1/(n

2−1)
)(n−1)/2

= e−1/(2(n+1)) ,

using (twice) the inequality 1 + a < ea (a 6= 0).

(c) There exists V s.t. if P is nonempty then it lies completely within
a ball of volume V .

We start with a lemma.

29 Ellipsoid Method

Lemma 7.1 Let A be a m × n matrix (m > n) of integers and let b be a vector
in R

m. Let U be the largest absolute value of the entries of A and b. Then every
extreme point of the polyhedron P = {x ∈ R

n : Ax ≥ b} satisfies

−(nU)n ≤ xj ≤ (nU)n , j = 1, . . . , n .

Proof. Any extreme point of P is of the form x = Â−1b̂, where Â is an n × n
invertible submatrix of A and b̂ is the matching n-dimensional subvector of b. So
By Cramer’s rule, we can write

xj =
det(Âj)

det(Â)
,

where Âj is the same as Â except that the jth column is replaced by b̂. Now

∣∣∣det(Âj)
∣∣∣ =

∣∣∣∣∣
∑

σ

(−1)|σ|
n∏

i=1

âi,σ(i)

∣∣∣∣∣ ≤ n!Un ≤ (nU)n , j = 1, . . . , n ,

where σ is one of the n! permutations of 1, . . . , n, with |σ| giving the number of
inversions (i.e., i < j and σ(i) > σ(j)).

Finally, since Â is invertible, det(Â) 6= 0 and all entries in A are integer so

| det(Â)| ≥ 1. So the extreme point x satisfies |xj | ≤ (nU)n, for all j.

Thus if x is an extreme point, then x⊤x ≤ n(nU)2n, and so it lies in the set

PB = {x ∈ P : |xj | ≤ (nU)n, j = 1, . . . , n} .

P is nonempty if and only if it contains an extreme point so we can test for
nonemptiness of PB instead of P .

Now PB is contained in a ball of radius
√
n(nU)n, and this ball lies within a

cube of volume V = (2
√
n)n(nU)n

2

.

(d) There exists v > 0 s.t. P is empty or Vol(P) > v.

We say P is full-dimensional if it has positive volume. For example, P =
{(x1, x2) : x1+x2 = 1, x1, x2 ≥ 0} has Vol(P) = 0 and so is not full-dimensional.

Lemma 7.2 Let P = {x ∈ R
n : Ax ≥ b} and assume that A and b have integer

entries which are bounded in absolute value by U . Let

ǫ =
1

2(n+ 1)
[(n+ 1)U]

−(n+1)
, Pǫ = {x ∈ R

n : Ax ≥ b− ǫe}

where e⊤ = (1, 1, . . . , 1). Then

Sketch proof for the ellipsoid algorithm 30

(a) If P is empty, then Pǫ is empty.

(b) If P is non-empty, then Pǫ is full-dimensional.

Proof of (a). If P is empty then the linear program minimize {0⊤x : Ax ≥ b}
is infeasible and its dual maximize {λ⊤b : λ⊤A = 0⊤, λ ≥ 0} has optimal value
+∞. Therefore, there exists a λ ≥ 0 with

λ⊤A = 0⊤ λ⊤b = 1 .

Using Lemma 7.1, we can find a bfs λ̂ to the constraints λ⊤A = 0⊤, λ⊤b = 1,
λ ≥ 0 such that

λ̂i ≤ ((n+ 1)U)n+1 , for all i .

Since λ̂ is a bfs, at most n+ 1 of its components are non-zero so that

m∑

i=1

λ̂i ≤ (n+ 1) ((n+ 1)U)
n+1

.

Therefore,

λ̂⊤(b− ǫe) = 1− ǫ

m∑

i=1

λ̂i ≥
1

2
> 0 .

Hence, when we replace b by b − ǫe the value of the dual remains +∞ and the
primal problem is again infeasible and Pǫ is also empty.

Proof of (b). Let x be an element of P so that Ax ≥ b. Let y be such that

xj −
ǫ

nU
≤ yj ≤ xj +

ǫ

nU
, for all j .

It is easy to show that y belongs to Pǫ and the set of all such vectors y (a cube)
has positive volume (of (2ǫ/nU)n) and so is full-dimensional.

The following lemma can also be proved.

Lemma 7.3 Let P = {x ∈ R
n : Ax ≥ b} be a full-dimensional bounded polyhe-

dron, where the entries of A and b are integer and have absolute value bounded
by U . Then,

Vol(P) > n−n(nU)−n2(n+1) .

(e) The running time of t∗ = ⌈2(n+ 1) log(V/v)⌉ is polynomial in n.

We have the values

V = (2n)n(nU)n
2

and v = n−n(nU)−n2(n+1)

and know that the ellipsoid method takes at most t∗ = ⌈2(n+1) log(V/v)⌉ steps.
This gives t∗ = O(n4 log(nU)).

8 The Network Simplex Algorithm

8.1 Graph terminology

Lectures 8–11 are about network flow problems. They include transportation,
assignment, maximum flow and shortest path problems.

A graph G = (N,A) consists of a set of nodes, N , and a set of arcs, A. In an
undirected graph the arcs are unordered pairs of nodes {i, j} ∈ A, i, j ∈ N . In a
directed graph (also called a network) the arcs are ordered pairs of nodes (i, j).
A walk is an ordered list of nodes i1, i2, . . . , it such that, in an undirected graph,
{ik, ik+1} ∈ A, or, in a directed graph, that either (ik, ik+1) ∈ A or (ik+1, ik) ∈ A,
for k = 1, . . . , t− 1. A walk is a path if i1, i2, . . . , ik are distinct, and a cycle if
i1, i2, . . . , ik−1 are distinct and i1 = ik. A graph is connected if there is a path
connecting every pair of nodes.

A network is acyclic if it contains no cycles. A network is a tree if it is
connected and acyclic. A network (N ′, A′) is a subnetwork of (N,A) if N ′ ⊂ N
and A′ ⊂ A. A subnetwork (N ′, A′) is a spanning tree if it is a tree and N ′ = N .

8.2 The minimum cost flow problem

Let fij denote the amount of flow of some material on arc (i, j) ∈ A. Let bi,
i ∈ N , denote the amount of flow that enters the network at node i ∈ N . If bi > 0
we say the node is a source (supplying bi units of flow). If bi < 0 we say that
the node is a sink (with a demand of |bi| units of flow).

Suppose there is a cost of cij per unit flow on arc (i, j) ∈ A. The minimum
cost flow problem is

minimize
∑

(i,j)∈A

cijfij

subject to

bi +
∑

j:(j,i)∈A

fji =
∑

j:(i,j)∈A

fij , for all i ∈ N

mij ≤ fij ≤ Mij , for all (i, j) ∈ A .

31

Spanning tree solutions 32

These say that flows must be feasible and conserve flow at each node. For feasible
flows to exist we must also have

∑
i∈N bi = 0. An important special case is that

of uncapacitated flows, mij = 0 and Mij = ∞.

Note that the minimum cost flow problem is a special form of linear pro-
gram. Its simple structure allows for special algorithms. Constraints are of the
form Ax = b, where

(A)ik =





+1 node i is start of kth arc ;
−1 node i is end of kth arc ;
0 otherwise .

8.3 Spanning tree solutions

Assume that the network is connected. A spanning tree solution, fij , is one
that can be constructed as follows

1. Pick a set T ⊂ A of n − 1 arcs forming a spanning tree and partition the
remaining arcs A \ T into the two sets L and U .

2. Set fij = mij for each arc (i, j) ∈ L and fij = Mij for each arc (i, j) ∈ U .

3. Use the flow conservation constraints to determine the flows fij for arcs (i, j) ∈
T . We begin by determining the flows on arcs incident to leaves of the tree T .
Subsequently we determine the flows on other arcs of T .

A spanning tree solution with mij ≤ fij ≤ Mij is a feasible spanning tree
solution.

Theorem 8.1 A flow vector is a spanning tree solution if and only if it is a
basic solution.

8.4 Optimality conditions

Consider the Lagrangian of the minimum cost flow problem

L(f ; λ) =
∑

(i,j)∈A

cijfij −
∑

i∈N

λi




∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji − bi




=
∑

(i,j)∈A

(cij − λi + λj) fij +
∑

i∈N

λibi .

33 The Network Simplex Algorithm

Minimizing L(f ; λ) over mij ≤ fij ≤ Mij gives dual feasibility and comple-
mentary slackness conditions:

c̄ij = cij − λi + λj > 0 =⇒ fij = mij

c̄ij = cij − λi + λj < 0 =⇒ fij = Mij

c̄ij = cij − λi + λj = 0 ⇐= mij < fij < Mij

Observe that if T is a spanning tree then we can solve the following equations
in a unique way, where n = |N |.

λn = 0 , λi − λj = cij , for all (i, j) ∈ T

8.5 Pivoting to change the basis

We compute the reduced costs c̄ij = cij − (λi − λj) for each arc (i, j) 6∈ T .
Recall c̄ij = 0 for all arcs (i, j) ∈ T by construction.

If c̄ij ≥ 0 for all (i, j) ∈ L and c̄ij ≤ 0 for all (i, j) ∈ U then the current
basic feasible solution is optimal. Otherwise, choose an arc (i, j) where there is a
violation. This arc together with the tree T forms a cycle. Add (or subtract) as
much flow as possible around this cycle so as to increase (or decrease) fij . Note
that

∑
kℓ c̄kℓ =

∑
kℓ ckℓ = c̄ij , where the sums are taken around the arcs of the

cycle. Thus if c̄ij is negative we can decrease the total cost by increasing the flow
fij . Similarly, if c̄ij is positive we can decrease cost by decreasing the fij .

Example Consider the minimum cost flow problem below. On each arc we give
the values of (cij ,mij ,Mij). There is b1 = 6, b2 = −4, and b3 = −2. The spanning
tree consists of 2 arcs (shown undashed). In the left hand figure, we set λ1 = 0
and find λ2 = −3 (so c12 = 3 = λ1 − λ2). Similarly, λ3 = −5. On the arc (1, 3)
the value of c13−λ1+λ3 = 1− (0)+(−5) = −4. Since this is < 0 we can decrease
cost by increasing f13. Inserting the arc (1, 3) into the tree produces the cycle
(1, 3, 2, 1). We increase the flow f13 as much as possible shifting flow around this
cycle (i.e., by 1). This produces the flows shown in the right diagram. The tree is
now arcs (1, 3), (1, 2). We recalculate: λ1 = 0, λ1 = −3 and λ2 = −1. The value
of c23 − λ2 + λ3 = 2 − (−3) + (−1) = 4. Since this is > 0 we want flow on (2, 3)
be minimal, which it is. So we now have the optimal solution.

Finding the initial feasible tree solution 34

0

1

1

1
1

2

2

2

2

2

33

4

44

5

66 (1, 1, 3)(1, 1, 3)

(3, 3, 7)(3, 3, 7) (2, 0, 3)(2, 0, 3)

8.6 Finding the initial feasible tree solution

1. Every network flow problem can be reduced to one with exactly one source
node and one sink node (by adding in two nodes).

2. Every network flow problem can be reduced to one without sources or sinks
(by connecting the above two nodes with an edge). The constraints are just
Af = 0. Any f satisfying this is called a circulation and such flow problems
are called circulation problems.

3. In the case that mij = 0, for all i, j, the zero flow is a feasible tree solution.
If mij 6= 0 for some arc (i, j) we can replace the flows by fij −mij and adjust
the supplies bi accordingly.

8.7 Integrality of optimal solutions

Suppose the input data (mij , Mij and bi) are all integers. Then the above algo-
rithm leads to optimal integer solutions. There are no multiplications or divisions.

Theorem 8.2 (Integrality theorem) For every network flow problem with in-
teger data, every basic feasible solution and, in particular, every basic optimal
solution assigns integer flow to every arc.

This theorem is important for the many practical problems in which an integer
solution is required for a meaningful interpretation (for example, the assignment
problems). Later, we investigate linear programming problems subject to the
additional constraint that the solution be in integers. Such problems are usually
much harder to solve than the problem without the integer constraint. However,
for network flow problems we get integer solutions for free.

9 Transportation and Assignment

Problems

9.1 Transportation problem

In the transportation problem there are m suppliers of a good and n customers.
Suppose supplier i produces si units of the good, customer j demands dj units of
the good, and there is a balance between demand and supply so that

m∑

i=1

si =

n∑

j=1

dj .

Suppose the cost of transporting a unit of good from supplier i to consumer j
is cij . The problem is to match suppliers with consumers to minimize the total
transportation cost. We can easily formulate the transportation problem as a
minimum cost flow problem as follows

minimize

m∑

i=1

n∑

j=1

cijfij

subject to
m∑

i=1

fij = dj , j = 1, . . . , n ,

n∑

j=1

fij = si , i = 1, . . . ,m ,

fij ≥ 0 , for all i, j .

This is a special case of the minimum cost flow problem withmij = 0,Mij = ∞
and the graph structure of a bipartite graph. That is, the nodes divide into
disjoint sets S (suppliers) and C (customers) and and A ⊂ S × C (the only arcs
are those which connect suppliers to consumers).

1

1

2

2

3

s1

s2

s3

d1

d2

Suppliers Customers

Lemma 9.1 Every minimum cost flow problem is equivalent to a transportation
problem.

35

Tableau form 36

Proof. Consider the minimum cost flow problem with mij = 0, Mij < ∞, and
input data G = (N,A), Mij , cij and bi. For every arc (i, j) ∈ A construct a
source node with supply Mij . For every node i ∈ N construct a sink node with
demand

∑
k: (i,k)∈A Mik − bi. Now connect every source node (i, j) to each of the

sink nodes i and j with infinite upper bounds on capacities. Let cij,i = 0 and
cij,j = cij .

Mij
cij

demand

supply
i

j

i,j

∑
k Mik − bi

∑
k Mjk − bj

0

There is a 1-1 correspondence between feasible flows in the two problems and
these flows have the same costs. To see this put a flow of fij on the arc from i, j
to j, and a flow of Mij − fij on the arc from i, j to i. The total amount flowing
into node i is then

∑
j(Mij − fij) +

∑
j fji, which must equal

∑
j Mij − bi. Thus

we have the flow conservation constraints of the minimum cost flow problem.
For this reason new algorithms are often first tested on transportation prob-

lems. The case in which there is an arc from every supplier to every consumer is
known as the Hitchcock transportation problem.

9.2 Tableau form

It is convenient to present the input data and spanning tree solutions (i.e., the
bfs’s) for the transportation problem in tableau form. (This is a different form of
tableau to that of the simplex tableau). We express the input data in a tableau

0

 7

7
5 6 1

7

3 3
8

8
4 3

11

 8
1
14

9
4

1
18

13
1 3

12
6

12

10 22 16

1

13

18 14

0

 7

7
5 6 1

3 3
8

8
4 3

 8
1

12

9
16

1

 2
1 3 6

1

13

 7

λis

λjs
−5−5 −1−1

2

−5

−4−4

−7−7

+θ

+θ −θ

−θ

costs cij

su
p
p
lies

s
i

demands dj

37 Transportation and Assignment Problems

The λi are computed using the fact that we require λi−λj = cij wherever fij > 0.
At the first interation we increase (by as much as possible) the flow in an empty
cell where λi − λj > cij (i.e., c̄ij > 0). We do this by adding and subtracting θ
around some cycle of cells in which fij > 0.

12

0 1
5

2
6

1

1

1

2 3
8
10

4 3

0 10
1

2
9
8

1

1 2
1 3

2
6

0 1
5

3
6 1

1 2 2
8
11

11

4 3

0 9

77

1
3

9
9

1

0
1 3

1
6

further

iterations

−1−1−1−1 −2 −3

+θ

+θ

+θ

−θ

−θ

−θ

The final tableau above contains the optimal solution because we have λi−λj =
cij everywhere that fij > 0 and λi − λj ≤ cij everywhere else.

9.3 Assignment problem

Given a set P of m people and a set T of m tasks and a cost, cij , the assignment
problem is one of choosing variables fij to

minimize

m∑

i=1

m∑

j=1

cijfij ,

subject to

fij =

{
1 if person i is assigned to task j

0 otherwise.

m∑

j=1

fij = 1 , for all i = 1, . . . ,m

m∑

i=1

fij = 1 , for all j = 1, . . . ,m .

These constraints say that each person is assigned to exactly one task and that
every task is covered. Except for the integer constraints, the assignment problem
is a special case of the Hitchcock transportation problem

Integer constraints 38

9.4 Integer constraints

The problem in which the integer constraints are replaced with 0 ≤ fij ≤ 1 is
known as the LP-relaxation of the assignment problem. If we use the spanning
tree method then our solution will take values 0 or 1 and hence be optimal for
both the LP-relaxation and the assignment problem.

Had we used a non-simplex type method to solve the underlying linear program
(e.g., some interior point projective algorithm) then an integer-valued optimal
solution may not be guaranteed. It is a feature of the method and not the problem.
Many LP-relaxations of problems have multiple non-integer solutions.

9.5 Maximum flow problem

Suppose we have a network with a single source node, 1 and a single sink node n
and upper bounds Mij on all the arcs. Also, assume for convenience that mij = 0.
The maximum flow problem is then to send as much flow from 1 to n. We write
this as

maximize δ

subject to

∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji =





δ i = 1
0 i 6= 1, n

−δ i = n

0 ≤ fij ≤ Cij , for all (i, j) ∈ A .

We can formulate the maximum flow problem as a minimum cost flow problem
by adding an additional arc (n, 1) to the network with mn1 = 0 and Mn1 = ∞
and then assign cost cn1 = −1 to the arc (n, 1) and zero cost to all the original
arcs.

Since, the only arc with non-zero cost has negative cost it follows that the
optimal solution to this minimum cost flow problem will circulate as much flow
as possible across the network, constrained only by the original arc capacities —
i.e., it also solves the maximum flow problem.

cn1 = −1

1
n

10 Maximum Flow and Shortest Path

Problems

10.1 Max-flow min-cut theorem

We return to the max-flow problem of Section 9.5. For S ⊂ N define the capacity
of the cut [S,N \ S] as

C(S,N \ S) =
∑

i∈S,j 6∈S

Cij .

Theorem 10.1 (Max-flow min-cut theorem)

Max-flow , δ = min cut capacity = min
S:1∈S, n6∈S

C(S,N \ S)

There are two parts to the proof. First

value of any flow ≤ capacity of any cut

Define
f(X,Y) =

∑

i∈X,j∈Y :(i,j)∈A

fij

and suppose that 1 ∈ S, n 6∈ S. Then

δ =
∑

i∈S




∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji




= f(S,N)− f(N,S)

= f(S, S) + f(S,N \ S)− f(N \ S, S)− f(S, S)

= f(S,N \ S)− f(N \ S, S)
≤ f(S,N \ S)
≤ C(S,N \ S) .

We now complete the proof using the Ford-Fulkerson algorithm. Suppose
that fij is optimal and recursively define S ⊂ N as follows

1. 1 ∈ S

2. If i ∈ S and fij < Cij then j ∈ S

3. If i ∈ S and fji > 0 then j ∈ S.

39

Project management 40

So, S is the set of nodes to which you can increase flow. Either n ∈ S in which
case we can increase flow along a path from 1 to n, or n 6∈ S so that [S,N \ S] is
a cut with 1 ∈ S and n 6∈ S. But for i ∈ S, j 6∈ S, fij = Cij , fji = 0 and

δ = f(S,N \ S)− f(N \ S, S) = C(S,N \ S) .

We can take zero flow fij = 0 as the initial flow. If all capacities and initial
flows are integer then every step increases the flow by at least one unit. Thus the
algorithm will converge in a finite number of steps.

Dual formulation

We can recast the max-flow problem as a minimum cost flow problem:

minimize −fn1

subject to
∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji = 0 , for all i ∈ N

0 ≤ fij ≤ Cij , for all (i, j) ∈ A , fn1 ≥ 0 .

Consider the Lagrangian in the usual way with dual variables, λi, i ∈ N . For
optimality on arc (n, 1) we have (cn1 = −1)

c̄n1 = cn1 − λn + λ1 = 0 ,

so that λ1 = 1 + λn. On all the other arcs the costs are zero so that the reduced
costs are just c̄ij = λj − λi and at an optimal solution

λj − λi > 0 =⇒ fij = 0

λj − λi < 0 =⇒ fij = Cij .

So λi = 1 for i ∈ S and λj = 0, j ∈ N \ S.

10.2 Project management

A project that is described by a set of jobs that must be completed in a certain
order. Job i has a duration τi. How can we determine the least time in which the
project can be completed?

Consider a graph in which there is an arc (i, j) whenever job i must be com-
pleted before job j. Introduce two additional jobs, s and s′, each of zero duration,
to indicate the start and finish of the project, and introduce arcs (s, i) and (i, s′)
for every job i. Suppose we start job i at time ti. We wish to

minimize (ts′ − ts) , subject to tj − ti ≥ τi , for all (i, j) ∈ A .

41 Maximum Flow and Shortest Path Problems

start end

s
s′

i j

The dual of this problem is

maximize
∑

(i,j)∈A

τifij

subject to

∑

j: (j,i)∈A

fji −
∑

j: (i,j)∈A

fij = −bi , for all i , and fij ≥ 0 , for all (i, j) ∈ A ,

where bs = 1, bs′ = −1 and bi = 0 for i 6= s, s′. This is a minimum cost flow
problem with each arc cost being −τi. The path of arcs for which fij = 1 defines
the critical path.

10.3 The shortest path problem

Shortest path problems have applications in transportation and communications,
and are often subproblems embedded in more complex problems. Although they
are special forms of minimum cost flow problems they can be solved more effi-
ciently by specialized algorithms. Given a network (N,A) we think of each arc
having a length cij ≥ 0 and consider paths in which arcs are traversed in the
forward direction only. The length of a path is the sum of the lengths of the as-
sociated arcs. A shortest path between a given pair of nodes is the path between
them of minimum length. It is convenient to consider the problem of finding the
shortest paths from all nodes to a given destination node.

Take some node, say n = |N |, as a root node. Put a demand of n − 1 at
this node (that is, bn = −(n − 1)) and a supply of one unit at every other node
(b1 = · · · = bn−1 = 1), so that total supply and demand are equal. Let the cost
cij of arc (i, j) be given by its length and solve this minimum cost flow problem
by the network simplex algorithm. Then the shortest path from any node i to n
is given by following the arcs of the spanning tree from i to n.

Let vi be the shortest distance from node i to the root node n. These quantities
are known as labels. Algorithms which systematically determine their values in

Bellman’s equations 42

some order are called label-setting algorithms. Algorithms which find their
values through a sequence of iterations are called label-correcting algorithms.

10.4 Bellman’s equations

Consider the minimum cost flow problem formulation of the shortest path prob-
lem. Suppose that the λis are the optimal dual variables associated with the
optimal spanning tree solution. Recall that on each arc of the tree, where fij > 0,
we must have

λi = cij + λj .

Taking λn = vn = 0 and adding these equalities along a path from i to n we
conclude that λi = vi, the length of the shortest path from i to n.

Moreover, as b1 = · · · = bn−1 = 1, the dual problem, with λn = 0, is

maximize

n−1∑

i=1

λi , subject to λi ≤ cij + λj for all (i, j) ∈ A .

It follows that in the optimal solution, λ, if all components are fixed except for
λi, then we should set λi as large as possible subject to the feasibility constraint.
That is, λi satisfies

λi = min
k: (i,k)∈A

{cik + λk} , i = 1, . . . , n− 1 .

with λn = 0. These are known as Bellman’s equations.

i nk

cik λk

The idea is that if we are looking for the shortest path from i to n then we
should choose the first arc of the path (i, k) by minimizing over path lengths
cik + λk. This method is also known as dynamic programming.

11 Algorithms for Shortest Path

Problems

11.1 Bellman-Ford algorithm

Let vi(t) be the length of the shortest path from i to n which uses at most t arcs.
We have vn(t) = 0 for all t and vi(0) = ∞ for all i 6= n. Then

vi(t+ 1) = min
k: (i,k)∈A

{cik + vk(t)} , i = 1, . . . , n− 1

defines the Bellman-Ford algorithm for solving the shortest path problem.

It is a label-correcting algorithm. If we assume that there are no negative
length cycles then vi(n − 1) = vi and allowing further additional arcs cannot
reduce the length, so that vi(n) = vi(n− 1).

The Bellman-Ford algorithm has running time O(mn), where n is the number
of nodes and m is the number of arcs, since there are at most n iterations and at
each iteration each arc is examined once.

To find the shortest paths and not just their length vi we could record a
successor node, s(i) to i as he first node along the shortest path from i to n.
Whenever we have vi(t + 1) < vi(t), we delete the old successor of i, if any, and
let s(i) be such that vi(t+ 1) = cis(i) + vs(i)(t).

11.2 Dijkstra’s algorithm

Dijkstra’s algorithm is a label-setting algorithm. It can only be applied when all
arc lengths cij are non-negative. The idea is to collect up nodes in the order of
their increasing shortest path lengths, starting from the node with shortest path
length. To ease exposition, suppose all arcs are present, taking cij = ∞ for some
node pairs if necessary.

Lemma 11.1 Suppose that cij ≥ 0 for all i, j. Let ℓ 6= n be such that

cℓn = min
i6=n

cin .

Then vℓ = cℓn and vℓ ≤ vk for all k 6= n.

Proof A path from node k to n has a last arc, say (i, n) whose length cin is at
least cℓn. For node ℓ, we also have vℓ ≤ cℓn. Thus vℓ = cℓn ≤ vk for all k 6= n.

43

Dijkstra’s algorithm 44

Dijkstra’s algorithm is

1. Find a node ℓ 6= n such that cℓn ≤ cin for all i 6= n. Set vℓ = cℓn.

2. For every node i 6= ℓ, n set cin = min{cin, ciℓ + cℓn}.

3. Remove node ℓ from the graph and return to step 1 to apply the same steps
to the new graph

Remarks

1. The running time is O(n2) where n is the number of nodes. This follows since
there are n iterations each involving a comparison and update of arc lengths
from each remaining node.

2. In the case of dense graphs, with arcs numbering m = O(n2), this improves
on the Bellman-Ford algorithm (which has computational complexity O(mn).
Dijkstra’s algorithm is the best possible since any shortest path algorithm
would need Ω(n2) operations just to examine every arc at least once.

Example (n = 4)

1. Iteration 1 gives ℓ = 3 and v3 = 1.

2. Modify arc lengths
c14 = min{∞, 9 + 1} = 10 and
c24 = min{7, 8 + 1} = 7.

3. Eliminate node ℓ = 3 from the graph.

4. Iteration 2 gives ℓ = 2 and v2 = 7.

5. Modify arc length
c14 = min{10, 2 + 7} = 9.

6. Eliminate node ℓ = 2.

7. Node 1 is only node remaining so set
v1 = c14 = 9.

1

1

2

2

3

4

4

10

19

8

7

7

2

2

45 Algorithms for Shortest Path Problems

11.3 Reformulation with non-negative cij

If vi (i 6= n) is the shortest path length from node i to node n then from the
Bellman equations (dual feasibility) we have that

vi ≤ cij + vj , for all (i, j) .

So that c̄ij = cij + vj − vi ≥ 0 are non-negative arc lengths and along any path
visiting nodes i1, . . . , ip

p−1∑

k=1

c̄ikik+1
=

p−1∑

k=1

(
cikik+1

+ vik+1
− vik

)
= vip − vi1 +

p−1∑

k=1

cikik+1
.

Hence, the shortest paths under the new arc lengths are the same as those under
the original (possibly negative) arc lengths.

This is useful when we wish to solve the all-pairs problem, that is, to find the
shortest distances between all pairs of nodes. Here, if we have negative arc lengths,
we would use the Bellman-Ford algorithm to obtain vi for a given root node and
then apply Dijkstra’s algorithm to solve the n− 1 remaining problems using the
non-negative costs, c̄ij which are defined in terms of the vi just calculated.

For dense graphs, with m = O(n2), the overall complexity is

O(n3) + (n− 1)O(n2) = O(n3) .

This compares with a computational complexity ofO(n4) for the Bellman-Ford
algorithm to solve the all-pairs problem.

11.4 Minimal spanning tree problem

Given a network (N,A), with cost cij associated with arc (i, j) ∈ A, find the
spanning tree of least cost. This problem arises, for example, when we wish to
design a communications network connecting a set of cities at minimal cost.

Theorem 11.1 (MST property) Let U be some proper subset of the set of
nodes, N . If (u, v) is an arc of least cost such that u ∈ U and v ∈ N \ U then
there is a minimal cost spanning tree that includes (u, v) as an arc.

Proof Suppose to the contrary that there is no minimal spanning tree that
includes (u, v). Let T be any minimal spanning tree. Adding (u, v) to T must
introduce a cycle, since T is a spanning tree. Thus, there must be another arc
(u′, v′) in T such that u′ ∈ U and v′ ∈ N \ U . If not, there would be no way
for the cycle to get from u to v without following the arc (u, v) a second time.

Prim’s greedy algorithm for MST 46

Deleting the arc (u′, v′) breaks the cycle and yields a spanning tree T ′ whose
cost is certainly no greater than the cost of T since by assumption cuv ≤ cu′v′ .
Thus, T ′ contradicts our assumption that there is no minimal spanning tree that
includes (u, v).

11.5 Prim’s greedy algorithm for MST

Labels the nodes, N = {1, 2, . . . , n} and set U = {1}. Now construct U recursively
using the property above.

1. Find the cheapest arc (u, v) connecting U and N \U (breaking ties at random).

2. Add v to U and repeat until U = N .

Prim’s algorithm takes O(n2) steps. Suppose each time we start step 1 we already
know the shortest distance between U and every j 6∈ U , say cUj = mini∈U cij .
Then it takes no more than n comparisons to find the lowest cost arc between U
and N \ U (by comparing all the cUj for j ∈ N \ U). Having found a node v to
add to U , we can now find the shortest distance between U ′ = U + {v} and any
j in N \ U ′, say cU ′j = min{cvj , cUj}. Thus each step of the algorithm requires
at most n comparisons, and the algorithm has n− 1 steps.

Example. In this example, Prim’s algorithm adds arcs in the sequence {1, 3},
{3, 6}, {6, 4}, {3, 2}, {2, 5}.

1

2

3

4

5 6

1

23 4

5

5

6

6

6

12 Semidefinite Programming

12.1 MAX CUT problem

In the MAX CUT problem one is given a graph G = (V,E) and wishes to
partition the n vertices into two sets so as to maximize the number of edges
crossing from one set to the other. This can be represented as

maximize
∑

(i,j)∈E

1− xixj

2
, s.t. xi ∈ {−1, 1} for each i ∈ N.

It is the same as minimizing x⊤Cx, where Cij = 1 or 0 as (i, j) is or is not an
edge of G.

Note that x⊤Cx = tr(Cxx⊤). We may find an upper bound on the answer
by replacing the positive semidefinite matrix xx⊤ with a general PDS matrix
X , written X � 0. We then consider the problem

minimize tr(CX) s.t. X � 0 and Xii = 1, i = 1, . . . , n.

The constraint Xii = 1 is the relaxation of xixi = 1 ⇐⇒ xi ∈ {−1, 1}.
This is a special case of a semidefinite programmming problem.

12.2 Semidefinite programming problem

Let Sn be the set of symmetric n × n matrices. Let C,A1, . . . , An ∈ Sn, and
b⊤ = (b1, . . . , bm) ∈ R

m. Define the semidefinite programming problem as

SDP : minimize tr(CX) s.t. X ∈ Sn, X � 0 and tr(AiX) = bi, i = 1, . . . ,m.

(a) LP is a special case of SDP when C = diag(c1, . . . , cn), Ai = diag(ai1, . . . , ain),
and X = diag(x1, . . . , xn). SDP is then just ‘minimize c⊤x : x ≥ 0, Ax = b’.

Semidefinite programming has been called linear programming for the 21st
century.

(b) The Lagrangian dual of SDP is

DSDP : maximize
y

min
X�0

tr(CX) +
∑

i

yi(bi − tr(AiX))

= maximize
y

y⊤b s.t. C −
∑

i

yiAi � 0.

This is because tr(C −∑i yiAi)X) > −∞ for all X � 0 iff Z = C −∑i yiAi � 0.
The complementary slackness condition is tr(ZX) = 0.

47

Symmetric rendezvous search game 48

(c) Goemans and Williamson (1995) proved that the true value of MAX CUT
is not less than 0.87856 of the value provided via the semidefinite programmign
relaxation.

(d) Semidefinite programming problems can be solved efficiently using interior
point methods, such as in 12.4 below.

(e) Many other interesting problems can either be formulated as SDPs, an SDPs
can help to provide a bound (as with MAX CUT).

12.3 Symmetric rendezvous search game

Suppose that two players are placed in two rooms. Each room has 3 telephones,
and these are pairwise connected at random, in a manner unknown to the players.
On the stroke of each hour, 1, 2, . . . , each player picks up one of his telephones and
tries to communicate with the other player. They wish to minimize the expected
number of attempts required until this occurs. Suppose that at time 1 each player
has picked up a telephone at random, and they have failed to connect.

I II

Suppose player I labels the telephone which he picked at time 1 as ‘a’. He
randomly labels the other two telephones as ‘b’ and ‘c’. His possible pure strategies
for time 2 are to pick up a, b or c. Suppose he adopts these with probabilities
x = (x1, x2, x3). We assume the players are symmetric (perhaps reading what
they should do in these circumstances from the same instruction manual), and so
player II must use the same mixed strategy. The probability that the players fail
to pick up commected telephones at the next attempt (i.e. fail to rendezvous) is

x⊤C1x = x⊤




1 1
2

1
2

1
2 1 1

2
1
2

1
2 1


x.

The matrix C1 is positive definite, and so the minimizer is easily found to be
x = (13 ,

1
3 ,

1
3), with x⊤C1x = 2/3.

Similarly, thinking about both times 2 and 3, there are 9 pure strategies: aa,
ab, ac, ba, bb, bc, ca, cb, cc. Suppose the players adopt these with probabilities
x = (x1, . . . , x9). One can show that the probability that the players have not yet

49 Semidefinite Programming

managed to speak after the 3rd attempt is

x⊤C2x = x⊤




1 1
2

1
2

1
2

1
2 0 1

2 0 1
2

1
2 1 1

2 0 1
2

1
2

1
2

1
2 0

1
2

1
2 1 1

2 0 1
2 0 1

2
1
2

1
2 0 1

2 1 1
2

1
2

1
2

1
2 0

1
2

1
2 0 1

2 1 1
2 0 1

2
1
2

0 1
2

1
2

1
2

1
2 1 1

2 0 1
2

1
2

1
2 0 1

2 0 1
2 1 1

2
1
2

0 1
2

1
2

1
2

1
2 0 1

2 1 1
2

1
2 0 1

2 0 1
2

1
2

1
2

1
2 1




x.

C2 is not positive definite. (It’s eigenvalues are 4, 1, 1, 1, 1, 1, 1,− 1
2 ,− 1

2 .) This
means that the quadratic form x⊤C2x has local minima. One such is given by
x⊤ = (1/9)(1, 1, 1, 1, 1, 1, 1, 1, 1), which gives x⊤C2x = 4/9. But better is
x⊤ = (1/3)(1, 0, 0, 0, 0, 1, 0, 1, 0), which gives x⊤C2x = 1/3. How might we prove
this is best?

Let J2 be the 9×9 matrix of 1s. Note that for x to be a vector of probabilities,
we must have x⊤Jx = 9. As with the MIN CUT problem we think of relaxing
xx⊤ to a PDS matrix X and consider

minimize tr(C2X) s.t. X ∈ Sn, X ≥ 0, X � 0 and tr(J2X) = 9.

One can numerically compute that the optimal value of this SDP. It is 4/9. This
provides a lower bound on the probablity that the players do not rendezvous by
the end of the 3rd attempt. This is achieved by x⊤ = (1/3)(1, 0, 0, 0, 0, 1, 0, 1, 0)
— so this strategy does indeed minimize the probability that they have not yet
met by the end of the 3rd attempt.

These ideas can be extended (Weber, 2008) to show that the expected time to
rendezvous is minimized when players adopt a strategy in which they choose their
first telephone at random, and if this does not connect them then on successive
pairs of subsequent attempts they choose aa, bc or cb, each with probablity 1/3.
Given that they fail to meet at the first attempt, the expected number of further
attempts required is 5/2. This is less than 3, i.e. the expected number of steps
required if players simply try telphones at random at each attempt. There are
many simply-stated but unsolved problems in rendezvous search games.

12.4 Interior point methods for LP and SDP

SDPs are solved (numerically) using interior point methods. The ellipsoid
algorithm is such a method. However, it is not the most effective method. We

Interior point methods for LP and SDP 50

illustrate the primal-dual path following method for the LP and DLP

minimize c⊤x s.t. Ax = b, x ≥ 0.

maximize y⊤b s.t. y⊤A+ s = c⊤, s ≥ 0.

Constraints of the form xi ≥ 0 and si ≥ 0 are problematic. We drop those,
and consider primal and dual objective functions, for µ > 0,

c⊤x− µ
∑

i log xi and y⊤b+ µ
∑

j log sj .

The term of −µ logxi provides a so-called barrier function which prevents xi

getting close to 0. However, its influence decreases as µ tends to 0. Similarly, for
an SDP, the constraint X � 0 is handled by the barrier −µ log det(X).

By considering the Lagrangian of

L = c⊤x− µ
∑

i

log xi + y⊤(b −Ax).

we can prove that x, y, s are optimal for the modified primal and dual problems if

Ax = b (12.1)

x ≥ 0 (12.2)

A⊤y + s = c (12.3)

s ≥ 0 (12.4)

xisi = µ for all i. (12.5)

Suppose that we have feasible solutions that satisfy (12.1)–(12.4). However,
they are not optimal since (12.5) does not hold.

The key idea is to follow a path on which simultaneously we let µ tends 0 and
try to ensure (12.5). At each iteration of the algorithm we use Newton’s method
to take a step (x, y, s)k+1 → (x, y, s)k + (dx, dy, ds)k which seeks to solve (12.1),
(12.3), (12.5), and is a small enough step that (12.2) and (12.3) are maintained.
At iteration k we take µ = µk, where perhaps µk = (1/2)(s⊤x)k−1/n.

It is possible to prove that such an algorthm decreases the duality gap µk from
ǫ0 to ǫ in a time that is O(

√
n log(ǫ0/ǫ)).

13 Branch and Bound

13.1 Branch and Bound technique

A branch and bound technique can be useful in many problems. The idea is
to divide up the space of all solutions in some sensible way so that there is a
good chance we can reject large subsets of nonoptimal solutions without actually
evaluating them. Suppose we wish to solve the problem:

minimize f(x), subject to x ∈ X ,

where X is a finite set of feasible solutions. The method takes a ‘divide-and-
conquer’ approach, in which problems are broken into subproblems. The original
problem is broken into one or more subproblems, the ith of which is to minimize
f(x) over x ∈ Xi. Subsequently, we break Xi into subproblems, continuing in
this way until a subproblem is easy to solve.

We also suppose that for any subproblem, in which f in minimized over a
x ∈ X ′, where X ′ is a subset of X , we can calculate a lower bound such that

ℓ(X ′) ≤ min
x∈X′

f(x) .

Branch and Bound algorithm

The algorithm keeps a list L of outstanding (active) subproblems and the cost U
of the best feasible solution found so far.

0. Initialize step. Set U = ∞. Discard any obviously infeasible solutions.
Treat the remaining solutions as a single new subset. Go to Step 2.

1. Branch step. Use some branch rule to select one of the remaining subsets
and break it into two or more subsets. Two common rules are:

Best bound rule. We partition the subset with the lowest bound, hoping that
this gives the best chance of an optimal solution and of being able to discard
other, larger, subsets by the fathom test.

Newest bound rule. We partition the most recently created subset, breaking
ties with best bound rule. This has book-keeping advantages in that we don’t
need to keep jumping around the tree too often. It can save some computational
effort in calculating bounds.

2. Bound step. For each new subset, Y , calculate ℓ(Y).

51

A knapsack problem 52

3. Fathom step. Exclude from further consideration any new subsets, Y , such
that

(a) ℓ(Y) ≥ U .

(b) Y contains no feasible solutions.

(c) We can find an optimal solution to the problem of minimizing f over Y , say
x′, so ℓ(Y) = f(x′). If ℓ(Y) ≥ U , we eliminate Y by test (a). If ℓ(Y) < U ,
we reset U = ℓ(Y), store x′ as the best solution so far and re-apply test (a)
to all other active subsets.

4. Stopping rule. If there are no remaining active subsets, stop. The best
solution obtained so far is optimal. Otherwise, go to Step 1.

13.2 A knapsack problem

A hiker wishes to take some items on a journey. Which items he should take so
that the total value is at least 9, but the total weight is a minimum?

i 1 2 3 4
vi 5 5 4 2
wi 5 6 3 1

wi/vi 1 1.2 0.75 0.5

Each of the 16 subsets of {1, 2, 3, 4} is a possible solution. However, only 8 of
these are feasible. The hiker’s problem is

minimize

4∑

i=1

xiwi , subject to

4∑

i=1

xivi ≥ 9, and xi ∈ {0, 1} , for all i .

1. Starting with X as the only subset, we take items in index order until the total
value is at least 9. This gives U = 11. Since we must include at least one item
and the least item has weight 1, we have ℓ(X) = 1.

2. Break X into two subproblems, X1 and X0, such that the hiker does or does
not include item 1 in his backpack. Clearly ℓ(X0) = 1 (since he must include at
least one of the remaining items) and ℓ(X1) = 5 (since item 1 is in the backpack.
Neither subproblem can be eliminated by tests (a) or (b). So L = {X0, X1}.

3. Break X0 into the subproblems X01, X00, such that the backpack does not
include item 1, and does or does not include item 2. X00 is infeasible and so
we eliminate it. For X01 we have ℓ(X01) = 6. Now L = {X01, X1}.

53 Branch and Bound

4. Break X1 into two subproblems, X11 and X10, which contain item 1, and do
or do not contain item 2. We have ℓ(X10) = 5 and ℓ(X11) = 11. Hence X11

can be eliminated by test (a) and L = {X01, X10}.

5. Break X10 into subproblems X101 and X100, which contain item 1, do not
contain item 2, and do or do not contain item 3. We eliminate X100 by test
(b). Clearly problem X101 is solved by x1 = {1, 3}, f(x1) = 8. So following
(c) we set U = 8 and L = {X01}.

6. Break X01 into subproblems X011 and X010. Since ℓ(X011) > U , we eliminate
X001 by test (a). As for X010 it is infeasible, and so elimnated by test (b).

L is now empty and so we are done. The optimal solution x1 = {1, 3}.

X

ℓ = 1

X0

ℓ = 1
X1

ℓ = 5

X00

infeasible

X01

ℓ = 6

X10

ℓ = 5

X11

ℓ = 11

X010

infeasible

X011

ℓ = 9

X100

infeasible

X101

opt= 8

Note 1. There is a trade off between the number of iterations that the method
takes and the effort we put into calculating the bounds. In general, the speed of
branch and bound very much depends on the problem and what choices are made
about how to bound and fathom nodes of the tree of solutions.

For example, if we are willing to do a bit more work we can compute better
bounds. In calculating ℓ(X0) we could notice that for items 2, 3 and 4 the value of
wi/vi is 6/5, 3/4, 1/2. So to fill the backpack to total value 9, without using item
1, requires a weight of at least 1+3+3(6/5) = 38/5, and we can put ℓ(X0) = 7.6.
Similarly, ℓ(X1) = 5 + 1 + 2(3/4) = 7.5.

By a similar calculation we have ℓ(X01) = 6 + 1 + 2(3/4) = 8.5. So at after
Step 5 we could eliminate X01 and so Step 6 would be unnecessary.

Note 2. Suppose we want all optimal solutions. In this case, we replace the
fathom test (a) with ℓ(Y) > U and change fathom test (c) so that if ℓ(Y) = U we
add additional incumbent solutions to the collection, and if ℓ(Y) < U we throw
away all current incumbent solutions and replace by new one(s).

Dakin’s method 54

13.3 Dakin’s method

Dakin’s method is the application of a branch and bound approach to integer
linear programming problem. This is called a pure integer LP is all variables
constrained to be integers, or mixed integer LP is only a subset of the variables
are constrainted to be integers. Let us illustrate it by an example.

minimize x1 − 2x2 ,

subject to − 4x1 + 6x2 ≤ 9 , x1 + x2 ≤ 4 , x1, x2 ≥ 0 , x1, x2 ∈ Z .

1. Set U = ∞.

2. Solve the LP relaxation to obtain x1 = (1.5, 2.5) with optimal cost −3.5.

3. Create two subproblems by adding the constraints x2 ≥ 3 (subproblem P1) or
x2 ≤ 2 (subproblem P2). This is the general approach of Dakin’s method: to
introduce a partitioning using a constraint of the form xj ≤ ⌊x̂j⌋ or xj ≥ ⌈x̂j⌉,
where x̂ is the solution to a relaxed problem.

4. The LP relaxation of P1 is infeasible and we can eliminate this subset of possible
solutions.

5. The optimal solution to P2 is x2 = (0.75, 2), with optimal cost of −3.25.

6. Partition P2 into two subproblems according to the additional constraint x1 ≥
1 (subproblem P3) or x1 ≤ 0 (subproblem P4).

7. The optimal solution to P3 is x3 = (1, 2) which is integer and therefore er
record this as the best solution so far and set U = −3.

8. The optimal solution to P4 is (0, 1.5) with optimal cost −3 ≥ U . So delete P4.

9. There are no unfathomed subproblems so have optimal solution x3 = (1, 2).

1

1

2

2

3

30 x1

x2

x1 ≥ 1

x1 ≤ 0 x2 ≤ 2

x2 ≥ 3

x1

x2

x3

14 Travelling Salesman Problem

14.1 Categories of algorithms

Given an undirected graph G = (N,A) consisting of n nodes and m arcs together
with costs cij for each arc {i, j} ∈ A, the travelling salesman problem (TSP)
is to find a tour of minimum cost.

1. Exact algorithms are guaranteed to find an optimal solution but may take
an exponential number of iterations. An exact algorithm for TSP is to write
it as an ILP and solve it using branch and bound.

2. Approximation algorithms have polynomial worst-case time complexity,
supplying a suboptimal solution with a guaranteed bound on the degree of
suboptimality. We shall look at such an algorithm for TSP, based on the
minimum spanning tree.

3. Heuristic algorithms supply suboptimal solutions without any bound on
their quality. They do not necessarily provide polynomial running times, but
empirically they often provide a successful tradeoff between optimality and
speed. We look at two approaches that have been used for TSP: local search
and simulated annealing.

14.2 Exact methods

Set xij = 1 or 0 as (i, j) ∈ A is or is not present in the tour. Define

δ(S) = {(i, j) ∈ A : i ∈ S, j 6∈ S} .

For a tour there must be two arcs incident to every node so

∑

(i,j)∈δ({i})

xij = 2, i ∈ N . (14.1)

Furthermore, for any partition of the nodes into subsets S and N \ S there must
be at least two edges connecting S and N \ S. So we must also have

∑

(i,j)∈δ(S)

xij ≥ 2 , for all S ⊂ N, such that S 6= ∅ or N . (14.2)

The so-called cutset formulation of the TSP is therefore

55

Polynomial formulation of TSP 56

minimize
∑

(i,j)∈A

cijxij

subject to (14.1), (14.2) and xij ∈ {0, 1}. Notice that we have exponentially many
constraints, since there are 2n − 2 constraints of type (14.2).

Alternatively, we can replace (14.2) by

∑

(i,j) : i,j∈S

xij ≤ |S| − 1, for all S ⊂ N such that S 6= ∅ or N . (14.3)

This constraint ensures there is no cycle involving less than all n nodes. Again
we have an exponential number of constraints. This is called the subtour elimi-
nation formulation of the TSP. The LP relaxations of these two formulations
have the same feasible sets (though this is not obvious).

14.3 Polynomial formulation of TSP

Think of the undirected formulation of the TSP. The the salesman must on leaving
a city he must next visit one and only one city, and, similarly, on arriving at a
city he must have come from one and only one city. Therefore we must have

∑

j : (i,j)∈A

xij = 1, i = 0, 1, . . . , n− 1 (14.4)

∑

i : (i,j)∈A

xij = 1, j = 0, 1, . . . , n− 1 . (14.5)

These constraints are not sufficient to ensure that the solutions do not consist
of several subtours such as is shown here.

0

1

2

3

4

65

Consider a tour s0 = 0, s1, s2, . . . , sn−1. Let ti be the position in the tour at
which city i is visited. So, we have t0 = 0, ts1 = 1, and in general,

tsi = i, i = 0, 1, . . . n− 1 .

57 Travelling Salesman Problem

We require that if xij = 1 then

tj = ti + 1 .

Also, ti is an integer between 0 and n− 1. Hence,

tj ≥
{
ti − (n− 1) if xij = 0

ti + 1 if xij = 1 .

These constraints can be written as

tj ≥ ti + 1− n(1− xij) , i ≥ 0, j ≥ 1, i 6= j . (14.6)

It turns out that these constraints also rule out subtours. To see this, suppose
we have a solution which satisfies these constraints and consists of two or more
subtours. Consider the subtour that does not include city 0, and suppose it has
r ≥ 2 arcs. Summing the constraints over the arcs of this subtours leads to the
condition

0 ≥ r ,

and hence there can only be a single tour visiting all the cities.
Thus the TSP can be formulated as an ILP in n2+n variables and 2n+n(n−1)

constraints. Namely,

minimize
∑

i,j

cijxij

subject to (14.4), (14.5), (14.6), xij ∈ {0, 1}, t0 = 0 and ti ∈ {0, 1, 2, . . .}.

14.4 Solution using branch and bound

Notice that by dropping the constraints establishing the lack of subtours we are
left with an assignment problem, which can be efficiently solved by the network
simplex to provide a lower bound on the optimal solution.

We need not worry about the relaxation to non-integral solutions since the
network simplex algorithm will always find an integer solution. Thus we consider

minimize
∑

i,j

cijxij , subject to (14.4), (14.5) and xij ∈ {0, 1}.

If the optimal solution corresponds to a tour visiting all the cities then it is
optimal for the original travelling salesman problem.

If not, we continue with a branch and bound algorithm, using a branching rule
that breaks the problem in two by an additional constraint of the form xij = 0.

Approximation algorithm for the TSP 58

Think of this as re-setting a cost, cij = ∞. The addition of such a constraint leaves
us with a valid travelling salesman problem and a valid assignment problem which
provides a corresponding lower bound.

A natural way to select an xij = 0 constraint is to choose one or more of the
subtours and eliminate one of their arcs.

If the current assignment problem has a unique optimal solution, this solution
becomes infeasible with the addition of a constraint during branching. Hence, the
optimal cost of each subproblem is strictly larger, and increasing lower bounds
are obtained.

14.5 Approximation algorithm for the TSP

Definition 14.1 An ǫ-approximation algorithm for a minimization problem
with optimal cost Zopt runs in polynomial time and returns a feasible solution with
cost Zapp, such that

Zapp ≤ (1 + ǫ)Zopt .

It is usually difficult to determine approximation algorithms for any ǫ > 0 and
we shall develop one for the TSP only for ǫ = 1, and when the costs cij satisfy
the triangle inequality.

Consider the undirected TSP with costs satisfying

cij ≤ cik + ckj , for all i, j, k .

Now suppose that M is the cost of the minimal spanning tree. This can be
obtained easily using Prim’s greedy algorithm. Consider any starting node and
traverse the minimal spanning tree to visit all the nodes. This uses each arc of
the spanning tree exactly twice, with total cost 2M .

This path can be converted into a tour visiting all the cities by skipping any
intermediate node that has already been visited. By the triangle inequality, the
resulting tour will have cost bounded above by 2M . Also, every tour contains a
spanning tree (since dropping any one arc leaves a spanning tree) and so has cost
at least M .

Thus a straight-forward algorithm based on the minimal spanning gives

Zapp ≤ 2M ≤ 2Zopt .

It is an approximation algorithm with ǫ = 1. Observe the essential importance
played by the triangle inequality.

15 Heuristic Algorithms

15.1 Heuristics for the TSP

Nearest neighbour heuristic. Start at some city and then visit the nearest
city. Continue to visit the nearest city that has not yet been visited, continuing
until a tour is complete.

Although usually rather bad, such tours may only contain a few severe mis-
takes. They can serve as good starts for local search methods.

Cheapest insertion heuristic. This is also a greedy algorithm. Start with a
single node and then, one by one, add the node whose insertion makes the smallest
increase to the length of the tour.

Furthest insertion heuristic. Insert the node whose minimal distance to the
exisiting tour node is greatest. The idea is to determine the overall layout of the
tour early in the process.

Savings heuristic. Rank the arcs in ascending order of cost. Add the arcs in
this order, so long as they do not violate any constraints, and until all cities have
been visited.

15.2 Neighbourhood search

Consider the general problem

minimize c(x), subject to x ∈ X.

Suppose that for any point x ∈ X we have a set of ‘neighbouring points’, N(x) ⊂
X . The basic approach of local search is as follows

1. Select some x ∈ X .

59

Neighbourhood search methods for TSP 60

2. Evaluate c(x).

3. Pick some y ∈ N(x) and evaluate c(y).

If c(y) < c(x) then select y as new value for x and return to step 2.

If there is no such y ∈ N(x) with c(y) < c(x) then stop with solution x.

Remarks

1. A specific implementation must specify, in a problem-dependent way:

(a) the neighbourhood sets, N(x), for all x ∈ X ;

(b) the procedure for selecting y ∈ N(x).

2. There are various ways to modify local search.

(a) We might use some rule to guess a good starting point or try multiple
starting points.

(b) We might choose the best neighbour y ∈ N(x) with least value of c(y) not
just the first y that improves the solution.

(c) We might choose the best neighbour amongst the first r considered.

3. The simplex algorithm for linear programs is a local search method. We can
say that two basic feasible solutions are neighbours if they are connected by
an edge of the constraint set.

In linear programming any local optimum is the global optimum.

15.3 Neighbourhood search methods for TSP

Consider the TSP. By a feasible solution x, we mean the indicator function for
the arcs in some tour of the network.

There is a fairly natural family of neighbourhoods for any tour x generated
by the operation of removing any k ≥ 2 arcs from the tour and replacing them
with k new arcs that also make a new tour. For example, when k = 2 (known as
2OPT) each tour has O(n2) neighbours. For k = 3 there are O(n3) neighbours
for each tour x.

61 Heuristic Algorithms

Note that it only takes time that is O(1) to compute the change in cost between
neighbouring tours.

Empirical evidence is that 3OPT performs better than 2OPT, but there is
little further gain in taking k > 3.

In general, there is trade-off of solution quality and speed. The larger the
neighbourhoods N(x) the fewer local minima there are, and the better the solu-
tion. However, more work must be done per iteration so the method is slower for
larger neighbourhoods.

In practice, we fix on a certain neighbourhood size but then repeat the algo-
rithm with a variety of starting values.

Example TSP using 2OPT

Suppose we have a distance matrix

A B C D E

A - 1 0 4 4
B 4 - 1 0 4
C 4 4 - 1 0
D 0 4 4 - 1
E 1 0 4 4 -

A feasible solution is a cycle that visits all the nodes (without re-using the arcs).
Here are the 4! = 24 feasible tours and costs c(x)

ABCDE (5) ACBDE (6) ADBCE (10) AEBCD (6)
ABCED (6) ACBED (12) ADBEC (20) AEBDC (12)
ABDCE (6) ACDBE (10) ADCBE (17) AECBD (12)
ABDEC (10) ACDEB (6) ADCEB (9) AECDB (17)
ABECD (10) ACEBD (0) ADEBC (10) AEDBC (17)
ABEDC (17) ACEDB (12) ADECB (17) AEDCB (20)

So, ACEBD is global optimum but we can get stuck in ABCDE since none of its
neighbours (under 2OPT) is better.

15.4 Simulated annealing

In this method we try to overcome difficulties of getting stuck in potentially poor
local minima by permitting the algorithm to jump out of them.

The basic idea is to allow up jumps to worse neighbours in initial phase but
get gradually more reluctant to permit up jumps.

The simulated annealing method permits a move from x to y ∈ N(x) with
probability

pxy = min

(
1 , exp

[
−c(y)− c(x)

T

])

Genetic algorithms 62

where T starts large and decreases with each iteration. It can be shown, under
suitable conditions, that if you start with T large enough and decrease it slowly
enough then

lim
t→∞

P (x(t) is optimal) = 1 .

As motivation for this claim, imagine that all solutions have k neighbours, and
at each step of the algorithm one of these neigbours is chosen at random. Then
x moves next to its neightbour y with probability Pxy = pxy/k. By checking that
the ‘detailed balance’ of π(x)Pxy = π(y)Pyx holds we have that the stationary
distribution of this Markov chain is

π(x) =
e−c(x)/T

A
, where A =

∑

z∈X

e−c(z)/T .

Let Y be the set of optimal solutions. In this stationary distribution π(Y)/(1 −
π(Y)) → ∞ as T → 0.

A common temperature schedule is to let T decrease with iteration number,
t, according to

T (t) =
c

log t
.

15.5 Genetic algorithms

Genetic algorithms can be applied to many problems, are often easy to imple-
ment, but may get stuck in a local optimum. We illustrate the basic steps for the
TSP.

Create a random initial state. This is a population of tours, each of which
is list of cities, analagous to a list of chromosomes.

Evaluate fitness. A value for fitness is assigned to each solution, e.g., the
length of the tour.

Reproduce. Those chromosomes with a higher fitness value are more likely to
reproduce offspring E.g. ‘greedy crossover’ selects the first city of one parent,
compares the cities leaving that city in both parents, and chooses the closer one
to extend the tour. If one city has already appeared in the tour, choose the other
city. If both cities have appeared, randomly select a non-selected city.

Mutate. Randomly swap over a pair of cities.

16 Two-person Zero-sum Games

16.1 Terminology

Game theory studies multi-player decision problems. The common theme is
conflicts of interest between the players. We assume that each player plays the
‘best way’ he can. This may not happen in practice. The elements of a game are
as follows.

• Players. Labelled 1, 2, 3, . . ., or I, II, III, . . .

• Moves. A move is either a decision by a player or the outcome of a chance
event.

• Game. A game is a sequence of moves, some of which may be simultaneous.

• Payoffs. At the end of a game each player receives a return. The payoff to
each player is a real number. If a move has a random outcome we use an
expected payoff.

• Strategy. A strategy is a description of the decisions that a player will make
at all possible situations that can arise in the game.

• Zero-sum. The game is said to be zero-sum if the sum of the players’ payoffs
is always zero.

• Perfect information. A game is said to have perfect information if at
every move in the game all players know all the moves that have already been
made (including any random outcomes.)

16.2 Two-person zero-sum games

We begin with zero-sum games between two players, labelled I and II. Each player
has a finite collection of pure strategies. Player I has strategies I1, I2, . . . , In
and player II has strategies II1, II2, . . . , IIm.

Let eij denote the (expected) payoff to player I when he uses strategy Ii and
player II uses strategy IIj . The normal form representation of the game is
given by the matrix of payoffs (eij).

This representation is in terms of strategies. It does not include detailed
information about the sequences of moves or whether or not the players have
perfect information.

63

Maximin criterion 64

16.3 Maximin criterion

In a non-zero-sum game, we must record both players’ payoffs, say e1(i, j) and
e2(i, j). So in a zero-sum game e1(i, j) = −e2(i, j) = eij . Player I wins what
player II loses, so when player II tries to maximize his payoff he is also trying
to minimize the payoff of player I. This means that player I should look at
the payoff he would receive if he plays strategy Ii, i.e., minj eij , and choose the
strategy which has the largest of these minimum payoffs. This is known as the
maximin criterion.

Using this criterion, player I can guarantee that his payoff is at least, vL, the
lower value of the game, where

vL = max
i

min
j

eij .

Similarly, player II can guarantee that player I’s payoff is no more than, vU ,
the upper value of the game,

vU = min
j

max
i

eij .

Example (a)

II1 II2 II3 II4 min using Ii

I1
I2
I3




4 5 6 4
4 2 3 4
2 4 5 3




4
2
2

max using IIj 4 5 6 4

Thus, vL = max{4, 2, 2} = 4 and vU = min{4, 5, 6, 4} = 4. When, as in this
example, we have vL = vU for a pair of pure strategies, there is said to be a
saddle point solution.

Sometimes we can simplify a game by making use of the idea of dominating
strategies. Notice that no matter which strategy player I follows his payoff is
always the same or less under II1 than II4. Thus, II will always do as well to use
II1 rather than II4. We say that II1 dominates II4, and we may remove it from
the strategy set. Similarly, II2 dominates II3. So the game reduces to

II1 II2

I1
I2
I3




4 5
4 2
2 4




and then, as I1
dominates both
I2 and I3, to

II1 II2

I1
(

4 5
)

and so there is a saddle point equilibrium at (I1, II1).

65 Two-person Zero-sum Games

16.4 Mixed strategies

Example (b)

II1 II2 min using Ii

I1
I2

(
2 0
1 2

)
0
1

max using IIj 2 2

Thus, vL = max{0, 1} = 1 and vU = min{2, 2} = 2.

In Example (b) vL is strictly less than vU . Suppose we enlarge the set of
possible strategies by randomization, allowing player I to choose strategy Ii with
probability pi and player II to choose strategy IIj with probability qj . We say
that player I adopts the strategy p = (p1, p2, . . . , pn) and II adopts the strategy
q = (q1, q2, . . . , qm). The expected payoff to I is

e(p,q) =

n∑

i=1

m∑

j=1

pieijqj .

Suppose that in Example (b) player I takes p = (p, 1− p) and player II takes
q = (q, 1 − q). Then the expected payoff to player I is

e(p, q) = 2p1q1 + 0p1q2 + 1p2q1 + 2p2q2 = 3(p1 − 1
3)(q1 − 2

3) +
4
3 .

Define
vML = max

p
min
q

e(p, q) and vMU = min
q

max
p

e(p, q) .

Notice that if I plays p∗ = (1/3, 2/3) and II plays q∗ = (2/3, 1/3) then

e(p∗, q) = 4/3 for all q , and e(p, q∗) = 4/3 for all p .

It is clear that vML ≤ vMU . Playing p∗ guarantees I at least 4/3, so vML ≥ 4/3.
If II plays q∗ then I can obtain no more than 4/3, so vMU ≤ 4/3. Hence, we must
have

vML = vMU .

16.5 Minimax theorem

Theorem 16.1 (Minimax theorem) Consider a two-person zero-sum game in
which I has n strategies and II has m strategies (both finite). Then

vML = max
p

min
q

e(p, q) = min
q

max
p

e(p, q) = vMU .

Equilibrium pairs 66

If p∗ and q∗ achieve the maximin criterion of the theorem then

e(p∗, q∗) = vML = vMU = v .

We say that v is the value of the game and that the value together with the
optimal strategies, p∗ and q∗ are the solution to the game.

16.6 Equilibrium pairs

A pair of strategies p∗ and q∗ is an equilibrium pair if for any p and q

e(p, q∗) ≤ e(p∗, q∗) ≤ e(p∗, q) .

It is possible for there to be more than one equilibrium pair. In Example (a) both
(I1, II1) and (I1, II4) are equilibrium pairs. Indeed, p∗ = (1, 0) and q∗ = (q, 0, 1−q)
are equilibrium pairs for any q ∈ [0, 1]. But in all cases e(p∗, q∗) = 4.

Lemma 16.1 If (p, q) and (p′, q′) are both equilibrium pairs then e(p, q) = e(p′, q′).

Proof. Since (p, q) and (p′, q′) are both equilibrium pairs, we have

e(p′, q) ≤ e(p, q) ≤ e(p, q′) and e(p, q′) ≤ e(p′, q′) ≤ e(p′, q) .

Together, these imply e(p, q) = e(p′, q′).

Theorem 16.2 A pair of strategies (p∗, q∗) in a two-person zero-sum game is an
equilibrium pair if and only if (p∗, q∗, e(p∗, q∗)) is a solution to the game.

Proof. If (p∗, q∗) is an equilibrium pair then

max
p

e(p, q∗) ≤ e(p∗, q∗) ≤ min
q

e(p∗, q) .

Then

vMU = min
q

max
p

e(p, q) ≤ max
p

e(p, q∗) ≤ e(p∗, q∗)

≤ min
q

e(p∗, q) ≤ max
p

min
q

e(p, q) = vML .

So, since vML ≤ vMU we must have vML = vMU = e(p∗, q∗) so that (p∗, q∗, e(p∗, q∗))
is a solution of the game.

Conversely, if (p∗, q∗, e(p∗, q∗)) is a solution of the game then

e(p, q∗) ≤ max
p

e(p, q∗) = min
q

max
p

e(p, q) = e(p∗, q∗)

= max
p

min
q

e(p, q) = min
q

e(p∗, q) ≤ e(p∗, q) .

Hence, (p∗, q∗) is an equilibrium pair.

17 Solution of Two-person Games

17.1 LP formulation of a zero-sum game

We can solve a two-person zero-sum game using linear programming. We want
to find probability vectors p∗, q∗ and a v such that

e(p, q∗) ≤ e(p∗, q∗) = v ≤ e(p∗, q)

for any p and q. The first inequality implies that

e(Ii, q
∗) =

m∑

j=1

eijq
∗
j ≤ v , for all i = 1, 2, . . . , n .

Player II chooses q∗ so as to make v as small as possible. So his problem is

minimize



v :

m∑

j=1

eijqj ≤ v, qj ≥ 0,

m∑

j=1

qj = 1



 .

Let, Qj = qj/v then Q1+Q2+ · · ·+Qm =
∑m

j=1 qj/v = 1/v. Thus, assuming
v > 0, minimizing v is equivalent to maximizing 1/v so that the final problem is

maximize Q1 +Q2 + · · ·+Qm

subject to

m∑

j=1

eijQj ≤ 1 , i = 1, . . . , n , and Qj ≥ 0 , j = 1, . . .m .

To ensure v > 0 we can add a constant to every payoff. This will not change the
optimal strategy only the value. Consider the dual problem given by

minimizeP1 + P2 + · · ·+ Pn

subject to
n∑

i=1

Pieij ≥ 1 , j = 1, 2, . . . ,m , and Pi ≥ 0 , i = 1, 2, . . . , n .

Interpret this as Pi = pi/v for i = 1, 2, . . . , n and rewrite as

maximize

{
v :

n∑

i=1

pieij ≥ v, pi ≥ 0,

n∑

i=1

pi = 1

}
.

Thus we can solve the game by solving the primal (or dual) LP. Solving the
primal gives the value of the game and player II’s optimal strategy q∗ while the
dual problem gives player I’s optimal strategy p∗.

67

Two-person non-zero-sum games 68

17.2 Two-person non-zero-sum games

The players are not completely antagonistic and might both be happier with
one outcome than another. In a two-person non-zero-sum game (also called a
bimatrix game, (a) a maximin pair is not necessarily an equilibrium pair and
vice versa; (b) equilibrium pairs don’t necessarily have the same payoffs; (c) there
is no obvious solution concept for the game.

Write e1(·, ·) for player I’s payoffs and e2(·, ·) for player II’s payoffs. A pair of
strategies (p∗, q∗) is an equilibrium pair if for any p and q

e1(p, q
∗) ≤ e1(p

∗, q∗); e2(p
∗, q) ≤ e2(p

∗, q∗) .

Example: Prisoner’s Dilemma

Don’t confess Confess
Don’t confess

Confess

(
(5, 5) (0, 10)
(10, 0) (1, 1)

)

The equilibrium pair is (Confess, Confess) with payoffs (1, 1). However this is
worse for both players than (5, 5), where both players don’t confess. The ‘confess’
strategy dominates the ‘don’t confess’ strategy yet ‘most people’ would regard
(Don’t confess, Don’t confess) as the ‘best’ solution.

Example: Coordination game

Opera Football
Opera
Football

(
(1,4) (0,0)
(0,0) (4,1)

)

There are three equilibrium pairs: (Opera,Opera) with payoff (1, 4), (Football,
Football) with payoff (4, 1) and a third one consisting of the mixed strategies
(1/5, 4/5) and (4/5, 1/5) which gives payoffs of (4/5, 4/5). The difficulty is to
persuade the other player to do the same as you. Compare this with flipping
a coin and both going to the opera or both to football and sharing the payoffs
evenly; this requires cooperation.

17.3 Nash’s theorem

Theorem 17.1 (Nash’ Theorem) Any two-person game (zero-sum or non-zero-
sum) with a finite number of pure strategies has at least one equilibrium pair.

69 Solution of Two-person Games

Proof. Set P = {p : pi ≥ 0,
∑

i pi = 1}, Q = {q : qj ≥ 0,
∑

j qj = 1} and
define

S = {(p, q) : p ∈ P, q ∈ Q} .
Then S is closed, bounded and convex. For any p ∈ P and q ∈ Q define

ci(p, q) = max{0, e1(Ii, q)− e1(p, q)} , i = 1, 2, . . . , n

as the amount I gets extra by playing Ii rather than p against q. Let

dj(p, q) = max{0, e2(p, IIj)− e2(p, q)} , j = 1, 2, . . . ,m

be the amount II gets extra by playing IIj rather than q against p.
Define the function f(p, q) = (p′, q′), where

p′i =
pi + ci(p, q)

1 +
∑

i′ ci′(p, q)
and q′j =

qj + dj(p, q)

1 +
∑

j′ dj′ (p, q)

for all i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Then f is continuous so, by Brouwer’s fixed
point theorem, there is a fixed point (p∗, q∗) such that

f(p∗, q∗) = (p∗, q∗) .

Observe that we cannot have e1(Ii, q
∗) > e1(p

∗, q∗) for all i such that p∗i > 0,
since that would imply

e1(p
∗, q∗) =

n∑

i=1

p∗i e1(Ii, q
∗) >

n∑

i=1

p∗i e1(p
∗, q∗) = e1(p

∗, q∗) .

Thus for some i for which p∗i > 0 we have that

ci(p
∗, q∗) = 0 .

But since (p∗, q∗) is a fixed point of f we have

p∗i =
p∗i + ci(p

∗, q∗)

1 +
∑

i′ ci′(p
∗, q∗)

and for the choice of i with ci(p
∗, q∗) = 0 we see that

n∑

i′=1

ci′(p
∗, q∗) = 0 .

Thus, for all i′ = 1, 2, . . . , n we have that ci′(p
∗, q∗) = 0 and so

e1(p
∗, q∗) ≥ e1(Ii, q

∗) , i = 1, 2, . . . , n ,

and hence
e1(p

∗, q∗) ≥ e1(p, q
∗) , for all p ∈ P .

A similar argument shows that e2(p
∗, q∗) ≥ e2(p

∗, q) for all q ∈ Q and so the fixed
point (p∗, q∗) is an equilibrium pair.

Finding an equilibrium pair 70

17.4 Finding an equilibrium pair

Example. Consider the bimatrix game

II1 II2

I1
I2

(
(3, 2) (2, 1)
(0, 3) (4, 4)

)

Suppose we fix q and find p to maximizes e1(p, q). If q is part of an equilibrium
pair we have constructed it’s partner strategy for player I. Then

e1(p, q) = p1(5q1 − 2) + 4− 4q1 .

where p = (p1, p2) and q = (q1, q2). Thus the maximizing p1 is given by

p1 =





0 if q1 < 2/5

any 0 ≤ p1 ≤ 1 if q1 = 2/5

1 if q1 > 2/5 .

Similarly, for player II, we consider e2(p, q) = q1(2p1 − 1) + (4 − 3p1) . and
find the maximizing q1 as

q1 =





0 if p1 < 1/2

any 0 ≤ q1 ≤ 1 if p1 = 1/2

1 if p1 > 1/2 .

Thus we look for the mutual solutions to these two simultaneous maximization
problems to find the three equilibrium pairs:

1. p1 = 0, q1 = 0, corresponding to (I2, II2) with payoffs (4, 4);

2. p1 = 1, q1 = 1, corresponding to (I1, II1) with payoffs (3, 2);

3. p1 = 1/2, q1 = 2/5, corresponding to ((1/2, 1/2), (2/5, 3/5)) with payoffs
(2.4, 2.5).

Notice that the payoffs differ, but that given an equilibrium pair neither player
has any incentive to alter his strategy.

18 Construction of a Nash Equilibrium

18.1 Symmetric games

In general, it is a difficult problem to find all equilibrium points. Indeed it is an
NP-complete problem to decide if more than one Nash equilibria exists, if there
exists an equilibrium in which each player mixes at least two pure strategies, or
if there is an equilbrium in which the sum of I and II’s expected payoffs can
be at least some given value. We now look at a method for computing a Nash
equilibrium. We begin with the special case of a symmetric game.

A symmetric game is one such that e1(i, j) = aij , e2(i, j) = aji. E.g.

A =



0 3 0
0 0 3
2 2 2


 gives the non-zero sum game:



(0, 0) (3, 0) (0, 2)
(0, 3) (0, 0) (3, 2)
(2, 0) (2, 3) (2, 2)




Lemma 18.1 Suppose x, z ≥ 0, Ax + z = 1, x⊤z = 0, and 1⊤x > 0. Let
p̄ = x/1⊤x. Then (p̄, p̄) is a (symmetric) equilibrium pair.

Proof. Let p be any (mixed) strategy.

(i) Ax ≤ 1 =⇒ p⊤Ax ≤ 1 =⇒ p⊤Ap̄ ≤ (1⊤x)−1, and p̄⊤A⊤p ≤ (1⊤x)−1.

(ii) x⊤z = x⊤(1 −Ax) = 0 =⇒ p̄⊤Ap̄ = (1⊤x)−1.

18.2 Lemke-Howson algorithm

The basic feasible solution v0 = (x, z) = (0, 1) satisfies all conditions of the lemma
except for 1⊤x > 0. Let us say that strategy i is represented if xizi = 0 and twice-
represented if xi = zi = 0. It is missing if xizi > 0.

Let P = {(x, z) : Ax+ z = 1, x ≥ 0, z ≥ 0}. Let us assume no degeneracy, so
that every vertex of P has exactly n neighbours. Fix a strategy, say i, and consider
the set V , consisting of all vertices of P in which every strategy is represented or
twice-represented, except possibly strategy i (which may be missing). Note that
v0 ∈ V since in v0 every strategy is represented. There is exactly one neighbouring
vertex to v0 that is also in V .

In the example above, v0 = (x, z) = (0, 0, 0, 1, 1, 1). If we choose i = 2 then
the unique neighbouring member of V which has strategy 2 missing is obtained
by increasing x2, to reach v1 = (0, 1

3 , 0, 0, 1,
1
3). In moving from v0 to v1, the vari-

able z1 has decreased to 0 and strategy 1 is now twice-represented. So let us now
increase x1 and move to v2 = (16 ,

1
3 , 0, 0, 1, 0). Now z3 has been decreased to 0 and

71

Bimatrix games 72

strategy 3 is twice-represented, so we increase x3 to reach v3 = (0, 13 ,
1
6 , 0,

1
2 , 0).

Now x1 has decreased to 0, strategy 1 is again twice-represented, so we increase
z1, to reach v4 = (0, 1

6 ,
1
3 ,

1
2 , 0, 0). Here, z2 is decreased to 0, all strategies are rep-

resented, and the conditions of the lemma are satisfied. We have the equilibrium
p̄ = (0, 13 ,

2
3).

As we move amongst vertices in V we are at each step increasing some variable
xi (or zi) associated with an twice-represented strategy i, which is complementary
to the variable zi or (or xi) that was decreased to 0 at the previous step.

v0

v1

v2

v3
v4

x1

x2 x3

x1 x2 x3 z1 z2 z3
v0 : 0 0 0 1 1 1
v1 : 0 1

3 0 0 1 1
3

v2 : 1
6

1
3 0 0 1 0

v3 : 0 1
3

1
6 0 1

2 0
v4 : 0 1

6
1
3

1
2 0 0

This algorithm (Lemke-Howson) always works! The reasoning is cute. Firstly,
note that since P is bounded it must be the case that as we increase a nonbasic
variable from 0, some basic variable must decrease and eventually reach 0, com-
pleting a pivot step from one vertex to another. Second, there is only one way to
leave v0 and remain in V ; similarly, having reached vi there is only one way to
leave vi and remain in V without returning to the vertex from which the path just
arrived. Thus, the path never revisits a vertex. Thirdly, there are a finite number
of vertices in V , so eventually the algorithm can go no further. The only way this
can happen is to have reached a vertex at which no strategy is twice-represented.
Since this is not v0 it must be one for which 1⊤x > 0.

18.3 Bimatrix games

Now consider the more general two-person zero sum game in which e1(i, j) = aij
and e2(i, j) = bij . Players I and II have n and m pure strategies, respectively.
Matrices A = (aij) and B = (bij) are n × m. Similarly to Lemma 18.1, an
equilibrium pair can be constructed from nonnegative and nonzero vectors x, z,
y and w such that x⊤B + z⊤ = 1⊤ and Ay + w = 1, for which z⊤y = x⊤w = 0.

We can also take a general bimatrix game and construct from it a symmetric
game. This game has n+m pure strategies and payoff matrices

Ā =

(
0 A
B⊤ 0

)
B̄ = Ā⊤ =

(
0 B
A⊤ 0

)
.

Suppose we can find s = (x, y) such that s ≥ 0, Ās ≤ 1, s⊤(1 − Ās) = 0,

73 Construction of a Nash Equilibrium

1⊤x > 0, and 1⊤y > 0, then s/1⊤s is a symmetric equilibrium for this symmetric
game, and p̄ = x/1⊤x and q̄ = y/1⊤y provide an equilibrium pair for the original
nonsymmetric game.

The above shows how to use the Lemke-Howson algorithm to find a Nash
equilibrium of the bimatrix game with (A,B). We say that Player I’s strategy i
is twice-represented if xi = wi = 0 and Player II’s strategy j twice-represented if
yj = zj = 0.

Let P = {x : x⊤B ≤ 1⊤m, x ≥ 0} and Q = {y : Ay ≤ 1n, y ≥ 0}. We start at
(x, z, y, w) = (0, 1, 0, 1) and arbitrarily pick one of the pure strategies, say Player
I’s first strategy. We increase x1 from 0. If this makes zi = 0 then Player II’s
ith strategy is now twice-represented, and the next step is to increase yi from
0. We continue in this manner, alternately increasing from 0 a component of
(x, z) and one of (w, y), until eventually reaching a vertex at which the missing
strategy becomes represented, no strategy is twice-represented and both x and y
are nonzero. There is an interesting corollary of this analysis.

Corollary 18.1 A nondegenerate bimatrix game has an odd number of Nash equi-
libria.

Proof. Let V be the set of vertices in which only Player I’s first strategy might
be missing (i.e. such that x1w1 > 0). Every equilibrium of P × Q is a member
of V (since equilibriums are vertices for which all strategies are represented). In
the graph formed by vertices in V , each vertex has degree 1 or 2. So this graph
consists of disjoint paths and cycles. The endpoints of the paths are the Nash
equilibriums and the special vertex (x, y) = (0, 0). There are an even number of
endpoints, so the number of Nash equilibria must be odd.

Notice that we can write the conditions for an equilibrium as

(
w
z

)
−
(

0 −A
−B⊤ 0

)(
x
y

)
=

(
1n
1m

)
,

(
x
y

)
≥ 0,

(
w
z

)
≥ 0,

(
x
y

)⊤(
w
z

)
= 0.

This is an example of a more general problem.

18.4 Linear complementarity problem

The linear complementarity problem (LCP) unifies linear programing, quadratic
programing and two-person non-zero sum games (bimatrix games). Let M be
a L× L square matrix, and q a L-vector. LCP is to find two L-vectors, z and w,
such that

w −Mz = q, z, w ≥ 0 and z⊤w = 0.

Note that nothing is to be maximized or minimized in this problem.

Linear programming as a LCP 74

18.5 Linear programming as a LCP

Consider the primal and dual linear programs

P : minimize {c⊤x : Ax− v = b, x ≥ 0, v ≥ 0}
D : maximize {b⊤y : A⊤y + u = c, y ≥ 0, u ≥ 0} .

Recall that (x, v) and (y, u) are optimal solutions if and only if

x, y, v, u ≥ 0,

(
u
v

)
−
(
0 −A⊤

A 0

)(
x
y

)
=

(
c
−b

)
, x⊤u = 0, y⊤v = 0.

This is a LCP with the obvious choices of w, M , z and q.

18.6 Lemke’s algorithm

If q > 0 then a solution to the LCP is w = q and z = 0. So suppose q 6> 0. Let
d = −(1, 1, . . . , 1)⊤ and consider

w −Mz + λd = q.

For λ > 0 large enough, we have the solution w = q−λd ≥ 0, and z = 0. Imagine
decreasing λ from a large value until some component of w becomes 0. At this
point (where λ = −mini qi = −qk) we have wk = zk = 0, and there will be
complementary slackness, i.e. wizi = 0 for all i.

Our next step is to move to a neighbouring basic feasible solution by increasing
zk (i.e. we perform a pivot step that puts zk into the basis). Suppose that as we
increase zk one of the existing basic variables decreases, eventually reaches 0 and
so must leave the basis. (If this does not happen then the algorithm fails. But
there are special cases for which this cannot happen, such as the bimatrix games.)

• If the departing basic variable is λ then we now have a solution to the LCP.

• If the departing basic variable is not λ then we are left with a new bfs in
which wℓ = zℓ = 0 for some ℓ.

We continue in this fashion, moving amongst solutions that are always comple-
mentary slack, i.e. wizi = 0 for all i, and such that λ > 0 and wℓ = zℓ = 0 for
some ℓ. After each pivot, we note which which of the variables it was, wℓ or zℓ,
that has just left the basis, and then increase the other one — continuing in this
fashion until eventually it is λ that leaves the basis. At that point we have a
solution to the LCP. Note that there are only a finite number of complementary
bases and they do not repeat. Each bfs that we can reach has exactly two neigh-
bouring bfs, one of which precedes it and one of which follows it. Thus no bfs can
be reached more than once and so λ must eventually leave the basis.

19 Cooperative Games

19.1 Quadratic programming as a LCP

Let D be a positive definite symmetric matrix and consider

QP : minimize Q(x) = c⊤x+ 1
2x

⊤Dx

subject to Ax ≥ b, x ≥ 0.

Consider minimizing over nonnegative x and v, the Lagrangian

L = c⊤x+ 1
2x

⊤Dx+ ȳ⊤(b −Ax+ v).

From the Lagrangian sufficiency theorem we see that (x, v) minimizes L if

b−Ax̄ = v̄,
∂

∂x
L = c+Dx−A⊤ȳ = ū,

ȳ⊤v̄ = 0, x⊤ū = 0, x, v, ȳ, ū ≥ 0.

So x̄ is an optimal solution to QP if there exist vectors ȳ, ū and v̄ such that
(
ū
v̄

)
−
(
D −A⊤

A 0

)(
x̄
ȳ

)
=

(
c
−b

)

(
ū
v̄

)
≥ 0

(
x̄
ȳ

)
≥ 0 and

(
ū
v̄

)⊤(
x̄
ȳ

)
= 0.

This defines a LCP, whose solution is an optimal solution to QP.

19.2 Cooperative games

In a non-cooperative game each player randomizes over his choice of strategy.
This is done to confuse the opponent. In a cooperative game players jointly
randomize over pairs of strategies, which may themselves be mixed strategies
for the game. Randomization it is used to average between possible outcomes.
Consider the game

II1 II2
I1
I2

(
(0,0) (1,1)
(3,1) (1,3)

)

If (u1, v1) and (u2, v2) are payoffs in the non-cooperative game, then in the co-
operative game the strategy which chooses strategies giving payoffs (u1, v1) and
(u2, v2) with probabilities β and (1− β) has expected payoff

β(u1, v1) + (1 − β)(u2, v2) .

75

Bargaining 76

Thus the payoff region, R, for the cooperative game is the convex hull of the
payoff region for the non-cooperative game.

19.3 Bargaining

In a cooperative setting, there is a preplay stage or negotiating stage where the
players decide on the strategies to be used. Of the possible payoffs, which are the
players likely to agree on? We say that a pair of payoffs (u, v) in a cooperative
game is jointly dominated by (u′, v′) if

u′ ≥ u, v′ ≥ v and (u′, v′) 6= (u, v) .

A pair of payoffs (u, v) is said to be Pareto optimal if it is not jointly dominated.
Certainly, the players will only be interested in agreeing on Pareto optimal payoffs
since otherwise there is a payuoff such that both can do as well and one can do
better.

Players I and II can always guarantee themselves payoffs of at least

vI = max
p∈P

min
q∈Q

e1(p, q) and vII = max
q∈Q

min
p∈P

e2(p, q) .

respectively. So, we would expect the solution of a cooperative game to lie within
the bargaining set (also called the negotiation set) given by

B = {(u, v) : u ≥ vI, v ≥ vII, and (u, v) is Pareto optimal in R} .

How ought the players agree which point of B is to be used?
Note that we must not make inter-player comparisons of payoffs, which we are

supposing are measured by their own utilities, not necessarily on the same scale.
We should not conclude that I prefers (4, 1) to (1, 10) by less than II prefers (1, 10)
to (4, 1).

Status quo point

Nash suggested that within the set of feasible payoffs, R, jointly available to the
players there is also a special payoff, (u0, v0) ∈ R called the status quo point,
which is the outcome the players will receive if they can’t agree by a process of
negotiation.

An arbitration procedure, Ψ, is defined as a map from the status quo point
and the region R to some point (u∗, v∗) ∈ R

Ψ((uo, v0), R) = (u∗, v∗) .

77 Cooperative Games

19.4 Nash bargaining axioms

1. feasibility. (u∗, v∗) ∈ R.

2. at least as good as status quo u∗ ≥ u0, v
∗ ≥ v0.

3. Pareto optimality. If (u, v) ∈ R and u ≥ u∗, v ≥ v∗ then u = u∗, v = v∗.

4. symmetry. If R is symmetric, so that if (u, v) ∈ R =⇒ (v, u) ∈ R, and if
u0 = v0, then u∗ = v∗.

5. invariance under linear transformations. Let R′ be obtained from R by
the transformation

u′ = au+ b , v′ = cv + d , a, c > 0 .

Then if (u∗, v∗) = Ψ((u0, v0), R) then Ψ((au0+b, cv0+d), R′) = (au∗+b, cv∗+
d).

6. independence of irrelevant alternatives. IfR′ is a subset ofR, Ψ((u0, v0), R) =
(u∗, v∗) and (u∗, v∗) ∈ R′, then we must also have Ψ((u0, v0), R

′) = (u∗, v∗).

19.5 Nash’s arbitration procedure

For (u, v) ∈ R with u > u0, v > v0 define the function

f(u, v) = (u− u0)(v − v0) .

If there exists points (u, v) ∈ R with u > u0, v > v0 then f attains a unique
maximum at some point (u∗, v∗) ∈ R. Define

Ψ((u0, v0), R) = (u∗, v∗) .

Nash showed that Ψ is the only function that satisfies the axioms (1–6).

“Proof”

Assume u0 = v0 = 0. Touch set R with uv = constant; use axiom 5 to move
the point of touching to (1, 1); add the set found by reflection of R around 45
degrees; use 4 to argue (1, 1) must be the solution; then use 6 to remove the extra
set that was just added.

Maximin bargaining solutions 78

RRR

19.6 Maximin bargaining solutions

Nash’s result specifies the arbitration procedure Ψ for a given status quo point
(u0, v0). A natural choice is to take the maximin values (vI, vII) as the status quo
point. This gives the maximin bargaining solution.

Example. Consider the two-person non-zero sum game with payoffs

II1 II2
I1
I2

(
(1,2) (8,3)
(4,4) (2,1)

)

Consider the two zero-sum games for each player separately. Using the LP
approach we find the maximin values of vI = 3 1

3 and vII = 2 1
2 .

The negotiation set of Pareto optimal points is given by

B = {(u, v) : u+ 4v = 20, 4 ≤ u ≤ 8} .

Thus we wish to maximize over B

f(u, v) = (u − u0)(v − v0) =

(
u− 3

1

3

)(
v − 2

1

2

)

=

(
u− 3

1

3

)(
5− 1

4
u− 2

1

2

)
.

This gives (u∗, v∗) = (6 2
3 , 3

1
3) as the unique solution to the Nash arbitration

procedure for the maximin bargaining solution.

20 Coalitional Games

20.1 Characteristic function

The definition of a (Nash) equilibrium extends to n-person games. The n-tuple of
strategies p∗1, p

∗
2, . . . , p

∗
n, where player i plays mixed strategy p∗i is an equilibrium

if for all other strategies, p1, p2, . . . , pn,

ei(p
∗
1, p

∗
2, . . . , p

∗
i , . . . , p

∗
n) ≥ ei(p

∗
1, p

∗
2, . . . , pi, . . . , p

∗
n) , i = 1, 2, . . . , n .

If there are n > 2 players in the game then there might be cooperation between
some, but not necessarily all, of the players. We can ask which coalitions of
players are likely to form and what are their relative bargaining strengths.

Label the players 1, 2, . . . , n. A coalition of players, S, is then a subset of
N = {1, 2, . . . , n}. The worst eventuality is that the rest of the players unite and
form a single opposing coalition N \ S. This is then a 2-person non-cooperative
game and we can calculate the maximum payoff that S can ensure for itself using
the maximin criterion.

Let v(S) denote the maximum value v(S) that coalition S can guarantee itself
by coordinating the strategies of its members, no matter what the other players
do. This is the called the characteristic function. By convention, we take
v(∅) = 0. The characteristic function measures the strengths of possible coalitions.
Note that for any two disjoint sets S and T , we have superadditivity, i.e.,

v(S ∪ T) ≥ v(S) + v(T) .

20.2 Imputations

Given that a coalition forms, how should v(S) be shared between its members?
The distribution of individual rewards will affect whether any coalition is likely to
form. Each individual will tend to join the coalition that offers him the greatest
reward.

An imputation in a n-person game with characteristic function v is a vector
x = (x1, x2, . . . , xn) satisfying

(1)

n∑

i=1

xi = v(N) , and (2) xi ≥ v({i}) for each i = 1, 2, . . . , n .

Think of xi as player i’s reward. Let E(v) be the set of imputations.
Suppose that x and y are imputations. Then we know that

n∑

i=1

xi = v(N) =
n∑

i=1

yi ,

79

The core 80

and so if xi > yi then there must be some j with yj > xj . So everyone cannot
be better off under x than under y. However, it is possible that all members of a
particular coalition are better off under x than under y.

Let x, y ∈ E(v). We say that y dominates x over S if

(3) yi > xi for all i ∈ S ; and (4)
∑

i∈S

yi ≤ v(S) .

(4) ensures v(S) is large enough to pay its members the amounts in y.

20.3 The core

The core of a game with characteristic function v is the set, C(v), of all im-
putations that are not dominated for any coalition. The idea is that only such
imputations can persist in pre-game negotiations.

Theorem 20.1 x is in the core if and only if

(5)
n∑

i=1

xi = v(N) ; (6)
∑

i∈S

xi ≥ v(S) for all S ⊂ N .

Proof. Let x satisfy (5) and (6). Putting S = {i} for each i = 1, . . . , n shows
that x is an imputation. To show that it is not dominated, suppose, there is a
coalition S with yi > xi for all i ∈ S. But using (6)

∑

i∈S

yi >
∑

i∈S

xi ≥ v(S) ,

which violates (4).
Conversely, suppose that x is in the core. It is an imputation and so (5) must

hold. Now suppose, if possible, that for some coalition S condition (6) doesn’t
hold so that

∑
i∈S xi < v(S). Define ǫ by

ǫ =
v(S)−∑i∈S xi

|S| > 0

Then the imputation

yi =





xi + ǫ i ∈ S

v({i}) +
v(N)− v(S)−∑i6∈S v({i})

|N \ S| i 6∈ S

dominates x on S, contradicting the assumption that x is in the core.

81 Coalitional Games

20.4 Oil market game

Country 1 has oil which it can use to run its transportation networks at a profit
of £a per barrel. Country 2 wants to buy oil for use in farming, for a profit of
£b per barrel. Country 3 wants to buy oil for use in manufacturing, for a profit
of £c per barrel. Assume a < b < c. The characteristic function is

Coalition, S Characteristic function, v(S)
∅, {2}, {3}, {2, 3} 0

{1} a
{1, 2} b

{1, 3}, {1, 2, 3} c

Suppose x = (x1, x2, x3) is an imputation in the core. We must have

x1 + x2 + x3 = v(N) = v({1, 2, 3}) = c ;

and using
∑

i xi∈S ≥ v(S),

x1 ≥ a; x2 ≥ 0; x3 ≥ 0;
x1 + x2 ≥ b; x2 + x3 ≥ 0; x1 + x3 ≥ c.

Thus x2 = 0, x1 + x3 = c and x1 ≥ b and so the core is given by

C(v) = {(x, 0, c− x) : b ≤ x ≤ c} .

The interpretation is that countries 1 and 3 form a coalition, with 1 selling oil
to 3 for £x per barrel, which is at least £b per barrel (otherwise, country 1 would
be better off selling to country 2) and at most £c per barrel, otherwise, country
3 would pay more than it values the oil.

20.5 The nucleolus

A major drawback of the core is that for many games it is empty.
For any imputation x = (x1, x2, . . . , xn) ∈ E(v) and for any coalition S ⊂ N

define

x(S) =
∑

i∈S

xi .

The quantity v(S)−x(S) measures the ‘unhappiness’ that coalition S feels for
the imputation x. The larger this value the larger the difference between what
the coalition could get and what it actually gets.

The nucleolus 82

Define θ(x) to be the vector of 2n values taken by v(S) − x(S) as S varies
across the possible coalitions arranged in decreasing order. We use θ(x) to order
imputations x and y.

Writing θ(x) = (θ(x)1, θ(x)2, . . . , θ(x)2n) we say that θ(x) < θ(y) if θ(x)1 <
θ(y)1 or if θ(x)k = θ(y)k for k = 1, 2, . . . , i− 1 and θ(x)i < θ(y)i.

The nucleolus is the smallest imputation under this ordering, written

N(v) = {x ∈ E(v) ; θ(x) < θ(y) for all y ∈ E(v)} .

It can be shown that the nucleolus always exists and is unique. Also, provided
the core is non-empty the nucleolus lies within the core. To see this, let x be in
the core. Then for any coalition S, v(S)−x(S) is zero or negative (by definition of
the core). Thus all the entries of θ(x) for an x in the core are zero or negative and
hence this property will have to hold for the minimal choice of θ(y) over choices
of imputation y. But this means that such a minimizing imputation y is in the
core.

Thus the nucleolus is a natural interpretation for a fair division of the reward
v(N). Consider again the oil market game. To construct the nucleolus we need
only consider imputations in the core, C(v) = {(x, 0, c− x) : b ≤ x ≤ c}.

Computing v(S)− x(S) for all possible coalitions gives

v(∅)− x(∅) = 0 v({1, 2})− x({1, 2}) = b− x
v({1})− x({1}) = a− x v({2, 3})− x({2, 3}) = x− c
v({2})− x({2}) = 0 v({1, 3})− x({1, 3}) = 0
v({3})− x({3}) = x− c v({1, 2, 3})− x({1, 2, 3}) = 0

The largest nonzero element is either b−x or x− c. Thus we minimize the largest
nonzero unhappiness by setting b − x = x − c, i.e., x = (b + c)/2. Thus, the
nucleolus is the imputation x = ((c+ b)/2, 0, (c− b)/2) and

θ(x) =
(
0, 0, 0, 0, 12 (b − c), 1

2 (b− c), 1
2 (b− c), a− 1

2 (b + c)
)
.

21 Shapley Value and Market Games

21.1 Shapley value

What might each player reasonably expect to receive as his share of the reward
in a cooperative game? Shapley proposed three axioms that one might require
for φi(v), player i’s expected share in a game with characteristic function v.

Shapley’s axioms

1. φi(v) should be independent of the player’s label, 1, 2, . . . , n.

2.
∑n

i=1 φi(v) = v(N).

3. If u and v are two characteristic functions then

φi(u + v) = φi(u) + φi(v) .

Theorem 21.1 (Shapley) The only function that satisfies Shapley’s axioms is
given by the Shapley values

φi(v) =
∑

S:i∈S

(|S| − 1)!(n− |S|)!
n!

[v(S)− v(S \ {i})] .

The values arise by imagining the players join the game in random order.
Player i receives the extra amount that he brings to the existing coalition of
players S \ {i}, i.e., v(S) − v(S \ {i}). This must then be averaged over all the
possible ways in which the players can arrive.

For the oil market game we have

φ1(v) =
1
2c+

1
3a− 1

6b , φ2(v) =
1
6b− 1

6a , φ3(v) =
1
2 c− 1

6a− 1
3b .

The Shapley values give another solution concept for the game. However, note
that this imputation is not in the core.

21.2 Market games

Some of the earliest examples of game theory can be found in the mathematical
economics which was developed to understand the bargaining involved in trading.
We will consider simple examples suggested by Edgeworth.

83

Market games 84

Suppose there are just two commodities (A for apples and B for bread, say).
Assume there are M apple traders and N bread traders. A trader who has a units
of apples and b units of bread has utility

ui(a, b) , i = 1, 2, . . . ,M +N .

Assume also that the functions are concave so that every trader prefers some
combination of the two commodities rather than either of the two extremes (a, 0)
or (0, b) for some a, b. Hence,

ui (λ(a1, b1) + (1− λ)(a2, b2)) ≥ λui (a1, b1) + (1 − λ)ui (a2, b2)

for 0 ≤ λ ≤ 1 and i = 1, 2, . . . ,M +N .
Suppose that each trader has the same utility function u(x, y) and that each

trader of type A or B starts with a and b units of commodities A and B respec-
tively. Suppose that coalition S consists of s1 traders of type A and s2 traders of
type B. The best S can ensure for itself is the highest possible sum of the utilities
of its members that can be obtained when they trade with each other. Thus,

v(S) = max
x1,...,xs1+s2

,y1,...,ys1+s2

s1+s2∑

i=1

u(xi, yi)

where
s1+s2∑

i=1

xi = s1a ;

s1+s2∑

i=1

yi = s2b .

By concavity of u(·, ·) we have

s1+s2∑

i=1

u(xi, yi) ≤ (s1 + s2)u

(
s1

s1 + s2
a,

s2
s1 + s2

b

)
= v(S) .

[1, 1]–market game. The characteristic function is

v({1}) = u(a, 0); v({2}) = u(0, b); v({1, 2}) = 2u

(
a

2
,
b

2

)
.

and so the set of imputations is given by

E(v) = {(u(a, 0) + pc, u(0, b) + (1− p)c) : 0 ≤ p ≤ 1}

where c = 2u(a/2, b/2)− u(a, 0)− u(0, b).
We can think of p as the price of the goods, reflecting the number of units of

B exchanged for one unit of A.

85 Shapley Value and Market Games

[1, N]–market game. Think of trader A as a monopolist. We suspect he can
charge as high a price as he wants, provided that it is still worth the others trading.
We illustrate this by showing that imputation

x∗ =

(
(N + 1)u

(
a

N + 1
,

Nb

N + 1

)
−Nu(0, b), u(0, b), . . . , u(0, b)

)

is in the core. This means showing that for any set K of k type B traders,

x∗
1 +

∑

i∈K

x∗
i ≥ v(K ∪ {1}) .

Using our expression for v(S) this corresponds to showing that

(N + 1)u

(
a

N + 1
,

Nb

N + 1

)
− (N − k)u(0, b) ≥ (k + 1)u

(
a

k + 1
,

kb

k + 1

)

which follows directly from the concavity of u(·, ·).

21.3 Competition between firms

A market of two competing firms is known as duopoly; a market of more than
two firms it is known as oligopoly. Duopoly can be regarded as a [2,∞]–market
game and oligopoly can be regarded as a [M,∞]–market game. The first type of
traders are the firms who produce a particular product. The second type are the
buyers, or consumers, who exchange money for the product.

We represent the consumer’s requirements by one utility function

u(p1, p2, . . . , pM , q1, q2, . . . , qM)

where pi is firm i’s price for the product and qi is the amount of that firm’s
product that is bought by consumers.

Let us assume that consumers are told the prices, pi, and then choose the
quantities, qi, so as to maximize the above utility. Hence, this reduces to a set
of price-demand equations which connect the demand qi for firm i’s product with
the (announced) prices p1, p2, . . . , pM , so that, say,

qi = fi(p1, p2, . . . , pM) .

Firm i’s utility is given by its profit

ei(p1, p2, . . . , pM) = piqi − ci(qi)

where ci(·) is the production cost function for firm i.
A similar story can be told if we suppose that firms decide on the quantities

qi that they will produce and then the consumers’ utility function determines the
prices pi they will pay for these products.

Cournot equilibrium 86

21.4 Cournot equilibrium

A Cournot equilibrium is a vector of prices (pc1, p
c
2, . . . , p

c
M) such that

ei(p
c
1, p

c
2, . . . , p

c
M) = max

pi

ei(p
c
1, p

c
2, . . . , pi, . . . , p

c
M)

for all firms i = 1, . . . ,M . That is, pc is an equilibrium n-tuple in a n-person
non-cooperative game of price competition. Notice that we cannot apply Nash’s
theorem since there are an infinite number of possible choices of prices, i.e., of
pure strategies. Nevertheless, it can be shown that under reasonable assumptions
a Cournot equilibrium always exists.

Example. Consider a duopoly where the price-demand functions are

q1 = f1(p1, p2) = max
{
1 + 1

3p2 − 1
2p1, 0

}

q2 = f2(p1, p2) = max
{
1 + 1

4p1 − 1
2p2, 0

}

and suppose, for simplicity, that c1(q1) = c2(q2) = 0.
We have that 0 ≤ p1 ≤ 2 + 2

3p2 and 0 ≤ p2 ≤ 2 + 1
2p1. The profit functions

are then given by

e1(p1, p2) = p1 +
1
3p1p2 − 1

2p
2
1

e2(p1, p2) = p2 +
1
4p1p2 − 1

2p
2
2 .

To find the Cournot equilibrium we must solve

de1(p1, p
c
2)/dp1 = de2(p

c
1, p2)/dp2 = 0 .

This gives equations for (pc1, p
c
2) of

de1(p1, p
c
2)

dp1
= 1 + 1

3p
c
2 − pc1 = 0 ,

de2(p
c
1, p2)

dp2
= 1 + 1

4p
c
1 − pc2 = 0 ,

which gives the Cournot equilibrium as pc1 = 16
11 , p

c
2 = 15

11 , and so

e1(
16
11 ,

15
11) = 1.06 ; e2(

16
11 ,

15
11) = 0.93 .

The maximization conditions dei(p1, p2)/dpi = 0 express the price firm 1 will
choose given firm 2’s price and vice versa. Thus,

p1 = g1(p2) = 1 + 1
3p2 , p2 = g2(p1) = 1 + 1

4p1 .

Suppose firm 1 must announce its price before firm 2. Firm 2 will choose its
price to maximize its profit given p1. Thus, it will choose p2 = g2(p1). Firm 1,
realizing this will happen, will maximize its profit by choosing p1 to maximize
e1(p1, g2(p1)). Firm 1 then announces this price.

22 Auctions

22.1 Types of auctions

An auction is a type of multi-player partial-information game. Its rules specify
the way bidding occurs, what information the bidders have about the state of
bidding, how the winner is determined and how much he must pay. It is a partial
information game because each bidder’s valuation of an item is hidden from
the auctioneer and other bidders. The equilibrium is a function of the auction’s
rules. These rules can affect the revenue obtained by the seller, as well as how
much this varies in successive instants of the auction. An auction is said to be
economically efficient, in terms of maximizing social welfare, if it allocates the
item to the bidder who values it most. Auction design is an art. There is no one
auctioning mechanism that is efficient and can be applied in most situations.

Government contracts are often awarded through procurement auctions. They
are used to sell oil drilling rights, or other natural resources, such as mobile
telephone spectrum or satellite positions. Flowers, wines, art, U.S. treasury bonds
and real estate are sold in auctions (and indeed the Roman empire was auctioned
by the Praetorian Guards in A.D. 193).

In the private values model each bidder knows the value he places on the
item, but does not know how it is valued by other bidders. As bidding takes
place, his valuation does not change, though he gains information from the other
players’ bids. In the common value model the item’s actual value is the same for
all bidders, but they have different a priori information about that value. Think,
for example, of a jar of coins. Each player makes an estimate of the value of the
coins in the jar, and as bidding occurs he can adjust his estimate based on what
other players say. In this case the winner generally overestimates the value (since
he had the highest estimate), and so he pays more than the jar of coins is worth.
This is called the winner’s curse.

Auctions can be oral (bidders hear each other’s bids and make counter-offers)
or written (bidders submit sealed-bids in writing). Popular types of auction are:

1. English auction (or ascending price auction): bids increase in small in-
crements until only one bidder remains.

2. Dutch auction: the price decreases continuously until some bidder calls stop.

3. first price sealed-bid: the winner pays his bid.

4. second price sealed-bid (or Vickrey auction): the winner pays the second
highest bid.

5. all-pay sealed-bid auction: highest bidder wins, but all pay their bid.

87

The revenue equivalence theorem 88

It is not hard to see that 1 and 4 are equivalent (with the item selling for the
second greatest valuation), and that 2 and 3 are equivalent (with the item selling
for the greatest bid).

22.2 The revenue equivalence theorem

The symmetric independent private values model (SIPV) concerns the
auction of a single item, with risk neutral seller and bidders. Each bidder knows
his own valuation of the item, which he keeps secret, and valuations of the bidders
can be modelled as i.i.d. random variables. Important questions are

• what type of auction generates the most revenue for the seller?

• if seller or bidders are risk averse, which auction would they prefer?

• which auctions make it harder for the bidders to collude?

Let us begin with an intuitive result.

Lemma 22.1 In any SIPV auction in which the bidders bid optimally and the
item is awarded to the highest bidder, the order of the bids is the same as the
order of the valuations.

Proof. Let e(p) be the minimal expected payment that a bidder can make if he
wants to win the item with probability p. A bidder who has valuation v and aims
to win with probability p can make expected profit π(v) = pv − e(p). Suppose
the best p is p∗ (which depends on v) so the maximal profit is defined by

π∗(v) = max
p

[pv − e(p)] = p∗v − e(p∗) ,
∂π

∂p

∣∣∣∣
p=p∗

= v − e′(p∗) = 0. (22.1)

Note that e(p) is convex in v, and so at the stationary point, π∗(p∗) = e′(p∗)p∗ −
e(p∗) > e(0) = 0. Now as ∂π∗/∂p∗ = v − e′(p∗) = 0, we have from (22.1)

d

dv
π∗(v) = p∗ + [v − e′(p∗)]

d

dv
p∗(v) = p∗. (22.2)

Since π∗(v) is the maximum of linear function of v, it is convex in v, which means
that dπ∗(v)/dv, and so also p∗(v), must increase with v. Since the item goes to
the highest bidder the optimal bid must also increase with v.

We say that two auctions have the same bidder participation if any bidder
who finds it profitable to participate in one auction also finds it profitable to
participate in the other. The following result. It is remarkable, as various auctions
can have completely different sets of rules and strategies.

89 Auctions

Theorem 22.1 (Revenue equivalence theorem) The expected revenue obtained
by the seller is the same for any two SIPV auctions that (a) award the item to
the highest bidder, and (b) have the same bidder participation.

Suppose there are n bidders and all participate.

Proof. From (22.1) we have v = e′(p) =⇒ vp′(v) = e′(p)p′(v) = de(p(v))/dv.
Integrating this gives

e(p(v)) = e(p(0)) +

∫ v

0

wp′(w) dw = vp(v)−
∫ v

0

p(w) dw , (22.3)

where clearly e(p(0)) = e(0) = 0, since there is no point in bidding for an item
of value 0. Thus e(p(v)) depends only on the function p(w). We know from
Lemma 22.1 that if bidders bid optimally then bids will be in the same order as
the valuations. It follows that if F is the distribution function of the valuations,
then p(w) = F (w)n−1, independently of the precise auction mechanism. The
expected revenue is

∑n
i=1 Evie(p(vi)) = nEve(p(v)).

Example 22.1 Assume valuations are i.i.d. with distribution function F (u).

(a) Suppose the item is simply offered at price p and sold if any player values it
above p. The seller computes x(p), the probability of making a sale if the price
posted is p, and seeks to maximize px(p). Then

x(p) = 1− F (p)n , and p− 1− F (p)n

nF (p)n−1f(p)
= 0 .

If the distributions are uniform on [0, 1], F (u) = u, the optimal price is p∗ =
n
√
1/n+ 1, and the resulting (expected) revenue is [n/(n + 1)] n

√
1/n+ 1. For

n = 2, p∗ =
√
1/3, and the expected revenue is (2/3)

√
1/3 = 0.3849.

(b) Suppose the item is auctioned by any of the five mechanisms above. Let n = 2.
If all bidders bid optimally then the probabilty that a bidder with valuation v
wins is v, i.e. p(v) = v. From (22.3) we see that e(p(v)) = v2/2. So in all these
auctions the seller’s expected revenue is 2E[v2/2] = 1/3 = 0.3333.

Let us compute the optimal bids in our auctions. Clearly, in the all-pay sealed-
bid auction the optimal bid is e(p(v)) = v2/2. In the Dutch or first price sealed-bid
auctions, a bidder’s expected payment is p(v) times his bid. Since this must equal
v2/2 we find that the optimal bid must be v/2. In the second price sealed-bid
(Vickrey) auction, the winner pays the bid of the second highest bidder. If bidder
1 bids u, then his profit is (v1 − v2)1{u>v2}. For every possible value of v2, this is
maximized by bidding u = v1.

The seller prefers (a) to (b). However, in (a) he uses information about the
distribution of the valuations. In (b) he makes no use of such information.

Risk aversion 90

Example 22.2 Consider the 3-person game in which player 0, the government,
solicits tenders from two contractors to do a piece of work. The contractors’ costs
are private values that are independently distributed U [0, 1]. The goverment takes
written bids and awards the contract to the low bidder. At the Nash equilibrium
a contractor with cost c will bid (1 + c)/2. This results in expected payment of
2/3. If it had been possible for the government to know the low bidder’s cost and
pay just a bit above that then the expected cost would have been a bit over 1/3.
We say that the price of anarchy is (2/3)/(1/3) = 2.

22.3 Risk aversion

If a participant’s utility function is linear then he is said to be risk-neutral. If
his utility function is concave then he is risk-averse; now a seller’s average utility
is less than the utility of his average revenue, and this discrepancy increases with
the variability of the revenue. Hence a risk-averse seller, depending on his degree
of risk-aversion, might choose an auction that substantially reduces the variance
of his revenue, even though this might reduce his average revenue.

The revenue equivalence theorem holds under the assumption that bidders
are risk-neutral. If bidders are risk-averse, then first-price sealed-bid auctions
give different results from second-price sealed-bid auctions. In a first-price sealed-
bid auction, a risk-averse bidder prefers to win more frequently even if his average
net benefit is less. Hence he will make higher bids than if he were risk-neutral.
This reduces his expected net benefit and increases the expected revenue of the
seller. If the same bidder participates in a second-price auction, then his bids do
not affect what he pays when he wins, and so his optimal strategy is to bid his
true valuation. Hence, a first-price auction amongst risk-averse bidders produces
a greater expected revenue for the seller than does a second-price auction.

The seller may also be risk-averse. In such a case, he prefers amongst auctions
with the same expected revenue those with a smaller variance in the sale price.

Let us compare auctions with respect to this variance. Suppose bidders are
risk-neutral. In the first price sealed-bid auction each bids half his valuation, so
the revenue is (1/2)max{V1, V2}. In the all-pay sealed-bid auction each pays half
the square of his valuation and the revenue is 1

2V
2
1 + 1

2V
2
2 , where V1, V2 ∼ U [0, 1].

In the Vickrey auction each bids his valuation and the revenue is min{V1, V2}. All
these have expectation 1/3, but the variances are 1/72, 2/45 and 1/18 respectively.
Thus a risk adverse seller prefers the first price auction to the all-pay auction,
which is preferred to the Vickrey auction.

23 Auction Design

23.1 The revelation principle

We have seen that some auctioning mechanisms incentivize truthful declaration of
valuations (e.g. Vickery auction), whereas for others the bidders have the incentive
to shade their bids (e.g. in a sealed bid first-price auction).

However, it is sufficient to restrict attention to mechanism that incentivize
truthful revelation. These are called direct revelation mechansims.

Theorem 23.1 (Revelation principle) A direct revelation mechanism can gen-
erally be designed to achieve the same Nash equilibrium outcome as any other
mechanisms.

Proof. Consider some mechanism, M , for which a Nash equilibrium involves
the players (agents, bidders) making untruthful revelations about their items of
private information. Consider now a mechanism M ′ which receives information
from the players, and then inputs to M the information that bidders would have
themselves submitted to M , and then takes appropriate action (such as awarding
an item to a bidder). Then it is a Nash equilibrium of M ′ for players to truthfully
report to M ′ their private information. So M ′ is a direct mechanism that achieves
the same result as M .

This is important because it means that if we wish to design an optimal mech-
anism (e.g. maximizing the seller’s expected revenue), we may restrict attention
to mechanism that incentivize truthtelling. This is called an incentive compat-
ibility condition.

23.2 Optimal auctions

In the case of 2 bidders with private valuations that are U [0, 1] we have seen that
the expected revenue obtained by the seller is 1/3 under English, Vickery, and
any other auction mechanism satisfying certain conditions. Is there any auction
mechanism that creates greater expected revenue for the seller?

Consider the SIPV model in which n bidders have private valuations. Suppose
it public knowledge (of the auctioneer and other bidders) that i’s valuation is a
sample from a distribution with distribution function Fi, and probability density
function fi.

We ask the bidders to declare their valuations, v1, . . . , vn. As a function of
these declarations, v = (v1, . . . , vn), we award the item to bidder i with probability

91

Optimal auctions 92

φi(v), and make him pay pi(v). Suppose that we are designing a direct mechanism
such that it is optimal for all bidders to declare their valuations truthfully.

Assuming that all other bidders are declaring their valuations truthfully, a
bidder i who has valuation vi will declare it to be v′i, where

v′i = argmax
v′

i

{
viEv−i

φi(v1, . . . , v
′
i, . . . , vn)− Ev−i

p(v1, . . . , v
′
i, . . . , vn)

}

= argmax
v′

i

{
viΦi(v

′
i)− Pi(v

′
i)
}
,

where Ev−i
denotes expectation with respect to the other bidders’ valuations, If

bidder i is to be incentivized also to be truthful then we will need

d

dv′i
[viΦi(v

′
i)− Pi(v

′
i)]
∣∣∣
v′

i
=vi

= viΦ
′(vi)− P ′

i (vi) = 0

for all vi such that it is optimal to participate. Suppose viΦ(vi) − Pi(vi) ≥ 0 iff
vi ≥ v∗i , with v∗i Φ(v

∗
i)− Pi(v

∗
i) = 0. Integrating the above we have

Pi(vi) = Pi(v
∗
i) +

∫ vi

v∗

i

wΦ′
i(w) dw = Pi(v

∗
i) + v′iΦi(w)

∣∣∣
vi

v∗

i

−
∫ vi

v∗

i

Φi(w) dw.

= viΦ(vi)−
∫ vi

v∗

i

Φi(w) dw. (23.1)

EPi(vi) =

∫ ∞

v∗

i

[
viΦ(vi)−

∫ vi

v∗

i

Φi(w) dw

]
fi(vi) dvi

=

∫ ∞

v∗

i

(
vi −

1− Fi(vi)

fi(vi)

)
Φi(vi)fi(vi) dvi,

where the final line is by integration by parts, with fi(vi) = −d(1− Fi(vi))/dvi.
Let

gi(vi) = vi −
1− Fi(vi)

fi(vi)
.

The expected revenue obtained by the auctioneer is therefore,

∑

i

EPi(vi) =
∑

i

∫ ∞

v∗

i

gi(vi)Φi(vi)fi(vi) dvi = E

[
∑

i

gi(vi)φi(v1, . . . , vn)

]
.

The quantity inside the final expectation is maximized by allocating the item (i.e.
setting φi(v) = 1) to the bidder with the greatest non-negative value of gi(vi),
but awarding it to no bidder if this is negative for all declared vi. Suppose this

93 Auction Design

gi(vi) is an increasing function of vi (e.g. for the uniform distribution on [0, 1],
gi(vi) = 2vi − 1, v∗i = 1/2. Then from (23.1)

Pi(vi) = vi
∏

j 6=i

Fj(vi)−
∫ vi

v∗

i

∏

j 6=i

Fj(w) dw

In the i.i.d. U [0, 1] case, g(v) ≥ 0 iff v ≥ 1/2, and for vi > 1/2,

Pi(vi) = viv
n−1
i −

∫ vi

1/2

wn−1dw =
n− 1

n
vni +

1

n2n
.

E.g., for n = 2 we might take pi(vi) = v2i /2 + 1/8. This could be the payment in
an all-pay auction in which a participant who wishes to bid vi must commit to
paying v2i /2+ 1/8 (whether or not he wins). Thus a player with valuation vi will
declare vi = u to so as to maximize

viu− (u2/2 + 1/8).

This is maximized by u = vi and has a positive maximum if vi > 1/2. The
expected sum of the payments is

2EP1(v1) = 2

∫ 1

1/2

(1/8 + v2i /2) dvi = 5/12,

which exceeds the 1/3 we have in other auctions. The revenue equivalent theorem
does not apply because the bidder participation is not always the same.

There are other ways to create an optimal auction (i.e. one that maximizes
seller’s revenue). We could conduct an English auction with reservation price,
p0. Bidder 1 in this auction pays p0 if bidder 2 has valuation less than p0, and
otherwise pays Bidder 2’s valuation if v1 > v2 > p0. This makes his expected
payment p20+

∫ v1
p0

u du = (1/2)(v21+p20). The seller’s expected revenue is maximized

by taking p0 = 1/2.
Or we might make each bidder pay a participation fee c (which must be

paid by a player if he wishes to submit a bid). Now bidder 1 will participate only
if v1 > v∗, and in that case if he bids v then his expected payment is be

c+

∫ v

v∗

v2 dv2 = c+ (v − v∗)
v∗ + v

2
.

The fact that v1 = v∗ has expected profit 0 means that (v∗)2 − c = 0. One can
check that the seller’s expected revenue is maximized by c = 1/4, v∗ = 1/2.

Note that all the optimal auction have the property that a bidder will partic-
ipate only if his private valuation exceeds 1/2, and this is true for any n, as this
critical value is where gi(v) = 2v − 1 = 0.

Multi-unit auctions 94

Another way to construct payments in an optimal auction is to declare the
winner as the one with the greatest positive gi(vi) and make him pay the smallest
value of vi for which he would still be the winner. (This is not obvious, but by
a calculation we can show that this creates the right value of Pi(vi), as given in
(23.1).) This generalizes the mechanism of the second-price (or Vickrey) auction.

Example 23.1 An interesting property of optimal auctions with heterogeneous
bidders is that the winner is not always the highest bidder.

Consider first the case of homogeneous bidders with valuations uniformly dis-
tributed on [0, 1]. In this case gi(vi) = vi − (1 − vi)/1 = 2vi − 1. The object is
sold to the highest bidder, but only if 2vi − 1 > 0, i.e., if his valuation exceeds
1/2. The winner pays either 1/2 or the second greatest bid, whichever is greatest.
In the case of two bidders with the identical uniformly distributed valuations the
seller’s expected revenue is 5/12. This agrees with what we have found above.

Now consider the case of two heterogeneous bidders, say A and B, whose
valuations are uniformly distributed on [0, 1] and [0, 2] respectively. So gA(vA) =
2vA − 1, v0A = 1/2, and gB(vB) = 2vB − 2, v0B = 1. Under the bidding rules
described above, bidder B wins only if 2vB − 2 > 2vA − 1 and 2vB − 2 > 0, i.e.,
if and only if vB − vA > 1/2 and vB > 1; so the lower bidder can sometimes win.
For example, if vA = 0.8 and vB = 1.2, then A should be declared the winner and
pay 0.7 (which is the smallest v such that gA(v) = 2v − 1 ≥ 2vB − 2 = 0.4).

23.3 Multi-unit auctions

Multi-unit auctions are of great practical importance, and have been applied
to selling units of bandwidth in computer networks and satellite links, MWs of
electric power, capacity of natural gas and oil pipelines. These auctions can be
homogeneous or heterogeneous. In a homogeneous auction a number of iden-
tical units of a good are to be auctioned, and we speak of a multi-unit auction.
In the simplest multi-unit auction, each buyer wants only one unit. The auction
mechanisms above can be generalized. For example, in a simultaneous auction
of k units, all bidders make closed sealed-bids, and the k objects are awarded
to the k highest bidders. In a first-price auction each bidder would pay his own
bid. In a generalization of the Vickrey auction the k highest bidders would pay
the value of the highest losing bid. It can be shown that the revenue-equivalence
theorem still holds for these auctions. Note that in the first-price auction the suc-
cessful bidders pay differently for the same thing; we call this is a discriminatory
auction. By contrast, the Vickrey auction is a uniform auction, because all
successful bidders pay the same. A uniform auction is intuitively fairer, and also
more likely to reduce the winner’s curse.

24 Games and Mechanism Design

24.1 Combinatorial auctions

Multi-item auctions are more complex if bidders want to buy more than one
object, or if objects are different, and perhaps complementary. For example, the
value of holding two cable television licenses in contiguous geographic regions can
be greater than the sum of their values if held alone. This means that it can be
advantageous to allow combinatorial bidding. Here, bidders may place bids on
groups of objects as well as on individual objects. A generalization of the Vickrey
auction that can be used with combinatorial bidding is the Vickrey-Clarke-
Groves (VCG) mechanism. Each bidder submits bids for any combinations of
objects he wishes. The auctioneer allocates the objects to maximize the aggregate
total of their values to the bidders. Each bidder who wins a subset of the objects
pays the opportunity cost that this imposes on the rest of the bidders.

Let L be the set of objects and P be the set of their possible assignments
amongst the bidders. Each bidder submits a bid that specifies a value vi(T)
for each non-empty subset T of L. An assignment S ∈ P is a partition of L
into subsets Si, with one such subset per bidder i (possibly empty). If social
welfare maximization is the objective, then the auctioneer chooses the partition
S∗ = {S∗

1 , . . . , S
∗
n} that maximizes

∑n
i=1 vi(S

∗
i). Suppose bidder i is made to pay

pi, where

pi = max
S∈P

∑

j 6=i

vj(Sj)−
∑

j 6=i

vj(S
∗
j) . (24.1)

The first term on the right of (24.1) is the greatest value that could be obtained
by the other bidders if i were not bidding. The final term is the value that is
obtained by the other bidders when bidder i does participate.

This type of auction is incentive compatible, in the sense that bidders
are incentivized to submit their true valuations, and it leads to an economically
efficient allocation of the objects. This is because the profit of bidder i is vi(Si)−pi,
which is maxS∈P [vi(Si)+

∑
j 6=i vj(Sj)], minus a term that is independent of what

bidder i says about his valuations. Thus it is in bidder i’s interest to reveal
information that allows

∑
j vj(Sj) to be maximized. It has the advantage that the

whole market is available to bidders and they can freely express their preferences
for substitutable or complementary goods. However, there are drawbacks. Firstly,
the complex mechanism of a VCG auction can be hard for bidders to understand.
It is not intuitive and bidders may well not follow the proper strategy. Secondly, it
is very hard to implement. This is because each bidder must submit an extremely
large number of bids, and the auctioneer must solve a NP -complete optimization
problem to determine the optimal partition (and also each of the pi), so the

95

Distributed decisions via price mechanisms 96

‘winner determination’ problem can be unrealistically difficult to solve. There
are several ways that bidding can be restricted so that the optimal partitioning
problem becomes solvable in polynomial time. Unfortunately, these restrictions
are rather strong, and are not applicable in many cases of practical interest.

24.2 Distributed decisions via price mechanisms

Suppose we wish to maximize

W (x1, x2, x3) = V1(x1, x2) + V2(x2) + V3(x3, x2).

Rather than there being a single decision-maker who is capable of choosing all
three of the decision variables x1, x2 and x3, this is to be accomplished by three
decision-makers (or agents), called 1, 2, and 3, who each choose one of the vari-
ables x1, x2 and x3, respectively. The optimum can be represented as the Nash
equilibrium of a five-person game in which, players 1, 2, 3, 4, and 5 have control
over variables (x1, v1), x2, (x3, v3), p1 and p3, respectively, and their payoffs are

e1 = V1(x1, v1)− p1v1

e2 = V1(x2) + (p1 + p3)x2

e3 = V1(x3, v3)− p3v3

e4 = p1(v1 − x2)

e5 = p3(v3 − x2)

The fact that the Nash equilibrium maximizes W (x1, x2, x3) can be understood
by looking at a Lagrangian formulation of the problem of maximizing V1(x1, v1)+
V2(x2) + V3(x3, v3) under the constraints v1 = x2 and v3 = x2, and in which p1
and p2 are Lagrange multipliers for these constraints. Analogous to the way that
we search for a fixed point, one might imagine running an algorithm in which
each agent updates his decision variables in an improving direction:

ẋ1 = ∂V1/∂x1

v̇1 = ∂V1/∂v1 − p1

...

ṗ3 = v3 − x2

If all of the Vi are concave then this algorithm converges to the global maximum.

97 Games and Mechanism Design

24.3 Mechanism design for shared infrastructures

Suppose that a library of size Q can be built at cost c(Q). There are n users (or
agents) who will potentially share the library. Agent i will obtain utility θiu(Q).
However, the value of θi is his private information. It is public knowledge only
that θi has an a priori distribution with density function fi. For simplicity we
take fi = f in what follows.

We desire to design a mechanism, implemented so that (i) agents are asked to
reveal their θi, and then (ii) as a function of these revelations of θ1, . . . , θn, a size
Q is chosen, and agents are made to pay fees that cover its cost, c(Q).

Making use of the revelation principle, we can restrict attention to direct
mechanisms. Fix a mechanism and suppose that under this mechanism if agent i
declares θi, then the expected value of u(Q) is V (θi) and his expected fee is P (θi).
Knowing this, agent i will declare θi to be ti so as to maximize his net benefit of

θiV (ti)− P (ti).

If this is to be made maximal (and stationary) by choosing ti = θi then we need
θiV

′(θi)− P ′(θi) = 0. Integrating this gives

P (θi)− P (θ∗i) =

∫ θi

θ∗

i

wV ′(w)dw = θiV (θi)− θ∗i V (θ∗i)−
∫ θi

θ∗

i

V (w)dw,

where θ∗i is the least value of θi for which it would be worthwhile for agent i
to consider participating, and so θ∗i V (θ∗i) − Pi(θ

∗
i) = 0. As in Lecture 23, let

g(θi) = θi − [1− F (θi)]/f(θi). The revenue obtained from agent i will be

∫

θi≥θ∗

i

P (θi)f(θi)dθi =

∫

θi≥θ∗

i

[
θiV (θi)−

∫ θi

θ∗

i

V (w)dw

]
f(θi)dθi

=

∫

θ1

· · ·
∫

θn

φ(θi)

(
θi −

1− F (θi)

f(θi)

)
u(Q(θ1, . . . , θn))f(θ1) · · · f(θn) dθ1 . . . dθn

=

∫

θ1

· · ·
∫

θn

φ(θi)g(θi)u(Q(θ1, . . . , θn))f(θ1) · · · f(θn) dθ1 . . . dθn

= E[φ(θi)g(θi)u(Q(θ1, . . . , θn))],

where φ(θi) is 1 or 0 as θi ≥ θ∗i or θi < θ∗i .
Our aim is to maximize total welfare of E[

∑
i φ(θi)θiu(Q(θ1, . . . , θn))− c(Q)]

subject to the fees covering the cost. Suppose we impose only a weaker constraint,
that the expected fees cover expected cost, i.e.

∑

i

E[φ(θi)g(θi)u(Q(θ1, . . . , θn))] ≥
∑

i

E[c(Q(θ1, . . . , θn))].

The price of anarchy 98

This leads us to the Lagrangian of

L =

∫

θ1

· · ·
∫

θn

[
φ(θi)(θi + λg(θi))u(Q(θ1, . . . , θn))

− (1 + λ)c(Q(θ1, . . . , θn))

]
f(θ1) · · · f(θn) dθ1 . . . dθn.

To illustrate ideas, let us suppose that θi ∼ U [0, 1], so g(θi) = 2θi − 1. Then
the maximum of L is achieved by taking φ(θi) = 1 if θi + λg(θi) ≥ 0, i.e. if
θi ≥ λ/(2λ + 1) = θ∗i . Otherwise φi(θi) = 0. Note that θ∗i increases from 0 and
1/2 as λ increases from 0 to infinity. For a given λ ≥ 0 we know how to find the
φi. We also know that Q should be chosen to maximize the integrand, so

Q(θ1, . . . , θn) = argmax
Q

{
u(Q)

∑

i

max[θi + λg(θi), 0]− (1 + λ)c(Q)
}
.

The solution is completed by finding the value of λ such that the expected fees
obtained from the agents match expected cost.

There is more we can say about this problem. For instance, it is possible,
to take the above mechanism, in which expected fees cover expected cost, and
strengthen it to a mechanism in which actual fees cover actual cost.

The optimal mechanism is complicated. However, as n becomes large, one
can prove that nearly the same welfare can be achieved by a simple scheme that
announces that the library will be of size Q∗ and charges a fixed subscription
fee p∗ to any agent who then chooses to participate, which will be agents for
whom θiu(Q

∗)− p∗ ≥ 0. The values of parameters Q∗ and p∗ are chosen so that
nP (θiu(Q

∗) ≥ p∗) = c(Q∗) and nE[θi|θiu(Q∗) ≥ p∗]u(Q∗)− c(Q∗) is maximized.

24.4 The price of anarchy

The price of anarchy (PoA) is a measure of the inefficiency of selfish behavior.
It is the quotient of the reward that can be obtained under centralized control
to the lesser reward that is obtained at the worst Nash equilibrium of the game
which results when agents all act selfishly. So in the section above the PoA is the
quotient of the welfare that could be obtained if agents were to truthfully reveal
their θi (without any need for incentivizing), to the expected welfare obtained
when they must be incentivized to reveal their true θi.

In the case of costs, as in Example 22.2, the PoA is the ratio of the cost at
the worst Nash equilibrium to the lesser cost that is possible under centralized
control.

Index

2OPT, 60

acyclic, 31
affine transformation, 25
algorithm, 19
all-pay sealed-bid auction, 87
approximation algorithms, 55
arcs, 31
artificial variables, 13
ascending price auction, 87
assignment problem, 37

bargaining set, 76
barrier function, 50
basic, 8

feasible solution, 8, 9
solution, 9, 32

basis, 8, 9
Bellman’s equations, 42
Bellman-Ford algorithm, 43
bidder participation, 88
bimatrix game, 68, 73
bipartite graph, 35
branch and bound, 51

characteristic function, 79
circulation, 34
coalition, 79
combinatorial bidding, 95
common value, 87
complementary slackness conditions,

7
computable in polynomial time, 19
connected, 31
convex

function, 5
set, 5

cooperation, 68
cooperative game, 75
core, 80
cost, 31

Cournot equilibrium, 86
critical path, 41
cutset formulation of the TSP, 55
cycle, 31

Dijkstra’s algorithm, 44
direct revelation mechansims, 91
directed graph, 31
discriminatory auction, 94
dominates, 64, 80
dominating strategy, 64
dual problem, 2, 7
dual simplex algorithm, 16
duopoly, 85
Dutch auction, 87
dynamic programming, 42

ǫ-approximation algorithm, 58
economically efficient, 87
ellipsoid, 25

method, 25
English auction, 87
equilibrium pair, 66, 68
exact algorithms, 55
exponential time, 19
extreme point, 5

feasible, 1
spanning tree solution, 32

first price sealed-bid, 87
Ford-Fulkerson algorithm, 39
full-dimensional, 29

game theory, 63
genetic algorithms, 62
Gomory’s cutting plane method, 18
graph, 31

heuristic algorithms, 55
Hirsch conjecture, 24
Hitchcock transportation problem, 36
homogeneous auction, 94

99

INDEX 100

imputation, 79
incentive compatibility condition, 91
incentive compatible, 95
instance, 19

size, 19
interior point methods, 49

jointly dominated, 76

label-correcting algorithms, 42
label-setting algorithms, 42
labels, 41
Lagrangian, 1, 7, 32

multiplier, 1
Lemke-Howson algorithm, 72
linear complementarity problem, 73
lower value, 64
LP-relaxation, 38

MAX CUT problem, 47
maximin bargaining solution, 78
maximin criterion, 64
minimum cost flow, 32

problem, 31
multi-unit auction, 94

neighbourhood search, 59
network, 31
nodes, 31
non-basic, 8
non-degenerate, 8
nondeterministic polynomial, 20
normal form representation, 63
NP-complete, 21
NP-hard, 21
nucleolus, 82

oligopoly, 85
opportunity cost, 95

Pareto optimal, 76
partial information game, 87
participation fee, 93

path, 31
perfect information, 63
pivot, 11

column, 11
row, 11

polynomial reduction, 21
positive semidefinite matrix, 47
price of anarchy, 90, 98
prices, 7
primal problem, 2
primal-dual path following method,

50
private values, 87
pure strategies, 63, 64

reduced costs, 33
reservation price, 93
risk-averse, 90
risk-neutral, 90
running time, 19

saddle point solution, 64
second price sealed-bid, 87
semidefinite programming problem,

47
shadow prices, 7
Shapley values, 83
simulated annealing method, 61
simultaneous auction, 94
sink, 31
solution, 66
source, 31
spanning tree, 31

solution, 32
Strong Lagrangian, 2, 3
subnetwork, 31
subtour elimination formulation of the

TSP, 56
superadditivity, 79
supporting hyperplane, 3
symmetric game, 71

101 INDEX

symmetric independent private val-
ues model, 88

symmetric rendezvous search game,
48

tableau, 9
travelling salesman problem, 55
tree, 31

uncapacitated flows, 32
undirected graph, 31
uniform auction, 94
upper value, 64

value, 66
Vickrey auction, 87
Vickrey-Clarke-Groves (VCG) mech-

anism, 95
volume of a set, 25

walk, 31
weak duality theorem, 2
winner’s curse, 87
worst-case, 19

zero-sum, 63

	Lagrangian Methods
	Lagrangian methods
	The dual problem
	Strong Lagrangian
	Hyperplanes

	Linear Programming
	Convexity and Lagrangian methods
	Linear programs
	Duality of linear programs
	Derivation of the dual LP problem
	Shadow prices
	Conditions for optimality
	Basic insight
	Basic solutions

	The Simplex Algorithm
	Algebraic viewpoint
	Simplex tableau
	Test for optimality
	Choice of new bfs
	Simplex algorithm
	Simplex algorithm: tableau form

	Advanced Simplex Procedures
	Two phase simplex method
	Primal and dual algorithms
	Dual simplex algorithm

	Complexity of Algorithms
	Theory of algorithmic complexity
	The Travelling Salesman Problem
	Decision Problems
	¶and NP problems
	Polynomial reduction
	NP-completeness
	Examples of NP-complete problems

	Computational Complexity of LP
	Running time of the simplex algorithm
	The size of an LP instance
	Equivalent feasibility problem
	Preliminaries for ellipsoid method
	Intuitive description of the ellipsoid method

	Ellipsoid Method
	Khachiyan's ellipsoid algorithm
	Sketch proof for the ellipsoid algorithm

	The Network Simplex Algorithm
	Graph terminology
	The minimum cost flow problem
	Spanning tree solutions
	Optimality conditions
	Pivoting to change the basis
	Finding the initial feasible tree solution
	Integrality of optimal solutions

	Transportation and Assignment Problems
	Transportation problem
	Tableau form
	Assignment problem
	Integer constraints
	Maximum flow problem

	Maximum Flow and Shortest Path Problems
	Max-flow min-cut theorem
	Project management
	The shortest path problem
	Bellman's equations

	Algorithms for Shortest Path Problems
	Bellman-Ford algorithm
	Dijkstra's algorithm
	Reformulation with non-negative cij
	Minimal spanning tree problem
	Prim's greedy algorithm for MST

	Semidefinite Programming
	MAX CUT problem
	Semidefinite programming problem
	Symmetric rendezvous search game
	Interior point methods for LP and SDP

	Branch and Bound
	Branch and Bound technique
	A knapsack problem
	Dakin's method

	Travelling Salesman Problem
	Categories of algorithms
	Exact methods
	Polynomial formulation of TSP
	Solution using branch and bound
	Approximation algorithm for the TSP

	Heuristic Algorithms
	Heuristics for the TSP
	Neighbourhood search
	Neighbourhood search methods for TSP
	Simulated annealing
	Genetic algorithms

	Two-person Zero-sum Games
	Terminology
	Two-person zero-sum games
	Maximin criterion
	Mixed strategies
	Minimax theorem
	Equilibrium pairs

	Solution of Two-person Games
	LP formulation of a zero-sum game
	Two-person non-zero-sum games
	Nash's theorem
	Finding an equilibrium pair

	Construction of a Nash Equilibrium
	Symmetric games
	Lemke-Howson algorithm
	Bimatrix games
	Linear complementarity problem
	Linear programming as a LCP
	Lemke's algorithm

	Cooperative Games
	Quadratic programming as a LCP
	Cooperative games
	Bargaining
	Nash bargaining axioms
	Nash's arbitration procedure
	Maximin bargaining solutions

	Coalitional Games
	Characteristic function
	Imputations
	The core
	Oil market game
	The nucleolus

	Shapley Value and Market Games
	Shapley value
	Market games
	Competition between firms
	Cournot equilibrium

	Auctions
	Types of auctions
	The revenue equivalence theorem
	Risk aversion

	Auction Design
	The revelation principle
	Optimal auctions
	Multi-unit auctions

	Games and Mechanism Design
	Combinatorial auctions
	Distributed decisions via price mechanisms
	Mechanism design for shared infrastructures
	The price of anarchy

	Index

