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Rendezvous search on a sphere

Alpern (1976) proposed the following problem.

Two astronauts land at
random spots on a
planet (which is
assumed to be a uniform
sphere, without any
known distinguishing
marks or directions)
How should they move
so as to be within 1
kilometre of one another
in the least expected
time?



Mozart cafe problem

Two friends travelling independently to Vienna wish to meet for a
coffee on the afternoon they arrive. Neither has been to Vienna
before, but they guess it must have a Mozart Cafe. So in an email
exchange they agree to meet at the Mozart Cafe.

Unfortunately, upon arrival they each discover that there are in
fact m > 1 Mozart Cafes in Vienna.

Assuming they have no way to communicate, what should they do?



Telephone coordination game

In each of two rooms there is a player and n telephones.

Phones are connected pairwise in some unknown fashion.

I II

At attempts 1, 2, . . . , the players pick up phones and say “hello”.

Their common aim is to minimize the expected number of
attempts until they hear one another.



Symmetric rendezvous search on n locations

Assumptions

1. Two players are randomly placed at two distinct on n vertices
of complete graph Kn.

2. No common labelling of the locations.

3. At steps 1, 2, . . . , each player visits a location.

4. Players adopt identical (randomizing) strategies.

What should their common strategy be if they wish to meet in the
least expected number of steps?



Some possible strategies

Move-at-random If at each discrete step 1, 2, . . . each player were
to locate himself at a randomly chosen location, then
the expected time to meet would be n. E.g.,

ET = 1 +
n− 1

n
ET =⇒ ET = n .

Wait-for-mommy Suppose the players could break symmetry (or
had some prior agreement). Now it is best for one
player to remain stationary while the other tours all
other locations in random order. They will meet (on
average) half way through the tour. So

ET = 1
n−1
(
1 + 2 + · · ·+ (n− 1)

)
= 1

2n .
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Wait-for-mommy

“According to a recent National Geographic Video, the mother kangaroo

teaches its baby to find the nearest bush and hide (wait) when the two

become separated.” (Alpern)

E.J. Anderson and R.R. Weber. The rendezvous problem on discrete locations. J.

Appl. Prob. 27, 839-851, 1990.

Theorem 1 In the asymmetric rendezvous search game on n
locations the optimal strategy is wait-for-mommy.
(Anderson-Weber, 1990)



The Anderson-Weber strategy on K3

On K3, AW specifies that in each block of two consecutive steps,
each player should, independently of the other, either stay at his
initial location or tour the other two locations in random order,
doing these with respective probabilities p = 1

3 and 1− p = 2
3 .

AW gives ET = 5
2 , whereas move-at-random gives ET = 3.

Theorem 2 On K3, AW minimizes ET .

Corollary. w = 5
2 on K3.



Formulation of the problem

Suppose the three locations are arranged around a circle.

I

a

bc

Each player calls his home location ‘a’.

Each player chooses a direction he calls ‘clockwise’ and the labels
that are one and two locations clockwise of home as ‘b’ and ‘c’
respectively.

A sequence of a player’s moves can now be described.
E.g., a player’s first 6 moves might be ‘ababbc’.



Make the problem easier by providing the players with a common
notion of clockwise. (We’ll see this does not actually help.)

Player II starts one position clockwise of Player I.

I

II

B1 =

1 1 0
0 1 1
1 0 1

 .

Matrix B1 has ‘1’ if after the first step they do not meet, and ‘0’ if
they do.

Rows of B1 correspond to I playing a, b or c.

Columns of B1 correspond to II playing a, b or c.



The minimum of P (T > 2)

The indicator matrix for not meeting within 2 steps is

B2 := B1 ⊗B1 =

B1 B1 0
0 B1 B1

B1 0 B1

 =



1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0 0
0 0 0 1 1 0 1 1 0
0 0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1
1 1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1 1
1 0 1 0 0 0 1 0 1


Rows 1–9 (and columns 1–9) correspond respectively to Player I
(or II) playing patterns of moves over the first two steps of
aa, ab, ac, ba, bb, bc, ca, cb, cc.

ET =
∑∞

k=0 P (T > k).



AW minimizes P (T > 2)

Let B̄2 = 1
2(B2 +B>2 ) (to account for II starting either one or two

locations clockwise of I).

P (T > 2) = p>B̄2p = p>


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

p

Minimizing p>B̄2p is a difficult quadratic programming problem.

Minimizer is p> = 1
3(1, 0, 0, 0, 0, 1, 0, 1, 0), where ‘aa’, ‘bc’ and ‘cb’

are to be chosen equally likely, (which is AW).

Another minimizer is p> = (0, 1, 0, 1, 0, 0, 0, 0, 1), where ‘ab’, ‘ba’
and ‘cc’ are to be chosen equally likely.



A quadratic programming problem

Hard to minimize p>B̄2p because B̄2 is not positive semidefinite.
It’s eigenvalues are {4, 1, 1, 1, 1, 1, 1,−1

2 ,−
1
2}.

This means that there can be local minima to p>B̄2p.

E.g., p = 1
9(1, 1, 1, 1, 1, 1, 1, 1, 1), is a local minimum; with

p>B̄2p = 4
9 . Not a global minimum.

In general, if a matrix C is not positive semidefinite, the following
problem is NP-hard:

minimize p>Cp : p ≥ 0 , 1>p = 1 .



A method for finding lower bounds

We can obtain a lower bound on the solution as follows.

min{p>Cp : p ≥ 0 , 1>p = 1}
= min{trace(Cpp>) : p ≥ 0 , 1>p = 1}
≥ min{trace(CX) : X � 0 , X ≥ 0 , trace(JX) = 1} ,

where J = 11> is a matrix of all 1s.

This is by using the fact that if p satisfies the l.h.s. constraints,
then X = pp> satisfies the r.h.s. constraints.



Semidefinite programming problems

‘linear programming for the 21st century’.

Given symmetric matrices C,A1, . . . , Am, consider the problem

minimize {trace(CX)

: X � 0 , X ≥ 0 , trace(AiX) = bi, i = 1, . . . ,m} .

This is a Semidefinite Programming Problem (SDP).

The minimization is over the components of X.
This can mean lots of decision variables.
If X is j × j and symmetric, then there are j(j − 1)/2 variables.

SDPs can be solved to any degree of numerical accuracy using
interior point algorithms (e.g., using Matlab and sedumi).



A lower bound on p>B̄2p

As a relaxation of the quadratic program:

minimize {p>B̄2p : p ≥ 0 , 1>p = 1} ,

we consider the SDP:

minimize {trace(B̄2X) : X � 0 , X ≥ 0 , trace(J2X) = 1} ,

where J2 is the 9× 9 matrix of 1s. There are 36 decision variables.
We find that the minimum value is 1/3.

But p>B̄2p = 1/3 for p> = 1
3(1, 0, 0, 0, 0, 1, 0, 1, 0).

So we may conclude that 1/3 is the minimal value of p>B̄2p.



Lower bounds on wk

Solving SDPs, we get lower bounds on
wk = min E[min{T, k + 1}].

Lower bounds when players have a common clockwise:

k 1 2 3 4

wk
5
3 2 20

9
21
9

Lower bounds when players have no common clockwise:

k 1 2 3 4 5

wk
5
3 2 20

9
21
9

65
27

‡



Observations

1. These lower bounds so prove that AW minimizes
E[min{T, k + 1}] as far as k = 4.

2. However it is computationally infeasible to go much further.
The number of decision variables in the SDP is 3240 when
k = 4. For k = 5 it would be 29403.
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The optimality of AW for K3

Theorem 3 The AW strategy is optimal for the symmetric
rendezvous search game on K3, minimizing E[min{T, k + 1}] to
wk for all k = 1, 2, . . . , where

wk =


5
2 −

5
23−

k+1
2 , when k is odd,

5
2 −

3
23−

k
2 , when k is even.

Consequently, the minimal achievable value of ET is w = 5
2 .

{wk}∞0 = {1, 53 , 2,
20
9 ,

21
9 ,

65
27 , . . .}.



The minimum of E[min{T, 3}]

We can take p> = 1
3(1, 0, 0, 0, 0, 1, 0, 1, 0) and

M2 =



3 3 2 3 3 2 1 1 1

2 3 3 2 3 3 1 1 1

3 2 3 3 2 3 1 1 1

1 1 1 3 3 2 3 3 2

1 1 1 2 3 3 2 3 3

1 1 1 3 2 3 3 2 3

3 3 2 1 1 1 3 3 2

2 3 3 1 1 1 2 3 3

3 2 3 1 1 1 3 2 3



≥ H2 =



3 3 2 3 3 2 1 1 0

2 3 3 2 3 3 0 1 1

3 2 3 3 2 3 1 0 1

1 1 0 3 3 2 3 3 2

0 1 1 2 3 3 2 3 3

1 0 1 3 2 3 3 2 3

3 3 2 1 1 0 3 3 2

2 3 3 0 1 1 2 3 3

3 2 3 1 0 1 3 2 3


.



Eigenvalues of M̄2 are {19, 52 ,
5
2 , 1, 1, 1, 1,−

1
2 ,−

1
2}, so it is not

positive semidefinite.
Eigenvalues of H̄2 are {18, 3, 3, 32 ,

3
2 , 0, 0, 0, 0} so H̄2 � 0. Here
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.

Thus p satisfies a Kuhn-Tucker condition for there to be a local
minimum of p>H̄2p = 2.
Since H̄2 � 0, a local minimum is also a global minimum.
So w2 = 2. This is achieved by AW.



Minimizing E[min{T, k + 1}]

Similarly, consider the problem of minimizing E[min{T, k + 1}].

This is equivalent to minimizing p>M̄kp, where

Mk = Jk +B1 ⊗ Jk−1 + · · ·+Bk .

As we did with H2 for M2, we look for Hk, such that Hk ≤Mk

and H̄k � 0. This is a semidefinite programming problem

maximize{trace(JkHk) : Hk ≤Mk, H̄k � 0} .



How can we find Hk?

maximize{trace(J2H2) : H2 ≤M2, H̄2 � 0} .

H2 =



3.0000 2.7951 1.8324 2.8005 2.8005 2.0000 0.8857 1.0000 0.8857
1.8324 3.0000 2.7951 2.0000 2.8005 2.8005 0.8857 0.8857 1.0000
2.7951 1.8324 3.0000 2.8005 2.0000 2.8005 1.0000 0.8857 0.8857
0.8857 1.0000 0.8857 3.0000 2.7951 1.8324 2.8005 2.8005 2.0000
0.8857 0.8857 1.0000 1.8324 3.0000 2.7951 2.0000 2.8005 2.8005
1.0000 0.8857 0.8857 2.7951 1.8324 3.0000 2.8005 2.0000 2.8005
2.8005 2.8005 2.0000 0.8857 1.0000 0.8857 3.0000 2.7951 1.8324
2.0000 2.8005 2.8005 0.8857 0.8857 1.0000 1.8324 3.0000 2.7951
2.8005 2.0000 2.8005 1.0000 0.8857 0.8857 2.7951 1.8324 3.0000



and minp{p>H2p} = 1.9999889. But minp{p>H2p} = 2 using
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2 3 3 2 3 3 0 1 1
3 2 3 3 2 3 1 0 1
1 1 0 3 3 2 3 3 2
0 1 1 2 3 3 2 3 3
1 0 1 3 2 3 3 2 3
3 3 2 1 1 0 3 3 2
2 3 3 0 1 1 2 3 3
3 2 3 1 0 1 3 2 3


.
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and minp{p>H2p} = 1.9999889. But minp{p>H2p} = 2 using
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.



How to construct Hk

Let us search for Hk of a special form. For i = 0, . . . , 3k − 1 we
write ibase 3 = i1 · · · ik (keeping k digits, including leading 0s); so
i1, . . . , ik ∈ {0, 1, 2}. Define

Pi = Pi1··· ik = P i1
1 ⊗ · · · ⊗ P

ik
1 ,

where

P1 =

0 1 0
0 0 1
1 0 0

 .

Observe that Mk =
∑

imk(i)Pi, where mk is the first row of Mk.
This motivates seeking Hk of the form

Hk =

3k−1∑
i=0

xk(i)Pi .



Concluding steps of the proof

We want

1. Mk =
∑

imk(i)Pi ≥ Hk =
∑

i xk(i)Pi.

2. H̄k � 0.

Since P0, . . . , P3k−1 commute they have common eigenvectors.
Let ω = −1

2 + i12
√

3, a cube root of 1. Let Vk = Uk + iWk.

Vk = V1 ⊗ Vk−1 , where V1 =

1 1 1
1 ω ω2

1 ω2 ω

 .

Columns of Vk are eigenvectors of the Pi and also of Mk.
Columns of Uk are eigenvectors of the P̄i and also of M̄k.

Our SDP becomes equivalent to a LP, with constraints
1. mk ≥ xk and 2. Ukxk ≥ 0.



We show that we may take Hk =
∑

i xk(i)Pi, where

x1 = (2, 2, 1)> x2 = (3, 3, 2, 3, 3, 2, 1, 1, 0)>

and choose ak so that for k ≥ 3,

xk =1k + (1, 0, 0)> ⊗ xk−1
+ (0, 1, 0)> ⊗ (ak, ak, 2, 2, ak, 2, 1, 1, 1)> ⊗ 1k−3 .

Here ak is chosen maximally such that Ukxk ≥ 0 and mk ≥ xk.

All rows of Hk have the same sum, and so p>Hkp is minimized by
p = (1/3k)1k, and the minimum value is p>Hkp = 1>k xk/3

k.

So the theorem is true provided 1>xk = 3kwk.



1>xk = 3kwk iff we can take

ak =


3− 1

3(k−3)/2
, when k is odd,

3− 2

3(k−2)/2
, when k is even.

Note that ak increases monotonically in k, from 2 towards 3. As
k →∞ we find ak → 3 and 1>k xk/3

k → 5
2 .

Finally, we prove that with these ak we have always have

1. mk ≥ xk, (implying Mk ≥ Hk).

2. Ukxk ≥ 0, (implying H̄k � 0).

Both are proved by induction. The first is easy and the second is
hard. To prove the second we use the recurrence relation for xk to
find recurrences relations for components of the vectors Ukxk, and
then show that all components are nonnegative.



Conjectures

Conjecture: The minimum expected time to meet on n locations is
increasing in n.

Conjecture: AW is optimal on 3 locations when there is
over-looking, i.e.

B1 =

1 1 α
α 1 1
1 α 1

 , Bk := B1 ⊗Bk−1.

Conjecture: AW is asymptotically optimal, in the sense that one
can do no better than ET ∼ 0.8289n.
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Conjecture: AW is optimal on 3 locations when there is
over-looking, i.e.

B1 =

1 1 α
α 1 1
1 α 1

 , Bk := B1 ⊗Bk−1.

Conjecture: AW is asymptotically optimal, in the sense that one
can do no better than ET ∼ 0.8289n.



Symmetric rendezvous search on the line

Two players are placed 2 units apart on a line, randomly facing left
or right. At each step each player must either move one unit
forward or backwards. Each player knows that the other player is
equally likely to be in front or behind him, and equally likely to be
facing either way. How can they meet in the least expected time?

?



Conjectures

?

4.1820 ≤ w ≤ 4.2574 (Improve these bounds?)

Conjecture: w = 4.25 has been made by Donglei Du.

Conjecture: The optimal strategy is not Markovian.

We have seen that on 3 locations it is no help for players to be
given a common notion of clockwise. Similarly, here:

Conjecture: it does not to help if players are told that they are
initially faced the same way.
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