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Mathematics of Operational Research

In these notes I attempt a ‘Goldilocks path’ by being neither too detailed or too brief.
These 2015 notes are newly revised, drawing heavily on notes written by Felix Fischer
when he lectured the course for the four preceding years.

• Each lecture has a title and focuses upon just one or two ideas.

• The notes for each lecture are usually just 4–5 pages.
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1 Lagrangian Methods

We consider an optimization problem, denoted Pb, having the standard form

minimize f(x)

subject to h(x) = b
x ∈ X.

(1.1)

Example 1.1. Minimize x21 + x22 subject to a1x1 + a2x2 = b and x1, x2 ≥ 0 for some
given a1, a2 and b.

It consists of a vector x ∈ Rn of decision variables, an objective function f :
Rn → R, a functional constraint h(x) = b where h : Rn → Rm and b ∈ Rm, and a
regional constraint x ∈ X where X ⊆ Rn. The set X(b) = {x ∈ X : h(x) = b} is
called the feasible set, and Pb is called feasible if X(b) is non-empty and bounded
if f(x) is bounded from below on X(b). A vector x∗ is called optimal if it is in the
feasible set and minimizes f among all vectors in the feasible set. The assumption
that the functional constraint holds with equality is without loss of generality since an
inequality constraint like g(x) ≤ b can be re-written as g(x) + z = b, where z is a new
slack variable with the additional regional constraint z ≥ 0.

1.1 Lagrangian methods

A beautiful and powerful method for solving constrained optimization problems is that
of Lagrange multipliers. The idea is to reduce constrained optimization to uncon-
strained optimization, and to take the (functional) constraints into account by aug-
menting the objective function with a weighted sum of them. To this end, define the
Lagrangian associated with (1.1) as

L(x, λ) = f(x)− λT (h(x)− b), (1.2)

where λ ∈ Rm is a vector of Lagrange multipliers.

The following result provides a condition under which minimizing the Lagrangian, sub-
ject only to the regional constraints, yields a solution to the original constrained prob-
lem. The result is easy to prove, yet extremely useful in practice.

Theorem 1.2 (Lagrangian Sufficiency Theorem). Suppose x ∈ X and λ ∈ Rm such
that L(x, λ) = infx′∈X L(x′, λ) and h(x) = b. Then x is an optimal solution of (1.1).

Proof. We have that

min
x′∈X(b)

f(x′) = min
x′∈X(b)

[f(x′)− λT (h(x′)− b)]

≥ min
x′∈X

[f(x′)− λT (h(x′)− b)]

= f(x)− λT (h(x)− b) = f(x).

1



Equality in the first line holds because h(x′) − b = 0 when x′ ∈ X(b). The inequality
on the second line holds because the minimum is taken over a larger set. In the third
line we finally use that x minimizes L and that h(x) = b.

Two remarks are in order. First, a vector λ of Lagrange multipliers satisfying the
conditions of the theorem is not guaranteed to exist in general, but it does exist for a
large class of problems.

Second, if we wish to find an optimal solution our general strategy is to minimize L(x, λ)
for all values of λ, in order to obtain a minimizer x∗(λ) that depends on λ, and then
find λ∗ such that x∗(λ∗) satisfies the constraints.

Let us apply this strategy to a concrete example.

Example 1.1. Consider minimizing x21 +x22 subject to a1x1 +a2x2 = b and x1, x2 ≥ 0
for some a1, a2, b ≥ 0. The Lagrangian is

L(x1, x2), λ) = x21 + x22 − λ(a1x1 + a2x2 − b).

Taking partial derivaties reveals that it has a unique stationary point at (x1, x2) =
(λa1/2, λa2/2). We now choose λ so that the constraint a1x1 + a2x2 = b is satisfied,
which happens for λ = 2b/(a21 + a22). Since since ∂2L/∂2x21 > 0, ∂2L/∂2x22 > 0,
and ∂2L/(∂x1∂x2) = 0 for this value of λ, we have found a minimum, having value
b2/(a21 + a22) at (x1, x2) = (a1b, a2b)/(a

2
1 + a22).

More generally, to

minimize f(x) subject to h(x) ≤ b, x ∈ X, (1.3)

we proceed as follows:

1. Introduce a vector z of slack variables to obtain the equivalent problem

minimize f(x) subject to h(x) + z = b, x ∈ X, z ≥ 0.

2. Compute the Lagrangian L(x, z, λ) = f(x)− λT (h(x) + z − b).
3. Define the set

Y = {λ ∈ Rm : infx∈X,z≥0 L(x, z, λ) > −∞}.

4. For each λ ∈ Y , minimize L(x, z, λ) subject only to the regional constraints, i.e.
find x∗(λ), z∗(λ) satisfying

L(x∗(λ), z∗(λ), λ) = infx∈X,z≥0 L(x, z, λ). (1.4)

5. Find λ∗ ∈ Y so that (x∗(λ∗), z∗(λ∗)) is feasible, i.e. so x∗(λ∗) ∈ X, z∗(λ∗) ≥ 0,
and h(x∗(λ∗)) + z∗(λ∗) = b. By Theorem 1.2, x∗(λ∗) is optimal for (1.3).

2



1.2 The Lagrange dual

A useful concept arising from the method of Lagrange multipliers is that of a dual prob-
lem. Denote by φ(b) = infx∈X(b) f(x) the solution of (1.1), and define the (Lagrange)
dual function g : Rm → R as the minimum value of the Lagrangian over X, i.e.

g(λ) = inf
x∈X

L(x, λ).

Then, for all λ ∈ Rm,

inf
x∈X(b)

f(x) = inf
x∈X(b)

L(x, λ) ≥ inf
x∈X

L(x, λ) = g(λ), (1.5)

i.e. the dual function provides a lower bound on the optimal value of (1.1). Since this
holds for every value of λ, it is interesting to choose λ to make the lower bound as large
as possible. This motivates the dual problem, defined as

maximize g(λ)

subject to λ ∈ Y,

where Y = {λ ∈ Rm : g(λ) > −∞}. In this context (1.1) is called the primal problem.
Equation (1.5) is a proof of the weak duality theorem, which states that

inf
x∈X(b)

f(x) ≥ max
λ∈Y

g(λ).

The primal problem (1.1) is said to satisfy strong duality if this holds with equality,
i.e. if there exists λ such that

φ(b) = g(λ).

If this is the case, then (1.1) can be solved using the method of Lagrangian multipli-
ers. We can of course just try the method and see whether it works, as we did for
Example 1.1. For certain important classes of optimization problems, however, it can
be guaranteed that strong duality always holds.

1.3 Supporting hyperplanes

We say that φ has a (non-vertical) supporting hyperplane at b if there exists finite
λ ∈ Rm, such that for all c ∈ Rm

φ(c) ≥ φ(b) + λT (c− b).

Theorem 1.3. The following are equivalent:

1. there exists a (non-vertical) supporting hyperplane to φ at b;

2. the problem satisfies strong duality.

3



Proof. Suppose there exists a supporting hyperplane to φ at b. This means that there
exists λ ∈ Rm such that

φ(b) = inf
c∈Rm

(
φ(c)− λT (c− b)

)
= inf
c∈Rm

inf
x∈X(c)

(
f(x)− λT (h(x)− b)

)
= inf
x∈X

L(x, λ)

= g(λ).

Now suppose that the problem satisfies strong duality. Then there exists λ ∈ Rm such
that

φ(b) ≤ L(x, λ) = f(x)− λT (h(x)− b)

Minimizing the right hand side over x ∈ X(c) yields that for all c ∈ Rm

φ(b) ≤ φ(c)− λT (c− b),

φ(b)− λT (b− c) ≤ φ(c).

This describes a supporting hyperplane to φ at b.

We can also give an interpretation of the dual problem in terms of supporting hyper-
planes. Consider the hyperplane given by α : Rm → R with

α(c) = β − λT (b− c).

This hyperplane has intercept β at b and slope λ. We now try to find φ(b) as follows:

1. For each λ, find βλ = max{β : α(c) ≤ φ(c) for all c ∈ Rm}.
2. Choose λ to maximize βλ.

This is the dual problem, since

g(λ) = inf
x∈X

L(x, λ)

= inf
c∈Rm

inf
x∈X(c)

(
f(x)− λT (h(x)− b)

)
= inf
c∈Rm

(
φ(c)− λT (c− b)

)
= sup

{
β : β − λT (b− c) ≤ φ(c) for all c ∈ Rm

}
= βλ

We again see the weak duality result as maxλ βλ ≤ φ(b), and that equality holds if
there is a supporting hyperplane to φ at b.

In the next lecture we will see that a supporting hyperplane exists for all b ∈ Rm if φ(b)
is a convex function of b, and we will give sufficient conditions for this to be the case.

4



cb

φ(c)

α(c) = βλ − λT (c− b)

βλ

cb

φ(c)

α(c) = βλ − λT (c− b)

βλ

Figure 1: Geometric interpretation of the dual with optimal value g(λ) = βλ. In the
situation on the left strong duality holds, and βλ = φ(b). In the situation on the right,
strong duality does not hold, and βλ < φ(b).

Homework

1. Consider Pb when f(x) = −x, and in two cases

(a) h(x) =
√
x, b = 2;

(b) h(x) = x2, b = 16.

What happens when you try to solve these problems using Lagrangian methods?
In each case, find φ(b) and explain whether strong duality holds.

2. Given a1, . . . , an > 0,

minimize −
∑n
i=1 log(ai + xi)

subject to x1, . . . , xn ≥ 0 and
∑
i xi = b.

The optimal x corresponds to one that can be found by a so-called ‘water filling
algorithm’. Imagine placing bars of heights ai side by side in the fashion of a
histogram and then flooding above these bars so as to cover area of b. Draw a
picture to illustrate this idea.

5



2 Convex and Linear Optimization

2.1 Convexity and strong duality

A set S ⊆ Rn is convex set if for all δ ∈ [0, 1], x, y ∈ S implies that δx+ (1− δ)y ∈ S.
A function f : S → R is called convex function if for all x, y ∈ S and δ ∈ [0, 1],
δf(x) + (1− δ)f(y) ≥ f(δx+ (1− δ)y). A point x ∈ S is called an extreme point of S
if for all y, z ∈ S and δ ∈ (0, 1), x = δy+(1−δ)z implies that x = y = z. A point x ∈ S
is called an interior point of S if there exists ε > 0 such that {y : ||y− x||2 ≤ ε} ⊆ S.
The set of all interior points of S is called the interior of S.

We saw in the previous lecture that strong duality is equivalent to the existence of a
supporting hyperplane. The following result gives a sufficient condition for this.

Theorem 2.1 (Supporting Hyperplane Theorem). Suppose that φ is convex and b ∈ R
lies in the interior of the set of points where φ is finite. Then there exists a (non-
vertical) supporting hyperplane to φ at b.

A convex optimization problem is one in which the objective function and feasible
region are convex. The following identifies a condition that guarantees convexity of φ.

Theorem 2.2. Let

φ(b) = min{f(x) : h(x) ≤ b, x ∈ X}.

Suppose X, f and h are convex. Then φ is convex.

Proof. Consider b1, b2 ∈ Rm such that φ(b1) and φ(b2) are defined, and let δ ∈ [0, 1] and
b = δb1+(1−δ)b2. Further consider x1 ∈ X(b1), x2 ∈ X(b2), and let x = δx1+(1−δ)x2.
Then convexity of X implies that x ∈ X, and convexity of h that

h(x) = h(δx1 + (1− δ)x2)

≤ δh(x1) + (1− δ)h(x2)

= δb1 + (1− δ)b2
= b.

Thus x ∈ X(b), and by convexity of f ,

φ(b) ≤ f(x) = f(δx1 + (1− δ)x2) ≤ δf(x1) + (1− δ)f(x2).

This holds for all x1 ∈ X(b1) and x2 ∈ X(b2), so taking infima on the right hand side
yields

φ(b) ≤ δφ(b1) + (1− δ)φ(b2).

Observe that an equality constraint h(x) = b is equivalent to constraints h(x) ≤ b and
−h(x) ≤ −b. In this case, the above result requires that X, f , h, and −h are all convex,
which in particular requires that h is linear.

6



2.2 Linear programs

A linear program is an optimization problem in which the objective and all constraints
are linear. It has the form

minimize cTx

subject to aTi x ≥ bi, i ∈M1

aTi x ≤ bi, i ∈M2

aTi x = bi, i ∈M3

xj ≥ 0, j ∈ N1

xj ≤ 0, j ∈ N2

where c ∈ Rn is a cost vector, x ∈ Rn is a vector of decision variables, and constraints
are given by ai ∈ Rn and bi ∈ R for i ∈ {1, . . . ,m}. Index sets M1,M2,M3 ⊆ {1, . . . ,m}
and N1, N2 ⊆ {1, . . . , n} are used to distinguish between different types of constraints.

An equality constraint aTi x = bi is equivalent to the pair of constraints aTi ≤ bi and
aTi x ≥ bi, and a constraint of the form aTi x ≤ bi can be rewritten as (−ai)Tx ≥ −bi.
Each occurrence of an unconstrained variable xj can be replaced by x+j + x−j , where

x+j and x−j are two new variables with x+j ≥ 0 and x−j ≤ 0. We can thus write every
linear program in the general form

min {cTx : Ax ≥ b, x ≥ 0} (2.1)

where x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. Observe that constraints of the form xj ≥ 0
and xj ≤ 0 are just special cases of constraints of the form aTi x ≥ bi, but we often
choose to make them explicit.

A linear program of the form

min {cTx : Ax = b, x ≥ 0} (2.2)

is said to be in standard form. The standard form is of course a special case of the
general form. On the other hand, we can also bring every general form problem into
the standard form by replacing each inequality constraint of the form aTi x ≤ bi or
aTi x ≥ bi by a constraint aTi x + si = bi or aTi x − si = bi, where si is a new so-called
slack variable, and an additional constraint si ≥ 0.

The general form is typically used to discuss the theory of linear programming, while the
standard form is more convenient when designing algorithms for linear programming.

Example 2.3. Consider the following linear program, as illustrated in Figure 2:

minimize −(x1 + x2)
subject to x1 + 2x2 ≤ 6

x1 − x2 ≤ 3
x1, x2 ≥ 0

7



Solid lines indicate sets of points for which one of the constraints is satisfied with
equality. The feasible set is shaded. Dashed lines, orthogonal to the cost vector c,
indicate sets of points for which the value of the objective function is constant. The
optimal value over the feasible set is attained at point C.

x2 = 0

x1 = 0

x1 + 2x2 = 6

x1 − x2 = 3

c

x1 + x2 = 0

x1 + x2 = 2

x1 + x2 = 5

A

B

C

D

E

F

Figure 2: Geometric interpretation of the linear program of Example 2.3

2.3 Linear program duality

Consider problem (2.1) and introduce slack variables z to turn it into

min {cTx : Ax− z = b, x, z ≥ 0}.

We have X = {(x, z) : x ≥ 0, z ≥ 0} ⊆ Rm+n. The Lagrangian is given by

L((x, z), λ) = cTx− λT (Ax− z − b) = (cT − λTA)x+ λT z + λT b

and has a finite minimum over X if and only if

λ ∈ Y = {µ ∈ Rm : cT − µTA ≥ 0, µ ≥ 0}.

For λ ∈ Y , the minimum of L((x, z), λ) is attained when both (cT − λTA)x = 0 and
λT z = 0, and thus

g(λ) = inf
(x,z)∈X

L((x, z), λ) = λT b.

We obtain the dual
max {bTλ : ATλ ≤ c, λ ≥ 0}. (2.3)

The dual of (2.2) can be determined analogously as max {bTλ : ATλ ≤ c}. This differs
from (2.3) in that the sign of λ is now unconstrained.
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2.4 Complementary slackness

An important relationship between primal and dual solutions is provided by conditions
known as complementary slackness. Complementary slackness requires that slack
does not occur simultaneously in a variable, of the primal or dual, and the corresponding
constraint, of the dual or primal. Here, a variable is said to have slack if its value is
non-zero, and an inequality constraint is said to have slack if it does not hold with
equality. It is not hard to see that complementary slackness is a necessary condition
for optimality. Indeed, if complementary slackness was violated by some variable and
the corresponding constraint, reducing the value of the variable would reduce the value
of the Lagrangian, contradicting optimality of the current solution. Recall that the
variables of the dual correspond to the Lagrange multipliers. The following result
formalizes this intuition.

Theorem 2.4. Let x and λ be feasible solutions for the primal (2.1) and the dual (2.3),
respectively. Then x and λ are optimal if and only if they satisfy complementary slack-
ness, i.e. if

(cT − λTA)x = 0 and λT (Ax− b) = 0. (2.4)

Proof. Since x and λ are feasible, (2.4) holds if and only if (cT−λTA)x+λT (Ax−b) = 0.
But this is equivalent to cTx = λT b, which holds if and only if x and λ are optimal.

2.5 Shadow prices

A more intuitive understanding of Lagrange multipliers can be obtained by again
viewing (1.1) as a family of problems parameterized by b ∈ Rm. As before, let
φ(b) = inf{f(x) : h(x) ≤ b, x ∈ Rn}. It turns out that at the optimum, the Lagrange
multipliers equal the partial derivatives of φ.

Theorem 2.5. Suppose that f and h are continuously differentiable on Rn, and that
there exist unique functions x∗ : Rm → Rn and λ∗ : Rm → Rm such that for each
b ∈ Rm, h(x∗(b)) = b and f(x∗(b)) = φ(b) = inf{f(x)− λ∗(b)T (h(x)− b) : x ∈ Rn}. If
x∗ and λ∗ are continuously differentiable, then

∂φ

∂bi
(b) = λ∗i (b).

Proof. We have that

φ(b) = f(x∗(b))− λ∗(b)T (h(x∗(b))− b)
= f(x∗(b))− λ∗(b)Th(x∗(b)) + λ∗(b)T b.
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Taking partial derivatives

∂φ(b)

∂bi
=

n∑
j=1

(
∂f

∂xj
(x∗(b))− λ∗(b)T ∂h

∂xj
(x∗(b))

)
∂x∗j
∂bi

(b)

− ∂λ∗(b)T

∂bi
(h(x∗(b))− b) + λ∗(b)T

∂b

∂bi
.

The first term on the right-hand side is zero, because L(x, λ∗(b)) is stationary with
respect to xj at x∗(b). The second term is zero as well, because x∗(b) is feasible and
thus (h(x∗(b))− b) = 0. The claim follows.

This result continues to hold when the functional constraints are inequalities: h(x) ≤ b.
If the ith constraint is not satisfied with equality, then λ∗i = 0 by complementary
slackness, and therefore also ∂λ∗i /∂bi = 0. Also, λ∗(b) ≤ 0.

In light of Theorem 2.5, Lagrange multipliers are also known as shadow prices, due
to an economic interpretation of the problem to

maximize f(x)
subject to h(x) ≤ b

x ∈ X.

Consider a firm that produces n different goods from m different raw materials. Vector
b ∈ Rm describes the amount of each raw material available to the firm, vector x ∈ Rn
the quantity produced of each good. Functions h : Rn → Rm and f : Rn → R finally
describe the amounts of raw material required to produce, and the profit derived from
producing, particular quantities of the goods. The goal in the above problem thus
is to maximize the profit of the firm for given amounts of raw materials available to
it. The shadow price of raw material i then is the price the firm would be willing
to pay per additional unit of this raw material, which of course should be equal to
the additional profit derived from it, i.e. to ∂φ(b)/∂bi. In this context, complementary
slackness corresponds to the basic economic principle that a particular raw material has
a non-zero price if and only if it is scarce, in the sense that increasing its availability
would increase profit.
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3 The Simplex Algorithm

3.1 Basic solutions

In the LP of Example 2.3, the optimal solution happened to lie at an extreme point of
the feasible set. This was not a coincidence. Consider an LP in general form,

maximize cTx subject to Ax ≤ b, x ≥ 0. (3.1)

The feasible set of this LP is a convex polytope in Rn, i.e. an intersection of half-spaces.
Each level set of the objective function cTx, i.e. each set Lα = {x ∈ Rn : cTx = α} of
points for which the value of the objective function is equal to some constant α ∈ R, is
a k-dimensional flat for some k ≤ n. The goal is to find the largest value of α for which
Lα(f) intersects with the feasible set. If such a value exists, the intersection contains
either a single point or an infinite number of points, and it is guaranteed to contain an
extreme point of the feasible set. This fact is illustrated in Figure 3.

f(x) = α∗f(x) = α

f(x) = α∗

f(x) = α

Figure 3: Illustration of linear programs with one optimal solution (left) and an infinite
number of optimal solutions (right)

The geometric characterization of extreme points, as points that cannot be written as a
convex combination of two different points, is somewhat hard to work with. We there-
fore use an alternative, algebraic characterization. To this end, consider the following
LP in standard form, which can be obtained from (3.1) by introducing slack variables:

maximize cTx subject to Ax = b, x ≥ 0, (3.2)

where A ∈ Rm×n and b ∈ Rm.

The support of a vector x is the set of indices S(x) = {i : xi 6= 0}. A solution x ∈ Rn
of the equation Ax = b is called basic if the size of its support is no more than m, i.e.
if there exists a set B ⊆ {1, . . . , n} with |B| = m such that xi = 0 if i /∈ B. The set B
is then called basis, and variable xi is called basic if i ∈ B and non-basic if i /∈ B. A
basic solution x that also satisfies x ≥ 0 is a basic feasible solution (BFS) of (3.2).
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We finally distinguish basic solutions that have exactly m non-zero entries from those
that have strictly fewer, and refer to the latter as degenerate.

From now on, we make the following assumptions, which are without loss of generality.

(i) The rows of A are linearly independent and thus it has rank m.

(ii) Every set of m columns of A are linearly independent.

These assumptions rule out degeneracies of the following types: that we might have
Ax + z = b in the primal for some (x, z) having less than m non-zero components, or
in the dual we might have ATλ − w = c for some (λ,w) having less than n non-zero
components.

3.2 Extreme points and optimal solutions

The extreme points of the feasible set are precisely the basic feasible solutions.

Theorem 3.1. A vector is a basic feasible solution of Ax = b if and only if it is an
extreme point of the set X(b) = {x : Ax = b, x ≥ 0}.

Proof. Suppose x is not a BFS. So |S(x)| > m and there exists y such that S(y) ⊆ S(x)
and Ay = 0. But then x is the midpoint of x+ εy and x− εy, both of which lie in X(b)
for small enough non-zero ε. So x is not an extreme point.

Suppose x is not an extreme point, so that x = δy+(1−δ)z for some distinct y, z ∈ X(b).
Then Ax = b = Az + δA(y − z). So A(y − z) = 0, with S(y − z) ⊆ S(x). So x is not a
BFS.

When looking for an optimum, we can restrict our attention basic feasible solutions.

Theorem 3.2. If the linear program (3.2) is feasible and bounded, then it has an
optimal solution that is a basic feasible solution.

Proof. Suppose x is an optimal solution of (3.2) but it is not an extreme point. Suppose
x = δy + (1 − δ)z for some distinct y, z ∈ X(b). Since cTx ≥ cT y and cTx ≥ cT z by
optimality of x, and since cTx = δcT y+(1−δ)cT z, we must have that cTx = cT y = cT z.
Consider x′ = δ′y + (1 − δ′)z = z + δ′(y − z). This is also optimal. Now by thinking
about increasing δ′ from 0 until some component of x′ hits 0, we see that for some δ′,

S(x′) ⊂ S(x). Thus we have a new optimal solution with a smaller support. We can
continue this way until we obtain an optimal solution that is an extreme point.

Since there are only finitely many basic solutions, a naive approach to solving an LP is
to go over all basic solutions and pick one that optimizes the objective. However, this
would not be efficient, as the number of basic solutions may grow exponentially in the
number of variables. We now study a famous method for solving linear programs, the
simplex method, which explores the set of basic solutions in a more organized way.
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3.3 The simplex tableau

We can understand the simplex method in terms of the so-called simplex tableau,
which stores all the information required to explore the set of basic solutions.

Let A ∈ Rm×n, b ∈ Rm, and x ∈ Rn such that Ax = b. Let B be a basis, i.e. a set
B ⊆ {1, . . . , n} with |B| = m, corresponding to a choice of m non-zero variables. Then

ABxB +ANxN = b,

where AB ∈ Rm×m and AN ∈ Rm×(n−m) respectively consist of the columns of A
indexed by B and those not indexed by B, and xB and xN respectively consist of the
rows of x indexed by B and those not indexed by B. Moreover, if x is a basic solution,
then there is a basis B such that xN = 0 and ABxB = b, and if x is a basic feasible
solution, there is a basis B such that xN = 0, ABxB = b, and xB ≥ 0.

For x with Ax = b and basis B, we have that xB = A−1B (b−ANxN ), and thus

f(x) = cTx = cTBxB + cTNxN

= cTBA
−1
B (b−ANxN ) + cTNxN

= cTBA
−1
B b+ (cTN − cTBA−1B AN )xN .

Suppose that we want to maximize cTx and find that

cTN − cTBA−1B AN ≤ 0 and A−1B b ≥ 0. (3.3)

Then, for any feasible x ∈ Rn, it holds that xN ≥ 0 and therefore f(x) ≤ cTBA
−1
B b.

The basic solution x∗ with x∗B = A−1B b and x∗N = 0, on the other hand, is feasible and
satisfies f(x∗) = cTBA

−1
B b. It must therefore be optimal.

If alternatively (cTN − cTBA
−1
B AN )i > 0 for some i, then we can increase the value of the

objective by increasing (xN )i. Either this can be done indefinitely, which means that
the maximum is unbounded, or the constraints force some of the variables in the basis
to become smaller and we have to stop when the first such variable reaches zero. In
that case we have found a new BFS and can repeat the process.

Assuming that the LP is feasible and has a bounded optimal solution, there exists
a basis B∗ for which (3.3) is satisfied. The basic idea behind the simplex method
is to start from an initial BFS and then move from basis to basis until B∗ is found.
The information required for this procedure can conveniently be represented by the
so-called simplex tableau. For a given basis B, it takes the following form:1

1The columns of the tableau have been permuted such that those corresponding to the basis appear
on the left. This has been done just for convenience: in practice we will always be able to identify the
columns corresponding to the basis by the embedded identity matrix.
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m︷ ︸︸ ︷ n−m︷ ︸︸ ︷ 1︷ ︸︸ ︷
B N

m

{
A−1B AB = I A−1B AN A−1B b

1

{
cTB − cTBA

−1
B AB = 0 cTN − cTBA

−1
B AN −cTBA

−1
B b

The first m rows consist of the matrix A and the column vector b, multiplied by the
inverse of AB . Notice that for any basis B, the LP with constraints A−1B Ax = A−1B b is
equivalent to the one with constraints Ax = b. The first n columns of the last row are
equal to cT − λTA for λT = cTBA

−1
B . The vector λ can be interpreted as a solution, not

necessarily feasible, to the dual problem. In the last column of the last row we finally
have the value −f(x), where x is the BFS with xB = A−1B b and xN = 0.

We will see later that the simplex method always maintains feasibility of this solution x.
As a consequence it also maintains complementary slackness for x and λT = cTBA

−1
B :

since we work with an LP in standard form, λT (Ax− b) = 0 follows automatically from
the feasibility condition, Ax = b; the condition (cT − λTA)x = 0 holds because xN = 0
and cTB−λTAB = cTB−cTBA

−1
B AB = 0. What it then means for (3.3) to become satisfied

is that cT − λTA ≤ 0, i.e. that λ is a feasible solution for the dual. Optimality of x is
thus actually a consequence of Theorem 2.4.

3.4 The simplex method in tableau form

Consider a tableau of the following form, where the basis can be identified by the
identity matrix embedded in (aij):

(aij) ai0

a0j a00

The simplex method then proceeds as follows:

1. Find an initial BFS with basis B.

2. Check whether a0j ≤ 0 for every j. If yes, the current solution is optimal, so stop.

3. Choose j such that a0j > 0, and choose i ∈ {i′ : ai′j > 0} to minimize ai0/aij .
If aij ≤ 0 for all i, then the problem is unbounded, so stop. If multiple rows
minimize ai0/aij , the problem has a degenerate BFS.

4. Update the tableau by multiplying row i by 1/aij and adding a −(akj/aij) mul-
tiple of row i to each row k 6= i. The goal is to get a 1 in row i and 0 everywhere
else, so that after this step row i corresponds to the jth variable Then return to
Step 2.
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We will now describe the different steps of the simplex method in more detail and
illustrate them using the LP of Example 2.3.

Finding an initial BFS

Finding an initial BFS is very easy when the constraints are of the formAx ≤ b for b ≥ 0.
We can then write the constraints as Ax+ z = b for a vector z of slack variables with
regional constraint z ≥ 0, and obtain a BFS by setting x = 0 and z = b. Alternatively
one may think of extending x to (x, z) and setting (xB , xN ) = (z, x) = (b, 0). We then
have A−1B = I and cB = 0, and the entries in the tableau become AN and cTN for the
variables x1 and x2 that are not in the basis, and b and 0 in the last column. For
the LP of Example 2.3 we obtain the following tableau, where rows and columns are
labelled with the names of the corresponding variables:

x1 x2 z1 z2 ai0
z1 1 2 1 0 6
z2 1 −1 0 1 3
a0j 1 1 0 0 0

If the constraints do not have this convenient form, finding an initial BFS requires more
work. We will discuss this case in the next lecture.

Choosing a pivot column

If a0j ≤ 0 for all j ≥ 1, the current solution is optimal. Otherwise we can choose a
column j such that a0j > 0 as the pivot column and let the corresponding variable
enter the basis. If multiple candidate columns exist, choosing any one of them will lead
to a new basis, but we could for example break ties toward the column that maximizes
a0j or the one with the smallest index. The candidate variables in our example are x1
and x2, so let us choose x1. The pivot operation causes this variable to enter the basis.

Choosing the pivot row

If aij ≤ 0 for all i, then the problem is unbounded and the objective can be increased
by an arbitrary amount. Otherwise we choose a row i ∈ {i′ : ai′j > 0} that minimizes
ai0/aij . This row is called the pivot row, and aij is called the pivot. If multiple rows
minimize ai0/aij , the problem has a degenerate BFS. In our example there is a unique
choice, namely variable z2. The pivot operation causes this variable to leave the basis.

Pivoting

The purpose of the pivoting step is to get the tableau into the appropriate form for the
new BFS. For this, we multiply row i by 1/aij and add a −(akj/aij) multiple of row i
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to each row k 6= i, including the last one. Our choice of the pivot row as a row that
minimizes ai0/aij turns out to be crucial, as it guarantees that the solution remains
feasible after pivoting. In our example, we need to subtract the second row from both
the first and the last row, after which the tableau looks as follows:

x1 x2 z1 z2 ai0
z1 0 3 1 −1 3
x1 1 −1 0 1 3
a0j 0 2 0 −1 −3

The second row now corresponds to variable x1, which has replaced z2 in the basis.

We are now ready to choose a new pivot column. In our example, one further iteration
yields the following tableau:

x1 x2 z1 z2 ai0

x2 0 1 1
3 − 1

3 1

x1 1 0 1
3

2
3 4

a0j 0 0 − 2
3 − 1

3 −5

This corresponds to the BFS where x1 = 4, x2 = 1, and z1 = z2 = 0, with an objective
of −5. All entries in the last row are non-positive, so this solution is optimal.

3.5 Degeneracies and cycling

In the absence of degeneracies, the value of the objective function increases in every
iteration of the simplex method, and an optimal solution or a certificate for unbound-
edness is found after a finite number of steps. When the simplex method encounters
a degenerate BFS, however, it may remain at the same BFS despite changing basis.
This would obviously cause the value of the objective function to remain the same
as well, and the simplex method may in fact cycle indefinitely through a number of
bases that all represent the same BFS. Such cycling can be avoided by a more care-
ful choice of pivot rows and columns, and thus of the variables entering and leaving
the basis. Bland’s rule achieves this by fixing some ordering of the variables and then
choosing, among all variables that could enter and leave in a given iteration, those that
are minimal according to the ordering.
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4 Advanced Simplex Procedures

4.1 The two-phase simplex method

The LP we solved in the previous lecture allowed us to find an initial BFS very easily.
If an obvious candidate for an initial BFS does not exist, we can use an additional
phase I to find a BFS. In phase II we then proceed as in the previous lecture.

Consider the LP

maximize −6x1 − 3x2
subject to x1 + x2 ≥ 1

2x1 − x2 ≥ 1
3x2 ≤ 2
x1, x2 ≥ 0,

and introduce slack variables to obtain

maximize −6x1 − 3x2
subject to x1 + x2 − z1 = 1

2x1 − x2 − z2 = 1
3x2 + z3 = 2
x1, x2, z1, z2, z3 ≥ 0.

Unfortunately, the basic solution with x1 = x2 = 0, z1 = z2 = −1, and z3 = 2 is
not feasible. However, we can add an artificial variable to the left-hand side of each
constraint, where the slack variable and the right-hand side have opposite signs, and
then minimize the sum of the artificial variables starting from the obvious BFS where
the artificial variables are non-zero instead of the corresponding slack variables. E.g.,

minimize y1 + y2
subject to x1 + x2 − z1 + y1 = 1

2x1 − x2 − z2 + y2 = 1
3x2 + z3 = 2
x1, x2, z1, z2, z3, y1, y2 ≥ 0,

and the goal of phase I is to solve this LP starting from the BFS where x1 = x2 = z1 =
z2 = 0, y1 = y2 = 1, and z3 = 2. If the original problem is feasible, we will be able
to find a BFS where y1 = y2 = 0. This automatically gives us an initial BFS for the
original problem.

In summary, the two-phase simplex method proceeds as follows:

1. Bring the constraints into equality form. For each constraint in which the slack
variable and the right-hand side have opposite signs, or in which there is no slack
variable, add an artificial variable that has the same sign as the right-hand side.

2. Phase I: minimize the sum of the artificial variables, starting from the BFS where
the absolute value of the artificial variable for each constraint, or of the slack
variable in case there is no artificial variable, is equal to the right-hand side.

3. If some artificial variable has a positive value in the optimal solution, the original
problem is infeasible; stop.

4. Phase II: solve the original problem, starting from the BFS found in phase I.
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While the original objective is not needed for phase I, it is useful to carry it along as
an extra row in the tableau, because it will then be in the appropriate form at the
beginning of phase II. In the example, phase I starts with the following tableau:

x1 x2 z1 z2 z3 y1 y2

y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1

z3 0 3 0 0 1 0 0 2

II −6 −3 0 0 0 0 0 0

I 3 0 −1 −1 0 0 0 2

Note that the objective for phase I is written in terms of the variables that are not
in the basis. This can be obtained by first writing it in terms of y1 and y2, such that
we have −1 in the columns for y1 and y2 and 0 in all other columns because we are
maximizing −y1 − y2, and then adding the first and second row to make the entries
for all variables in the basis equal to zero.

Phase I now proceeds by pivoting on a21 to get

x1 x2 z1 z2 z3 y1 y2

0 3
2 −1 1

2 0 1 − 1
2

1
2

1 − 1
2 0 − 1

2 0 0 1
2

1
2

0 3 0 0 1 0 0 2

II 0 −6 0 −3 0 0 3 3

I 0 3
2 −1 1

2 0 0 − 3
2

1
2

and on a14 to get

x1 x2 z1 z2 z3 y1 y2

0 3 −2 1 0 2 −1 1

1 1 −1 0 0 1 0 1

0 3 0 0 1 0 0 2

II 0 3 −6 0 0 6 0 6

I 0 0 0 0 0 −1 −1 0

Note that we could have chosen a12 as the pivot element in the second step, and would
have obtained the same result.

This ends phase I as y1 = y2 = 0, and we have found a BFS for the original problem
with x1 = z2 = 1, z3 = 2, and x2 = z1 = 0. After dropping the columns for y1 and y2
and the row corresponding to the objective for phase I, the tableau is in the right form
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for phase II:
x1 x2 z1 z2 z3

0 3 −2 1 0 1

1 1 −1 0 0 1

0 3 0 0 1 2

0 3 −6 0 0 6

By pivoting on a12 we obtain the following tableau, corresponding to an optimal solution
of the original problem with x1 = 2/3, x2 = 1/3, and value −5:

x1 x2 z1 z2 z3

0 1 − 2
3

1
3 0 1

3

1 0 − 1
3 − 1

3 0 2
3

0 0 2 −1 1 1

0 0 −4 −1 0 5

It is worth noting that the problem we have just solved is the dual of the LP in
Example 2.3, which we solved in the previous lecture, augmented by the constraint
3x2 ≤ 2. Ignoring the column and row corresponding to z3, the slack variable for this
new constraint, the final tableau is essentially the negative of the transpose of the final
tableau we obtained in the previous lecture. This makes sense because the additional
constraint is not tight in the optimal solution, as we can see from the fact that z3 6= 0.

4.2 The dual simplex method

The (primal) simplex method maintains feasibility of the primal solution along with
complementary slackness and seeks feasibility of the dual solution. Alternatively one
could maintain feasibility of the dual solution and complementary slackness and seek
feasibility of the primal solution. This is known as the dual simplex method.

One situation where the dual simplex method can be useful is when an initial feasible
solution for the dual is easier to find than one for the primal. Consider the following
LP, to which we have already added slack variables z1 and z2:

minimize 2x1 + 3x2 + 4x3
subject to x1 + 2x2 + x3 − z1 = 3

2x1 − x2 − 3x3 − z2 = 4
x1, x2, x3, z1, z2 ≥ 0.

The primal simplex algorithm would have to use two phases, since the solution where
z1 = −3 and z2 = −4 is not feasible. On the other hand, c ≥ 0, so the dual solution
with λ1 = λ2 = 0 satisfies cT − λTA ≥ 0 and is therefore feasible. We obtain the
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following tableau:

−1 −2 −1 1 0 −3

−2 1 3 0 1 −4

2 3 4 0 0 0

In the dual simplex algorithm the pivot is selected by picking a row i such that ai0 < 0
and a column j ∈ {j′ : aij′ < 0} that minimizes −a0j/aij . Pivoting then works just
like in the primal algorithm. In the example we can pivot on a21 to obtain

0 − 5
2 − 5

2 1 − 1
2 −1

1 − 1
2 − 3

2 0 − 1
2 2

0 4 7 0 1 −4

and then on a12 to obtain

0 1 1 − 2
5

1
5

2
5

1 0 −1 − 1
5 − 2

5
11
5

0 0 3 8
5

1
5 − 28

5

We have reached the optimum of 28/5 with x1 = 11/5, x2 = 2/5, and x3 = 0.

It is worth pointing out that for problems in which all constraints are inequality con-
straints, the optimal dual solution can also be read off from the final tableau. For
problems of this type, the last m columns of the extended constraint matrix A corre-
spond to the slack variables and therefore contain values 1 or −1 on the diagonal and 0
everywhere else. For the same reason, the last m columns of the vector cT are 0. The
values of the dual variables, each of them with opposite sign of the slack variable in the
corresponding constraint, thus appear in the last m columns of the vector (cT − λTA)
in the last row of the final tableau. In our example, we have λ1 = 8/5 and λ2 = 1/5.

4.3 Gomory’s cutting plane method

Another situation where the dual simplex method can be useful is when we need to
add constraints to an already solved LP. While such constraints can make the primal
solution infeasible, they do not affect feasibility of the dual solution. We can therefore
simply add the constraint and continue running the dual LP algorithm from the current
solution until the primal solution again becomes feasible. The need to add constraints
to an LP for example arises naturally in Gomory’s cutting plane approach for solving
integer programs (IPs). An IP is a linear program with the additional requirement that
variables should be integral.

Assume that for a given IP we have already found an optimal (fractional) solution x∗

with basis B, and let aij denote the entries of the final tableau, i.e. aij = (A−1B Aj)i
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and ai0 = (A−1B b)i. If x∗ is not integral, there has to be a row i such that ai0 is not
integral, and for every feasible solution x,

xi +
∑
j∈N
baijcxj ≤ xi +

∑
j∈N

aijxj = ai0.

The inequality holds because x is feasible, i.e. x ≥ 0, the equality follows from the
properties of the final tableau. If x is integral, the left-hand side is integral as well, and
the inequality must still hold if the right-hand side is rounded down. Thus,

xi +
∑
j∈N
baijcxj ≤ bai0c.

This inequality is satisfied by every (integral) feasible solution, but not by the current
solution x∗, for which x∗i = ai0. It corresponds to a so-called cutting plane, a hyper-
plane that separates the current solution x∗ from the feasible set. The idea behind the
cutting plane method is to iteratively add cutting planes and solve the resulting linear
programs using the dual simplex algorithm. As it turns out, this always leads to an
optimal integral solution after a finite number of steps.

Consider again the final tableau on Page 20, and assume we now want an integral
solution. By the first row, and assuming that all variables are integral and non-negative,

x2 + x3 − 1z1 + 0z2 ≤ x2 + x3 −
2

5
z1 +

1

5
z2 =

2

5
,

and so in fact
x2 + x3 − z1 ≤ 0.

We turn this into an equality constraint using a new slack variable, add it to the tableau,
and bring it into the right form by subtracting the first constraint from it, obtaining

0 1 1 − 2
5

1
5 0 2

5

1 0 −1 − 1
5 − 2

5 0 11
5

0 0 0 − 3
5 − 1

5 1 − 2
5

0 0 3 8
5

1
5 0 − 28

5

After one more round of the dual simplex algorithm we reach the optimal integral
solution with x1 = 3 and x2 = x3 = 0:

0 1 1 −1 0 1 0

1 0 −1 1 0 −2 3

0 0 0 3 1 −5 2

0 0 3 1 0 1 −6
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5 Complexity of Algorithms

We have seen that the simplex algorithm inspects basic feasible solutions and is guar-
anteed to find an optimal solution after a finite number of steps. However, the number
of basic feasible solutions is generally exponential in n, and evaluating the objective
function at all of them would take a long time. It is therefore an interesting question
whether there exist cases where the simplex algorithm has to look at a significant frac-
tion of the set of all basic feasible solutions. If this is the case, then we can ask whether
a similar property holds for every algorithm that solves the linear programming prob-
lem. Before we pursue this question in the next lecture, we prepare with some theory
of algorithmic complexity.

5.1 Theory of algorithmic complexity

Formally, an instance of an optimization problem is given by its input. For linear
programming this input consists of two vectors c ∈ Rn and b ∈ Rm and a matrix
A ∈ Rm×n. If each real value is represented using at most k bits, the whole instance
can be described by a string of (mn+m+ n)k bits. We will call this the input size.

A sensible way to define the complexity of a problem is via the complexity of the fastest
algorithm that can solve it. The latter is typically measured in terms of the number of
arithmetic or bit-level operations as a function of the input size, ignoring lower-order
terms resulting from details of the implementation. The following notation is useful in
this context: given two functions f : N→ N and g : N→ N, write

• f(n) = O(g(n)) if there exist constants c and n0 such that for every n ≥ n0,
f(n) ≤ cg(n),

• f(n) = Ω(g(n)) if there exist constants c and n0 such that for every n ≥ n0,
f(n) ≥ cg(n), and

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

In other words, f(n) = O(g(n)) and f(n) = Ω(g(n)) mean that the asymptotic growth
of f(n) is respectively bounded from above or below by g(n), up to a constant factor.

Gaussian elimination, for example, shows that solving a linear system Ax = b with
A ∈ Rn×n has arithmetic complexity O(n3). The same bound can also be shown to
hold for bit complexity.

5.2 P, NP, and polynomial-time reductions

In computational complexity theory, efficient computation is typically associated
with running times that are at most polynomial in the size of the input. In many
situations of interest, and also in this course, it suffices to study complexity-theoretic
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questions for decision problems, i.e. problems where the answer is just a single bit.
An example of a decision problem in the context of linear programming would be the
following: given a linear program and a number k ∈ R, is the minimum value of the
objective function less than k? Formally, a decision problem can be described by a
language L ⊆ {0, 1}∗, containing precisely the instances for which the answer is 1 in
some encoding as strings of bits.

One might expect the answer to the question whether a particular problem can be solved
efficiently to depend a lot on the details of the computational model one is using. Quite
surprisingly, this turns out not to be the case: all computational models that are known
to be physically realizable can simulate each other, and a particular model, the Turing
machine, can simulate all others with polynomial overhead. A Turing machine has a
finite number of states, finite control, and a readable and writable tape that can store
intermediary results as strings of bits. The Turing machine is started with the input
written on the tape. It then runs for a certain number of steps, and when it halts the
output is inferred from the state or the contents of some designated part of the tape. In
the context of decision problems, a Turing machine is said to accept input x ∈ {0, 1}∗
if it halts with output 1.

The most important open problem in complexity theory concerns the relationship be-
tween the complexity classes P and NP. P is the class of decision problems that can be
solved in polynomial time. Formally, a function f : {0, 1}∗ → {0, 1}∗ is computable
in polynomial time if there exists a Turing machine M and k ∈ N with the following
property: for every x ∈ {0, 1}∗, if M is started with input x, then after O(|x|k) steps it
halts with output f(x). NP is the class of decision problems for which a given solution
can be verified in polynomial time. Formally, L ⊆ {0, 1}∗ is in NP if there exists a
Turing machine M and k ∈ N with the following property: for every x ∈ {0, 1}∗, x ∈ L
if and only if there exists a certificate y ∈ {0, 1}∗ with |y| = O(|x|k) such that M
accepts (x, y) after O(|x|k) steps. The name NP, for nondeterministic polynomial
time, derives from an alternative definition as the class of decision problems solvable
in polynomial time by a nondeterministic Turing machine. A nondeterministic Turing
machine is a Turing machine that can make a non-deterministic choice at each step of
its computation and is required to accept x ∈ L only for some sequence of these choices.
Finding a solution is obviously at least as hard as verifying a solution described by a
certificate. Most people believe that it must be strictly harder, i.e. that P 6= NP.

The relative complexity of different decision problems can be captured in terms of
reductions. Intuitively, a reduction from one problem to another transforms every
instance of the former into an equivalent instance of the latter, where equivalence
means that both of them yield the same decision. For this transformation to preserve
the complexity of the original problem, the reduction should of course have less power
than is required to actually solve the original problem. In our case it makes sense to use
reductions that can be computed in polynomial time. A decision problem L ⊆ {0, 1}∗
is called polynomial-time reducible to a decision problem K ⊆ {0, 1}∗, denoted
L ≤p K, if there exists a function f : {0, 1}∗ → {0, 1}∗ computable in polynomial time
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such that for every x ∈ {0, 1}∗, x ∈ L if and only if f(x) ∈ K. A problem K is called
NP-hard if for every problem L in NP, L ≤p K. A problem is called NP-complete
if it is both in NP and NP-hard. The relation ≤p is transitive. NP-complete problems
are thus the hardest problems in NP, in the sense that membership of any NP-complete
problem in P would imply that P = NP. The existence of NP-complete problems is less
obvious, but holds nonetheless. Figure 4 shows the relationship between P and NP.

P

NP-complete

NP

NP-hard

Figure 4: Relationship between P, NP, and the sets of NP-hard and NP-complete
problems. It is not known whether the intersection between P and the set of NP-
complete problems is empty. If it is not, then P = NP.

What is nice about the asymptotic worst-case notions of complexity considered above is
that they do not require any assumptions about low-level details of the implementation
or about the type of instances we will encounter in practice. We do, however, have to
be a bit careful in interpreting results that use these notions. The fact that a problem is
in P does not automatically mean that it can always be solved efficiently in practice, as
the constant overhead hidden in the asymptotic notation might be prohibitively large.
In fact, it does not even have to be the case that an algorithm with a polynomial worst-
case running time is better in practice than an algorithm whose worst-case running time
is exponential. Experience has shown, however, that for problems in P one is usually
able to find algorithms that are fast in practice. On the other hand, NP-hardness of
a problem does not mean that it can never be solved in practice, and we will consider
approaches for solving NP-hard optimization problems in a later lecture. NP-hardness
is still a very useful concept because it can help to direct efforts away from algorithms
that are always efficient and toward algorithms with good practical performance.

5.3 Some NP-complete problems

The first problem ever shown to be NP-complete is the Boolean satisfiability
problem (SAT), which asks whether a given Boolean formula is satisfiable. A
Boolean formula consists of a set of clauses Ci ⊆ X for i = 1, . . . ,m, where
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X = {x1, . . . , xn, x̄1, . . . , x̄n} is a set of literals. It is called satisfiable if there ex-
ists a set S ⊆ X such that |S ∩ {xj , x̄j}| ≤ 1 for all j = 1, . . . , n and |S ∩ Ci| ≥ 1
for all i = 1, . . . ,m. Since the set S can serve as a certificate, it is easy to see that
SAT is in NP. NP-hardness can be shown by encoding the operation of an arbitrary
nondeterministic Turing machine as a Boolean formula.

Theorem 5.1 (Cook, 1971; Levin, 1973). Boolean satisfiability is NP-complete.

An instance of the 0−1 integer programming problem consists of a matrix A ∈
Zm×n and a vector b ∈ Zm, and asks whether there exists a vector x ∈ {0, 1}n such that
Ax ≥ b. It is associated with a special case of the integer programs we encountered in
the previous lecture, in the context of the cutting plane method.

Theorem 5.2 (Karp, 1972). 0−1 integer programming is NP complete.

Proof. Membership in NP is again easy to see. NP-hardness can be shown by a reduc-
tion from SAT. Consider a Boolean formula with literals X = {x1, . . . , xn, x̄1, . . . , x̄n}
and clauses Ci, i = 1, . . . ,m, and assume without loss of generality that |Ci∩{xj , x̄j}| ≤
1 for all i = 1, . . . ,m and j = 1, . . . , n. Now let A ∈ Zm×n and b ∈ Zm be given by

aij =


1 if xj ∈ Ci
−1 if x̄j ∈ Ci

0 otherwise

for i = 1, . . . ,m and j = 1, . . . , n,

bi = 1− |{ j : x̄j ∈ Ci}| for i = 1, . . . ,m.

Intuitively, this integer program represents each Boolean variable by a binary variable,
and each clause by a constraint that requires its literals to sum up to at least 1. To
this end, the left hand side of the constraint contains xj if the corresponding Boolean
variable occurs as a positive literal in the clause, and (1− xj) if it occurs as a negative
literal. The above form is then obtained by moving all constants to the right hand side.
It is now easy to see that there exists x ∈ {0, 1}n such that Ax ≥ b if and only if the
Boolean formula is satisfiable.

The last problem we consider is the travelling salesman problem (TSP). For a given
matrix A ∈ Nn×n, distances between n vertices, and a number k ∈ N, it asks whether
there exists a permutation σ ∈ Sn such that aσ(n)σ(1) +

∑n−1
i=1 aσ(i)σ(i+1) ≤ k. If the

entries of the matrix A are interpreted as pairwise distances among a set of locations,
we are looking for a tour σ(1)→ σ(2)→ · · · → σ(n)→ σ(1) with length ≤ k that visits
every location exactly once and returns to the starting point. The special case where
A is a symmetric binary matrix and k = 0 is also known as the Hamiltonian cycle
problem: i.e. which asks if there exist a tour of a graph’s vertices which visits each
vertex exactly once.

Theorem 5.3 (Karp, 1972). TSP is NP-complete, even if A ∈ {0, 1}n×n symmetric
and k = 0.
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6 Computational Complexity of LP

6.1 A lower bound for the simplex method

The complexity of the simplex method depends on two factors, the number of steps in
each round and the number of iterations. It is not hard to see that the tableau form
requires O(mn) arithmetic operations in each round. We will now describe an instance
of the linear programming problem, and a specific pivot rule, such that the simplex
method requires an exponential number of iterations to find the optimal solution. For
this, we construct a polytope with an exponential number of vertices, and a so-called
spanning path that traverses all of the vertices, in such a way that consecutive vertices
are adjacent and a certain linear objective strictly increases along the path. This shows
that the simplex method requires an exponential number of iterations in the worst case,
for the specific pivoting rule that follows the spanning path.

Consider the unit cube in Rn, given by the constraints

0 ≤ xi ≤ 1 for i = 1, . . . , n.

The unit cube has 2n vertices, because either one of the two constraints 0 ≤ xi and
xi ≤ 1 can be active for each dimension i. Further consider a spanning path of the unit
cube constructed inductively as follows. In dimension 1, the path moves from x1 = 0
to x1 = 1. In dimension k, the path starts with xk = 0 and traverses the spanning path
for dimensions x1 to xk−1, which exists by the induction hypothesis. It then moves to
the adjacent vertex with xk = 1, and traverses the spanning path for dimensions x1 to
xk−1 in the reverse direction. This construction is illustrated of the left of Figure 5.

x1

x2

x3

x1

x2

(ε, ε2)

(1, ε)

(1, 1− ε)

(ε, 1− ε2)

Figure 5: Spanning paths of the three-dimensional unit cube (left) and of the perturbed
two-dimensional unit cube with ε = 1/10 (right)

Now assume that we are trying to maximize the objective xn, and observe that so far
it increases only once, namely in the middle of the path. This can easily be fixed. Let
ε ∈ (0, 1/2), and consider the perturbed unit cube with constraints

ε ≤ x1≤ 1,

εxi−1 ≤ xi ≤ 1− εxi−1 for i = 2, . . . , n
(6.1)
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An example is shown on the right of Figure 5. It is easily verified that xn now increases
strictly along the path described above. We obtain the following result.

Theorem 6.1. Consider the linear programming problem of maximizing xn subject
to (6.1). Then there exists a pivoting rule and an initial basic feasible solution such
that the simplex method requires 2n − 1 iterations before it terminates.

Observe that each of the numbers in the description of the perturbed unit cube can
be represented using O(log ε−n) = O(n) bits, the number of iterations is therefore also
exponential in the input size.

Interestingly, the first and last vertices of the spanning paths constructed above are
adjacent, which means that a different pivoting rule could reach the optimal solution in a
single step. However, similar worst-case instances have been constructed for many other
pivot rules, and no pivot rule is known to guarantee a polynomial worst-case running
time. The diameter of a polytope, i.e. the maximum number of steps necessary to get
from any vertex to any other vertex, provides a lower bound of the number of iterations
of the simplex method that is independent of the pivoting rule. The Hirsch conjecture,
which states that the diameter of a polytope in dimension d with n facets cannot be
greater than n − d, was disproved in 2010. Whether the diameter is bounded by a
polynomial function of n and d remains open.

In practice, the performance of the simplex method is often much better, usually linear
in the number of constraints. However, it is not clear how the intuition of a good
average-case performance could be formalized, because this would require a natural
probability distribution over instances of the linear programing problem. This is a
problem that applies more generally to the average-case analysis of algorithms.

6.2 The idea for a new method

Again consider the linear program (2.2) and its corresponding dual:

min {cTx : Ax = b, x ≥ 0}
max {bTλ : ATλ ≤ c}.

By strong duality, each of these problems has a bounded optimal solution if and only
if the following set of linear constraints is feasible:

cTx = bTλ, Ax = b, x ≥ 0, ATλ ≤ c.

We can thus concentrate on the following decision problem: given a matrix A ∈ Rm×n
and a vector b ∈ Rm, is the set {x ∈ Rn : Ax ≥ b} non-empty? We will now consider a
method for solving this problem, known as the ellipsoid method.

We need some definitions. A symmetric matrix D ∈ Rn×n is called positive definite
if xTDx > 0 for all non-zero x ∈ Rn. A set of vectors E ⊆ Rn given by

E = E(z,D) = {x ∈ Rn : (x− z)TD−1(x− z) ≤ 1 }
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for a positive definite symmetric matrix D ∈ Rn×n and a vector z ∈ Rn is called
an ellipsoid with center z. If D ∈ Rn×n is non-singular and b ∈ Rn, then the
mapping S : Rn → Rn given by S(x) = Dx + b is called an affine transforma-
tion. We further write S(L) for the image of L ⊆ Rn under S, i.e. S(L) = {y ∈
Rn : y = S(x) for some x ∈ Rn}. The volume of a set L ⊆ Rn is finally defined as
Vol(L) =

∫
x∈L dx.

Let P = {x ∈ Rn : Ax ≥ b} for some A ∈ Rn×n and b ∈ Rm. To decide whether
P is non-empty, the ellipsoid method generates a sequence {Et} of ellipsoids Et with
centers xt. If xt ∈ P , then P is non-empty and the method stops. If xt /∈ P , then
one of the constraints is violated, i.e. there exists a row j of A such that aTj xt < bj .

Therefore, P is contained in the half-space {x ∈ Rn : aTj x ≥ aTj xt}, and in particular
in the intersection of this half-space with Et, which we will call a half-ellipsoid.

The following is the key result underlying the ellipsoid method. It states that there
exists a new ellipsoid Et+1 that contains the half-ellipsoid and whose volume is only a
fraction of the volume of Et. This situation is illustrated in Figure 6.

P

aTi x > bi

xt

Et

xt+1

Et+1

aTi x > aTi xt

Figure 6: A step of the ellipsoid method where xt /∈ P but xt+1 ∈ P . The polytope P
and the half-ellipsoid that contains it are shaded.

Theorem 6.2. Let E = E(z,D) be an ellipsoid in Rn and a ∈ Rn non-zero. Consider
the half-space H = {x ∈ Rn : aTx ≥ aT z}, and let

z′ = z +
1

n+ 1

Da√
aTDa

,

D′ =
n2

n2 − 1

(
D − 2

n+ 1

DaaTD

aTDa

)
.

Then D′ is symmetric and positive definite, and therefore E′ = E(z′, D′) is an ellipsoid.
Moreover, E ∩H ⊆ E′ and Vol(E′) < e−1/(2(n+1))Vol(E).

If the procedure is repeated, it will either find a point in P or generate smaller and
smaller ellipsoids containing P . In the next lecture, this procedure will be turned into
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an algorithm by observing that the volume of P must either be zero or larger than a
certain threshold that depends on the size of the description of P .

We now sketch the proof of Theorem 6.2. We use the following lemma about affine
transformations, which is not hard to prove.

Lemma 6.3. Let S : Rn → Rn be an affine transformation given by S(x) = Dx + b
and let L ⊆ Rn. Then, Vol(S(L)) = |det(D)|Vol(L).

Proof sketch of Theorem 6.2. We prove the theorem for E = {x ∈ Rn : xTx ≤ 1} and
H = {x ∈ Rn : x1 ≥ 0}. Since every pair of an ellipsoid and a hyperplane as in the
statement of the theorem can be obtained from E and H via some affine transformation,
the general case then follows by observing that affine transformations preserve inclusion
and, by Lemma 6.3, relative volume of sets.

Let e1 = (1, 0, . . . , 0)T . Then,

E′ = E

(
e1

n+ 1
,

n2

n2 − 1

(
I − 2

n+ 1
e1e

T
1

))
=

{
x ∈ Rn :

n2 − 1

n2

n∑
i=1

x2i +
1

n2
+

2(n+ 1)

n2
x1(x1 − 1) ≤ 1

}
.

Consider an arbitrary x ∈ E ∩H, and observe that 0 ≤ x1 ≤ 1 and
∑n
i=1 x

2
i ≤ 1. It is

easily verified that x ∈ E′ and thus E ∩H ⊆ E′.

Now consider the affine transformation F : Rn → Rn given by

F (x) =
e1

n+ 1
+

(
n2

n2 − 1

(
I − 2

n+ 1
e1e

T
1

)) 1
2

x.

It is not hard to show that E′ = F (E). Therefore, by Lemma 6.3,

Vol(E′)

Vol(E)
=

√
det

(
n2

n2 − 1

(
I − 2

n+ 1
e1eT1

))

=

(
n2

n2 − 1

)n
2
(

1− 2

n+ 1

) 1
2

=
n

n+ 1

(
n2

n2 − 1

)n−1
2

=

(
1− 1

n+ 1

)(
1 +

1

n2 − 1

)n−1
2

< e−
1

n+1

(
e

1
n2−1

)n−1
2

= e−
1

2(n+1) ,

where the strict inequality follows by using twice that 1 + a < ea for all a 6= 0.

A more detailed description of the ellipsoid method and an overview of the proof of
correctness will be given in the next lecture.
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7 Ellipsoid Method

7.1 Ellipsoid method

Consider a polytope P = {x ∈ Rn : Ax ≥ b}, given by a matrix A ∈ Zm×n and a vector
b ∈ Zm. Assume for now that P is bounded and either empty or full-dimensional. Here,
P is called full-dimensional if Vol(P ) > 0. The ellipsoid method takes the following
steps to decide whether P is non-empty:

1. Let U be the largest absolute value among the entries of A and b, and define

x0 = 0, D0 = n(nU)2nI, E0 = E(x0, D0),

V = (2
√
n)n(nU)n

2

, v = n−n(nU)−n
2(n+1),

t∗ = d2(n+ 1) log(V/v)e.
2. For t = 0, . . . , t∗, do the following:

1. If t = t∗ then stop; P is empty.

2. If xt ∈ P then stop; P is non-empty.

3. Find a violated constraint, i.e. a row j such that aTj xt < bj .

4. Let Et+1 = E(xt+1, Dt+1) with

xt+1 = xt +
1

n+ 1

Dtaj√
aTj Dtaj

,

Dt+1 =
n2

n2 − 1

(
Dt −

2

n+ 1

Dtaja
T
j Dt

aTj Dtaj

)
.

The ellipsoid method is a so-called interior point method, because it traverses the
interior of the feasible set rather than following its boundary.

7.2 Proof of correctness

Observe that E0 is a ball centered at the origin. Given Theorem 6.2, and assuming
that (i) P ⊆ E0 and Vol(E0) < V and that (ii) P is either empty or Vol(P ) > v, correct-
ness of the ellipsoid method is easy to see: it either finds a point in P , thereby proving
that P is non-empty, or an ellipsoid Et∗ ⊇ P with Vol(Et∗) < e−t

∗/2(n+1)Vol(E0) <
(v/V )Vol(E0) < v, in which case P must be empty.

We now show that the above assumptions hold, starting with the inclusion of P in E0

and the volume of E0. We use the following lemma.

Lemma 7.1. Suppose A ∈ Zm×n, b ∈ Rm and m ≥ n. Let U be the largest absolute
value among the entries of A and b. Then every extreme point x of the polytope P =
{x′ ∈ Rn : Ax′ ≥ b} satisfies −(nU)n ≤ xi ≤ (nU)n for all i = 1, . . . , n.
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Proof. Any extreme point x can be written as x = Â−1b̂ for some invertible submatrix
Â ∈ Zn×n of A and subvector b̂ ∈ Rn of b, corresponding to n linearly independent
constraints that are active at x. By Cramer’s rule,

xi =
det Âi

det Â
,

where Âi is the matrix obtained by replacing the ith column of Â by b̂. Then, for
i = 1, . . . , n,

∣∣∣det Âi
∣∣∣ =

∣∣∣∣∣∣
∑
σ∈Sn

(−1)|σ|
n∏
j=1

âij,σ(j)

∣∣∣∣∣∣ ≤
∑
σ∈Sn

n∏
i=1

|âij,σ(j)| ≤ n!Un ≤ (nU)n,

where |σ| is the number of inversions of permutation σ ∈ Sn, i.e. the number of pairs
i, j such that i < j and σ(i) > σ(j). Moreover, det(Â) 6= 0 since Â is invertible,
and |det(Â)| ≥ 1 since all entries of A are integers. Therefore, |xi| ≤ (nU)n for all
i = 1, . . . , n.

If P is bounded and x ∈ P , then
∑
i x

2
i ≤ n(nU)2n and so x ∈ E0. The ball E0 is

contained in a cube of volume V = (2
√
n)n(nU)n

2

, and thus P ⊆ E0 and Vol(E0) ≤ V .

We now turn to the lower bound on the volume of P in the case when it is non-empty.

Lemma 7.2. Consider a full-dimensional and bounded polytope P = {x ∈ Rn : Ax ≥
b}, where A ∈ Zm×n and b ∈ Zm and all entries have absolute value at most U . Then

Vol(P ) > n−n(nU)−n
2(n+1).

Proof sketch. If P is full-dimensional and bounded and has at least one extreme point,
it has n+ 1 extreme points v0, . . . , vn that do not lie on a common hyperplane. Let Q
be the convex hull of these extreme points, defined as

Q =

{
x ∈ Rn : x =

n∑
k=0

λkv
k,

n∑
k=0

λk = 1, λk ≥ 0

}
.

Clearly, Q ⊆ P and thus Vol(Q) ≤ Vol(P ). It can be shown that

Vol(Q) =
1

n!

∣∣∣∣det

(
1 · · · 1
v0 · · · vn

)∣∣∣∣ .
The ith coordinate of vk is a rational number pki /q

k
i , and by the same argument as in

the proof of Lemma 7.1, |qki | ≤ (nU)n. Therefore,

Vol(P ) ≥ Vol(Q) ≥ 1

n!

∣∣∣∣ 1∏n
i=1

∏n
k=0 q

k
i

∣∣∣∣
>

1

nn
1∏n

i=1

∏n
k=0(nU)n

= n−n(nU)−n
2(n+1).
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So far we have assumed that the polytope P is bounded and full-dimensional. We
finally lift these assumptions.

Polytopes that are unbouned By Lemma 7.1, all extreme points of P lie in the
set PB = {x ∈ P : |xi| ≤ (nU)n for all i = 1, . . . , n}. Moreover, P is non-empty if and
only if it has an extreme point. We can therefore test for non-emptiness of PB instead
of P , and PB is a bounded polytope.

Polytopes that are not full dimensional For a polytope P that is not full-
dimensional, it is not the case that Vol(P ) < v implies P = ∅, and the ellipsoid
method can fail. The following result shows, however, that we can slightly perturb P
to obtain a polytope that is either empty or full-dimensional.

Lemma 7.3. Let P = {x ∈ Rn : Ax ≥ b}, where A ∈ Zm×n and b ∈ Zm and all entries
have absolute value at most U . Let

Pε = {x ∈ Rn : Ax ≥ b− εe}

where

ε =
1

2(n+ 1)
((n+ 1)U)

−(n+1)

and eT = (1, . . . , 1). Then, Pε = ∅ if and only if P = ∅, and either Pε = ∅ or
Vol(P ) > 0.

Proof. We first show that emptiness of P implies emptiness of Pε. If P is empty,
then the linear program min{0Tx : Ax ≥ b} is infeasible. Therefore its dual, which is
max{λT b : λTA = 0T , λ ≥ 0}, must be infeasible or unbounded; since it is feasible it
must be unbounded. There thus has to exist a basic feasible solution λ to the n + 1
constraints λTA = 0T , λT b = 1, and λ ≥ 0, and, by Lemma 7.1, λi ≤ ((n+ 1)U)

n+1

for all i. Since λ is a BFS, at most n+ 1 of its components are non-zero, and therefore∑m
i λi ≤ (n + 1) ((n+ 1)U)

n+1
. Then λT (b − εe) = λT b − ε

∑m
i=1 λi ≥ λT b − 1

2 > 0.
This means that the dual remains unbounded, and the primal infeasible, if we replace
b by b− εe, and thus Pε = ∅.

It remains to be shown that Pε is full-dimensional if P is non-empty. For this, consider
x ∈ P and let

Y =
{
y ∈ Rn : xi −

ε

nU
≤ yi ≤ xi +

ε

nU
for all i = 1, . . . , n

}
.

It is easy to see that Vol(Y ) = (2ε/(nU))n > 0 and that Y ⊆ Pε. Thus Pε must be
full-dimensional.

The general case of polytopes P that potentially are unbounded and not full-
dimensional can thus be handled by computing the bounded polytope PB , perturbing
it, and then running the ellipsoid method on the resulting polytope.
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7.3 The running time of the ellipsoid method

For a bounded and full-dimensional polytope P given by a matrix A and vector b with
integer entries bounded by U , the ellipsoid method decides whether P is empty or not in
O(n log(V/v)) = O(n4 log(nU)) iterations. It can further be shown that O(n6 log(nU))
iterations suffice even when P might be unbounded or not full-dimensional.

For the ellipsoid method to have a polynomial running time, however, the number of
operations in each iteration also has to be bounded by a polynomial function of n and
logU . A potential problem is that the computation of the new ellipsoid involves taking
a square root. This means that in general calculations cannot be done exactly, and
intermediate results have to be stored with sufficiently many bits to ensure that errors
don’t accumulate. It turns out that the algorithm can be made to work, with the same
asymptotic number of iterations as above, when only O(n3 logU) bits are used for each
intermediate value. The proof of this result is very technical.

The ellipsoid method has high theoretical significance, because it provided the first
polynomial-time algorithm for linear programming and can also be applied to larger
classes of convex optimization problems. In practice, however, both the simplex method
and a different interior point method, Karmarkar’s algorithm, tend to be much
faster. The latter also has a better worst-case performance than the ellipsoid method.
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8 Optimization in Networks

8.1 Graph terminology

A directed graph, or network, G = (V,E) consists of a set V of vertices and a set
E ⊆ V × V of edges. When the relation E is symmetric, G is called an undirected
graph, and we can write edges as unordered pairs {i, j} ∈ E for i, j ∈ V . The degree
of vertex i ∈ V in graph G is the number |{j ∈ V : (i, j) ∈ E or (j, i) ∈ E}| of other
vertices connected to it by an edge. A walk from u ∈ V to w ∈ V is a sequence of
vertices v1, . . . , vk ∈ V such that v1 = u, vk = w, and (vi, vi+1) ∈ E for i = 1, . . . , k−1.
In a directed graph, we can also consider an undirected walk where (vi, vi+1) ∈ E or
(vi+1, vi) ∈ E for i = 1, . . . , k − 1. A walk is a path if v1, . . . , vk are pairwise distinct,
and a cycle if furthermore v1 = vk. A graph that does not contain any cycles is called
acyclic. A graph is called connected if for every pair of vertices u, v ∈ V there is an
undirected path from u to v. A tree is a graph that is connected and acyclic. A graph
G′ = (V ′, E′) is a subgraph of graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E. In the special
case where G′ is a tree and V ′ = V , it is called a spanning tree of G.

8.2 Minimum cost flow problem

Consider a network G = (V,E) with |V | = n, and let b ∈ Rn. Here, bi denotes the
amount of flow that enters or leaves the network at vertex i ∈ V . If bi > 0, we say
that i is a source supplying bi units of flow. If bi < 0, we say that i is a sink with a
demand of |bi| units of flow. Further let C,M,M ∈ Rn×n, where cij denotes the cost
per unit of flow on edge (i, j) ∈ E, and mij and mij respectively denote lower and
upper bounds on the flow across this edge. The minimum cost flow problem then
asks for flows xij that conserve the flow at each vertex, respect the upper and lower
bounds, and minimize the overall cost. Formally, x ∈ Rn×n is a minimum cost flow
of G if it is an optimal solution of the following optimization problem:

minimize
∑

(i,j)∈E

cijxij

subject to bi +
∑

j:(j,i)∈E

xji =
∑

j:(i,j)∈E

xij for all i ∈ V ,

mij ≤ xij ≤ mij for all (i, j) ∈ E.

Note that
∑
i∈V bi = 0 is required for any feasible flows to exist, and we make this

assumption in the following. We further assume without loss of generality that the net-
work G is connected. Otherwise the problem can be decomposed into several smaller
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problems that can be solved independently. An important special case is that of un-
capacitated flows, where mij = 0 and mij =∞ for all (i, j) ∈ E.

The minimum cost flow problem is a linear programming problem, with constraints of
the form Ax = b where

aik =


1 kth edge starts at vertex i,

−1 kth edge ends at vertex i,

0 otherwise.

Given this rather simple structure, we may hope that minimum cost flow problems are
easier to solve than general linear programs. Indeed, we will see that basic feasible
solutions of a minimum cost flow problem take a special form, and will obtain an
algorithm that exploits this form.

8.3 Spanning tree solutions

Consider a minimum cost flow problem for a connected network G = (V,E). A solution
x is called a spanning tree solution if the edges of G can be partitioned into three
disjoint sets T, L, U , such that (V, T ) is a spanning tree, and xij = mij if (i, j) ∈ L
and xij = mij if (i, j) ∈ U . For every choice of T , L and U , the flow conservation
constraints uniquely determine the values xij for (i, j) ∈ T . An example is in Figure 7.

1

2

4

2

2

3

1 8

2

6

2

75

1

2

2

2

3 1

1 0

Figure 7: A flow network with a basic feasible solution, which is the spanning tree T
indicated by hatched edges. This network is uncapacitated so L = E \ T and U = ∅,
and flows are zero for edges not in T . Flows for the edges in T can be determined
inductively starting from the leafs. In this example, the spanning tree corresponds to
a degenerate BFS, because edge (6, 7) carries flow zero.
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It is not hard to show that the basic solutions of a minimum cost flow problem are
precisely its spanning tree solutions.

Theorem 8.1. A flow vector is a basic solution of a minimum cost flow problem if
and only if it is a spanning tree solution.

8.4 The network simplex method

We now derive a variant of the simplex method, the network simplex method, that
works directly with spanning tree solutions. This method maintains a feasible solution
for the primal and a corresponding dual solution, but unlike the simplex method does
not guarantee that these two solutions satisfy complementary slackness. Rather, it
uses a separate condition to either establish both dual feasibility and complementary
slackness, and thus optimality, or identify a new spanning tree solution.

The Lagrangian of the minimum cost flow problem is

L(x, λ) =
∑

(i,j)∈E

cijxij −
∑
i∈V

λi

( ∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji − bi
)

=
∑

(i,j)∈E

(cij − λi + λj)xij +
∑
i∈V

λibi

(8.1)

Let c̄ij = cij −λi+λj be the reduced cost of edge (i, j) ∈ E. Dual feasibility requires
that c̄ij ≥ 0 whenever mij =∞. Minimizing L(x, λ) subject to the regional constraints
mij ≤ xij ≤ mij for (i, j) ∈ E further yields the following complementary slackness
conditions:

c̄ij > 0 implies xij = mij ,

c̄ij < 0 implies xij = mij , and

mij < xij < mij implies c̄ij = 0.

Assume that x is a basic feasible solution associated with sets T , U , and L. Then the
system of equations

λ|V | = 0, λi − λj = cij for all (i, j) ∈ T

has a unique solution, which in turn allows us to compute c̄ij for all edges (i, j) ∈ E.
Note that c̄ij = 0 for all (i, j) ∈ T by construction, so the third complementary slackness
condition is always satisfied.

Pivoting

If c̄ij ≥ 0 for all (i, j) ∈ L and c̄ij ≤ 0 for all (i, j) ∈ U , dual feasibility and the first two
complementary slackness are satisfied as well, meaning that the solution is optimal (by
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appeal to the Lagrangian sufficiency theorem). Otherwise, consider an edge (i, j) that
violates these conditions, and observe that this edge and the edges in T forms a unique
cycle C. Since (i, j) is the only edge in C with non-zero reduced cost, we can decrease
the objective by pushing flow along C to increase xij if c̄ij is negative and decrease xij
if c̄ij is positive. Doing so will change the flow on all edges in C by the same amount,
with the direction of the change depending on whether a specific edge is oriented in the
same or the opposite direction as (i, j).

Let B,B ⊆ C respectively denote the sets of edges whose flow is to decrease or increase,
and let

δ = min

{
min

(k,`)∈B
{xk` −mk`}, min

(k,`)∈B
{mk` − xk`}

}
.

be the maximum amount of flow that can be pushed along C. If δ = ∞, the problem
is unbounded. If δ = 0 or if the minimum is attained for more than one edge, the
problem is degenerate. Otherwise, pushing δ units of flow along C yields a unique edge
(k, `) ∈ C whose flow is either mk` or mk`. If (k, `) ∈ T , we obtain a new BFS with
spanning tree (T \ {(k, `)}) ∪ {(i, j)}. If instead (k, `) = (i, j), we obtain a new BFS
where (i, j) has moved from U to L, or vice versa. An example of the pivoting step is
given in Figure 8.

16

2 4

3 2

5

(3, 3, 7)

(1, 1, 3)

1

1

(2, 0, 3)

16

2 4

3 2

4

(3, 3, 7)

(1, 1, 3)

2

0

(2, 0, 3)

Figure 8: Flow network before and after a pivoting step. Edge (i, j) is labelled with
the vector (cij ,mij ,mij) and the current flow xij , and spanning trees are indicated by
hatched edges. In the situation shown on the left, we have λ3 = 0, λ2 = c23 + λ3 = 2,
and λ1 = c12 + λ2 = 5, and thus c̄13 = c13 − λ1 + λ3 = −4. If we push one unit of
flow around the cycle 1, 3, 2, 1, the flow on (2, 3) reaches the lower bound of m23 = 0
and we obtain a new spanning tree with edges (1, 2) and (1, 3). The new situation is
shown on the right. Now, λ3 = 0, λ1 = c13 + λ3 = 1, and λ2 = λ1 − c12 = −2, and
thus c̄23 = c23 − λ2 + λ3 = 4. Since this is positive and x23 = m23, we have found an
optimal solution.

In the absence of degeneracies the value of the objective function decreases in every
iteration of the network simplex method, and an optimal solution or a certificate of
unboundedness is found after a finite number of iterations. If a degenerate solution is
encountered it will still be possible to identify a new spanning tree or even a new BFS,
but extra care may be required to ensure convergence.
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Finding an initial feasible spanning tree solution

Consider a minimum cost flow problem for a network (V,E) and assume without loss
of generality that mij = 0 for all (i, j) ∈ E. If this is not the case, we can instead
consider the problem obtained by setting mij to zero, mij to mij −mij , and modifying
bi to bi −mij and bj to bj + mij . A solution with flows xij for the new problem then
corresponds to a solution with flows xij +mij for the original problem.

We now modify the problem such that the set of optimal solutions remains the same,
assuming that the problem was feasible, but an initial feasible spanning tree solution is
easy to find. For this, we introduce a dummy vertex d /∈ V and uncapacitated dummy
edges E′ = {(i, d) : i ∈ V, bi ≥ 0}∪{(d, i) : i ∈ V, bi < 0}, each with cost of

∑
(i,j)∈E cij .

It is easy to see that a dummy edge has positive flow in some optimal solution of the
new problem if and only if the original problem is infeasible. Furthermore, a feasible
spanning tree solution is now easily obtained by letting T = E′, xid = bi for all i ∈ V
with bi > 0, xdi = −bi for all i ∈ V with bi < 0, and xij = 0 otherwise.

8.5 Integrality of optimal solutions

Since the network simplex method does not require any divisions, any finite optimal
solution it obtains for a problem with integer constants is also integral.

Theorem 8.2. Consider a minimum cost flow problem that is feasible and bounded. If
bi is integral for all i ∈ V and mij and mij are integral for all (i, j) ∈ E, then there
exists an integral optimal solution. If cij is integral for all (i, j) ∈ E, then there exists
an integral optimal solution to the dual.

This theorem is important for the many practical problems in which an integer solution
is required for a meaningful interpretation (for example, the assignment problems).
Later, we investigate linear programming problems subject to the additional constraint
that the solution be in integers. Such problems are usually much harder to solve than
the problem without the integer constraint. However, for network flow problems we get
integer solutions for free.

8.6 Longest path problem

The critical path method is an operational research technique dating from the late
1950s. We can study it as a minimum cost flow problem. It concerns a project consisting
of activities, or jobs. The order in which jobs can be carried out is subject to precedence
constraints, in that some jobs cannot start until other jobs are complete. Job i has a
duration τi. What is the least time in which the project can be completed?

Consider a graph in which there is an edge (i, j) whenever job i must be completed
before job j. Introduce two additional jobs, s and s′, each of zero duration, to indicate
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the start and finish of the project, and introduce edges (s, i) and (i, s′) for every job i.
Denote this graph as G = (V,E).

Suppose we start job i at time ti. The problem of completing the project in minimum
time is the linear program

minimize (ts′ − ts) , subject to tj − ti ≥ τi , for all (i, j) ∈ E .

start end

s
s′

i j

Let fij be a Lagrange multiplier for constraint tj − ti ≥ τi. The dual linear program is

maximize
∑

(i,j)∈A

τifij

subject to∑
j: (j,i)∈E

fji −
∑

j: (i,j)∈E

fij = −bi , for all i , and fij ≥ 0 , for all (i, j) ∈ E ,

where bs = 1, bs′ = −1 and bi = 0 for i 6= s, s′.

This is a minimum cost flow problem with cij = −τi. The path of edges where fij = 1
is is called the critical path. It is the longest path from s to s′ when edges (s, i) and
(i, s′) have lengths 0 and each other edge (i, j) has length τi.
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9 Transportation and Assignment Problems

9.1 Transportation problem

In the transportation problem we are given a set of suppliers S = {1, . . . , n}, with
supplier i producing si units of a good, and a set of consumers C = {1, . . . ,m}, with
consumer j demanding dj of the good, such that

∑n
i=1 si =

∑m
j=1 dj . The cost of

transporting one unit of the good from supplier i to consumer j is cij , and the goal
is to supply the demand while minimizing overall transportation cost. This can be
formulated as an uncapacitated minimum cost flow problem on a bipartite network,
i.e. a network G = (S ∪C,E) with E ⊆ S ×C. The case of E = {(i, j) : i ∈ S, j ∈ C}
is known as the Hitchcock transportation problem:

minimize

n∑
i=1

m∑
j=1

cijxij

subject to

n∑
i=1

xij = dj for all j = 1, . . . ,m

m∑
j=1

xij = si for all i = 1, . . . , n

xij ≥ 0 for all i, j.

It turns out that transportation problems already capture the full expressiveness of
minimum cost flow problems. For that reason, new algorithms for computing are often
first implemented and tested for transportation problems.

Theorem 9.1. Every minimum cost flow problem with finite capacities or non-negative
costs has an equivalent transportation problem.

Proof. Consider a minimum cost flow problem on a network G = (V,E) with supplies
or demands bi, capacities mij and mij , and costs cij . When constructing an initial
feasible tree solution in the previous lecture, we saw that we can assume without loss
of generality that mij = 0 for all i, j. We can further assume that all capacities are
finite: if some edge has infinite capacity but costs are non-negative then setting the
capacity of this edge to a large enough number, for example

∑
i∈V |bi|, does not affect

the optimal solution of the problem.

We now construct a transportation problem as follows. For every vertex i ∈ V , we add
a sink vertex with demand

∑
kmik − bi. For every edge (i, j) ∈ E, we add a source

vertex with supply mij , an edge to vertex i with cost cij,i = 0, and an edge to vertex
j with cost cij,j = cij . The situation is shown in Figure 9.

We now claim that there exists a direct correspondence between feasible flows of the
two problems, and that these flows have the same costs. To see this, suppose {xij} is
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i, jmij

i
∑
k:(i,k)∈Emik − bi

j
∑
k:(j,k)∈Emjk − bj

0

cij

Figure 9: Representation of flow conservation constraints by a transportation problem

a feasible flow in the minimum cost flow problem. Let the flows on edges (ij, i) and
(ij, j) be mij − xij and xij , respectively. The total flow into vertex i then is∑
k:(i,k)∈E(mik − xik) +

∑
k:(k,i)∈E xki , which must be equal to

∑
k:(i,k)∈Emik − bi.

This is the case if and only if bi +
∑
k:(k,i)∈E xki−

∑
k:(i,k)∈E xik = 0, which is the flow

conservation constraint for vertex i in the original problem.

9.2 Network simplex method in tableau form

When solving a transportation problem using the network simplex method, it is con-
venient to write it down in a tableau of the following form, where λi for i = 1, . . . , n
and µj for j = 1, . . . ,m are the dual variables corresponding to the flow conservation
constraints for suppliers and consumers, respectively:

µ1 · · · µm

λ1 x11 · · · x1m s1c11 · · · c1m
...

...
. . .

...
......

. . .
...

λn xn1 · · · xnm sncn1 · · · cnm

d1 · · · dm

Consider the Hitchcock transportation problem given by the following tableau:

8
5 3 4 6

10
2 7 4 1

9
5 6 2 4

6 5 8 8
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Figure 10: Initial basic feasible solution of a transportation problem (left) and a cycle
along which the overall cost can be decreased (right)

An initial BFS can be found by a greedy method of iteratively considering pairs (i, j)
of supplier i and customer j, increasing xij until either the supply si or the demand
dj is satisfied, and moving to the next supplier in the former case or to the next
customer in the latter. Since

∑
i si =

∑
j dj , this process is guaranteed to find a

feasible solution, and the corresponding spanning tree consists of the pairs (i, j) that
have been visited. If at some point both the supply and the demand are satisfied at
the same time, the resulting solution is degenerate. In the example, we can start by
setting x11 = min{s1, d1} = 6, moving to customer 2 and setting x12 = 2, moving to
supplier 2 and setting x22 = 3, and so forth. The resulting spanning tree and flows are
shown on the left of Figure 10.

To determine the values of the dual variables λi for i = 1, . . . , 3 and µj for j = 1, . . . , 4,
observe that λi − µj = cij must be satisfied for all (i, j) ∈ T . By setting λ1 = 0, we
obtain a system of 6 linear equalities with 6 variables, which has a unique solution. It
will finally be convenient to write down λi−µj for (i, j) /∈ T , which we do in the upper
right corner of the respective cells. The tableau now looks as follows:

−5 −3 0 −2

0 6 2 0 2 8
5 3 4 6

4 9 3 7 6 10
2 7 4 1

2 7 5 1 8 9
5 6 2 4

6 5 8 8

If cij ≥ λi − µj for all (i, j) /∈ T , the current flow would be optimal. In our example
this condition is violated, for example, for i = 2 and j = 1. Edge (2, 1) forms a unique
cycle with the spanning tree T , and we would like to increase x21 by pushing flow
along this cycle. Due to the special structure of the network, doing so will alternately
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increase and decrease the flow for edges along the cycle. In particular, increasing x21
by θ increases x12 and decreases x11 and x22 by the same amount. The is shown on the
right of Figure 10. Increasing x21 by the maximum amount of θ = 3 and re-computing
the values of the dual variables λ1 and µj , we obtain left hand tableau below.

Now, c24 < λ2 − µ4, and we can increase x24 by 7 to obtain the right hand tableau
below, which satisfies cij ≥ λi − µj for all (i, j) /∈ T and therefore is optimal.

−5 −3 −7 −9

0 3 5 7 9
5 3 4 6

−3 3 0 7 6
2 7 4 1

−5 0 −2 1 8
5 6 2 4

−5 −3 −2 −4

0 3 5 2 4
5 3 4 6

−3 3 0 −1 7
2 7 4 1

0 5 3 8 1
5 6 2 4

9.3 Assignment problem

An instance of the assignment problem is given by n agents and n jobs, and costs cij
for assigning job j to agent i. The goal is to assign exactly one job to each agent to

minimize

n∑
i=1

n∑
j=1

cijxij

subject to xij ∈ {0, 1} for all i, j = 1, . . . , n
n∑
j=1

xij = 1 for all i = 1, . . . , n

n∑
i=1

xij = 1 for all j = 1, . . . , n

(9.1)

Except for the integrality constraints, this is a special case of the Hitchcock trans-
portation problem. All basic solutions of the LP relaxation of this problem, which
is obtained by replacing the integrality constraint xij ∈ {0, 1} by 0 ≤ xij ≤ 1, are
spanning tree solutions and therefore integral. Thus, both the network simplex method
and the general simplex method yield an optimal solution of the original problem when
applied to the LP relaxation. This is not necessarily the case, for example, for the
ellipsoid method.

This problem is also known as the weighted bipartite matching problem. In the
next lecture we will look at a polynomial time algorithm for solving this problem. As
a preliminary, we state the following lemma.

Lemma 9.2. A feasible solution {xij} to (9.1) is optimal if there exist {λi}, {µj} such
that λi − µj ≤ cij for all i, j, and λi − µj = cij if xij = 1.
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10 Maximum Flows and Perfect Matchings

10.1 Maximum flow problem

Consider a flow network (V,E) with a single source 1, a single sink n, and finite capac-
ities mij = Cij for all (i, j) ∈ E. We will also assume for convenience that mij = 0 for
all (i, j) ∈ E. The maximum flow problem then asks for the maximum amount of
flow that can be sent from vertex 1 to vertex n, i.e. the goal is to

maximize δ

subject to
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =


δ if i = 1

−δ if i = n

0 otherwise

0 ≤ xij ≤ Cij for all (i, j) ∈ E.

(10.1)

To see that this is again a special case of the minimum cost flow problem, set cij = 0 for
all (i, j) ∈ E, and add an additional edge (n, 1) with infinite capacity and cost cn1 = −1.
Since the new edge (n, 1) has infinite capacity, any feasible flow of the original network
is also feasible for the new network. Cost is clearly minimized by maximizing the flow
across the edge (n, 1), which by the flow conservation constraints for vertices 1 and n
maximizes flow through the original network. This is called a circulation problem,
because there are no sources or sinks but flow merely circulates in the network.

10.2 Max-flow min-cut theorem

Consider a flow network G = (V,E) with capacities Cij for all (i, j) ∈ E. A cut of
G is a partition of V into two sets, and the capacity of a cut is defined as the sum of
capacities of all edges across the partition. Formally, for S ⊆ V , the capacity of the
cut (S, V \ S) is

C(S) =
∑

(i,j)∈E∩(S×(V \S))

Cij . (10.2)

Assume that x is a feasible flow vector that sends δ units of flow from vertex 1 to
vertex n. It is easy to see that δ is bounded from above by the capacity of any cut S
with 1 ∈ S and n ∈ V \ S. Indeed, for X,Y ⊆ V , let

f(X,Y ) =
∑

(i,j)∈E∩(X×Y )

xij .

Then, for any S ⊆ V with 1 ∈ S and n ∈ V \ S,

δ =
∑
i∈S

( ∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji

)
(10.3)
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δ = f(S, V )− f(V, S)

= f(S, S) + f(S, V \ S)− f(V \ S, S)− f(S, S)

= f(S, V \ S)− f(V \ S, S) ≤ f(S, V \ S) ≤ C(S).

(10.4)

The following result states that this upper bound is tight, i.e. there exists a flow of size
equal to the minimum capacity of a cut that separates vertex 1 from vertex n.

Theorem 10.1 (Max-flow min-cut theorem). Let δ be the optimal solution of (10.1)
for a network (V,E) with capacities Cij for all (i, j) ∈ E. Then,

δ = min {C(S) : S ⊆ V, 1 ∈ S, n ∈ V \ S } .

Proof. It remains to be shown that there exists a cut that separates vertex 1 from
vertex n and has capacity equal to δ. Consider a feasible flow vector x. A path P =
v0, v1, . . . , vk is called an augmenting path for x if xvi−1vi < Cvi−1vi or xvivi−1

> 0
for every i = 1, . . . , k. If there exists an augmenting path from vertex 1 to vertex n,
then we can push flow along the path, by increasing the flow on every forward edge and
decreasing the flow on every backward edge along the path by the same amount, such
that all constraints remain satisfied and the amount of flow from 1 to n increases.

Now assume that x is optimal, and let

S = {1} ∪ { i ∈ V : there exists an augmenting path for x from 1 to i }.

By optimality of x, n ∈ V \ S. Moreover,

δ = f(S, V \ S)− f(V \ S, S) = f(S, V \ S) = C(S).

The first equality holds by (10.4). The second equality holds because xji = 0 for
every (j, i) ∈ E ∩ ((V \ S) × S). The third equality holds because xij = Cij for every
(i, j) ∈ E ∩ (S × (V \ S)).

10.3 The Ford-Fulkerson algorithm

The Ford-Fulkerson algorithm attempts to find a maximum flow by repeatedly
pushing flow along an augmenting path, until such a path can no longer be found:

1. Start with a feasible flow vector x.

2. If there is no augmenting path from 1 to n, then stop.

3. Otherwise pick some augmenting path from 1 to n, and push a maximum amount
of flow along this path without violating any constraints. Then go to Step 2..

Assume that all capacities are integral and that we start with an integral flow vector,
e.g., the flow vector x such that xij = 0 for all (i, j) ∈ E. It is then not hard to see that
the flow vector always remains integral and overall flow increases by at least one unit
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in each iteration. The algorithm is therefore guaranteed to find a maximum flow after
finitely many iterations. It can in fact be shown that the running time is O(|E| · δ)
where δ is the value of the maximum flow. If all capacities are bounded by the integer
U then the running time is O(|E| · |V | ·U). This is because the flow leaving s is at most
|V | · U and each iteration takes O(|E|) time.
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Figure 11: In the first picture the flow is suboptimal, at 17. There is an augmenting
path s–3–5–2–4–t. After increasing flow along this path by 2, we reach the optimal
flow assignment. Now there is no augmenting path from s to t. The maximum flow is
19, and S = {1, 3}. On edges are marked Cij/xij .

10.4 Applications of the max-flow min-cut theorem

The max-flow min-cut theorem has many applications. Here are two.

In what follows we will work with a bipartite graph whose vertices are in two sets L
(for left) and R (for right), and E ⊆ L × R. Suppose |L| = |R| = n. A matching is
a subset of edges sharing no common vertices. The bipartite graph is said to have a
perfect matching if the size of the maximum matching is n, i.e. every i ∈ L can be
matched with some j ∈ R. For i ∈ L. define N(i) = {j : (i, j) ∈ E} and for X ⊆ L,
N(X) = ∪i∈XN(i).

Theorem 10.2 (Hall’s theorem). Consider a bipartite graph G = (L ∪ R,E) with
|L| = |R|. It has a perfect matching if and only if |N(X)| ≥ |X| for every X ⊆ L.

Proof. If a perfect matching exists then clearly |N(X)| ≥ |X| for any X ⊆ L.

To prove the converse we add two vertices: a ‘start’ s, and a ‘terminus’ t, and all edges
of form (s, i), i ∈ L, and (j, t), j ∈ R. We give the original edges in E capacity ∞ and
the new edges capacity 1. Let (S, V \S) be a cut of minimum capacity. By considering
how S is constructed we see that N(L ∩ S) ⊆ R ∩ S. The capacity of the cut comes
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from edges in s× (L \ S) and (R ∩ S)× t. The total number of these edges is C(S). If
a perfect matching does not exist, so C(S) < |L|, then

|N(L ∩ S)| ≤ |R ∩ S| = C(S)− |L \ S| < |L| − |L \ S| = |L ∩ S|

A subset of the vertices is said to be a vertex cover of G if ever edge has at least one
endpoint in the subset.

Theorem 10.3 (König’s theorem). In a bipartite graph G = (L∪R,E), the maximum
size of a matching is equal to the minimum size of a vertex cover.

Proof. We use the same graph as in the proof of Hall’s theorem. Find the maximum
flow using the Ford-Fulkerson algorithm. When it terminates there will be paths from
s to t, each carrying unit flow and sharing no vertices in E. This proves

‘min size vertex cover’ ≥ ‘max size matching’ = ‘max flow’ = ‘min cut capacity’.

So it remains to show ‘min cut capacity’ ≥ ‘min size vertex cover’.

Consider the cut set S when the Ford-Fulkerson algorithm terminates. This consists
of the unmatched vertices in L and all other vertices that can be reached from these
along augmenting paths. Let W = (L \S)∪ (R∩S). Note that C(S) = |W |. We claim
that every edge of E has an endpoint in W .

An edge whose left endpoint is not matched must have its right endpoint in R ∩ S.
An edge whose left end point is matched either is part of an augmenting path and so
has its right endpoint in R ∩ S, or is not part of an augmenting path, and so its left
endpoint is in L \ S.
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Figure 12: The graph used in proof of König’s theorem. Edges (s, i) and (j, t) have
capacity 1. Edges in L × R have capacity ∞. The thick blue edges carry flow 1 and
provide a matching of size 6. The vertices in S (shown black) are those reachable from
s by augmenting paths. For example, 4∈ S because of the augmenting path s–8–15–
6–13–4. The six vertices: {1, 2, 3} = L ∩ (V \ S) and {13, 14, 15} = R ∩ S provide a
vertex cover of the edges.
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10.5 A polynomial-time algorithm for the assignment problem

Recall that in the assignment problem we are to find minimum cost matching in a
weighted complete bipartite graph.

Consider the complete bipartite graph with |L| = |R| = n and E = L×R. The weight
on edge (i, j) is cij . A labelling λ of the vertices is deemed (dual) feasible if λi−λj ≤ cij
for all (i, j) ∈ E. Let Gλ be the subgraph of G consisting of edges where λi − λj = cij
and their endpoints, named the equality graph. See Figure 10.5

Step 1. If any vertex i ∈ L is not in the equality graph we can increase λi until it
becomes so. Similarly if any j ∈ R is not in the equality graph we can decrease λj until
it becomes so. Make these changes, so that all vertices are in the equality graph.

Look for an augmenting path in the equality graph by applying the Ford-Fulkerson
algorithm to the same graph used in the proof of Hall’s and König’s theorems. That is,
Gλ, with the addition of start vertex s, terminus vertex t, and connecting edges {s}×L
and R × {t}. Having found a path, augment flow by 1, thereby finding a matching of
size one greater. Repeat this until a maximum matching in the equality graph is found.

If this matching is of size n we are done (by Lemma 9.2). If not, proceed to step 2.

Step 2. The Ford-Fulkerson algorithm has stopped with a set S, of vertices that can be
reached from s along augmenting paths. Vertices in V \ S cannot be so reached. Let
us now increase by θ the label of each vertex in S, while keeping labels of vertices in
V \ S constant. Since step 1 did not create a matching of size n the set R ∩ (V \ S) is
non-empty. We increase θ gradually from 0 until for some i ∈ L∩S, and j ∈ R∩(V \S)
the value of λi − λj moves from < cij to = cij . This has the effect of creating a new
equality graph, with new edge (i, j). Some edges may have been lost from the equality
graph, but not so as remove any vertices from S (since all vertices in S can be reached
along augmenting paths from s and the labels of vertices along augmenting paths have
all increased by θ). At this point, either there is now an augmenting path to t and
the cardinality of the matching increases, in which case we return to step 1, or the
cardinality of R∩S increases, in which case we repeat step 2. The later can happen at
most n times, so eventually we must find an augmenting path to t.

This is the so-called Hungarian algorithm. The total number times we find an
augmenting path is no more than n (since the cardinality of the matching can increase
at most n times). Each of these occurs after no more than n changes of the labels in
step 2. Each computation of new labels takes time O(n2) (since we have to check which
of the λi−λj first increases to cij). Thus the entire algorithm has running time O(n4).
There is an improved version of the Hungarian algorithm that runs in time O(n3).
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Figure 13: The maximum flow problem underlying the Hungarian algorithm. Edges
(s, i) and (j, t) have capacity 1. Edges in L × R have capacity ∞. At a step 2 the
equality graph contains the solid edges between L and R. Dotted edges are not in the
equality tree. All other edges between L and R exist but are not in the equality tree
and are not shown. There is a maximum matching of size 6, shown by the wide blue
lines (1–10, 2–11, . . . , 6–15), each of which carries flow 1. Other edges are carrying flow
0. The vertices in S are black and the vertices in V \S are white. The set S is vertices
reachable from s by edges having flow 0, or by backward flow from R to L along a full
edge. As we increase the node numbers on S new edges will join the equality set, such
as those shown dotted. This will either create an augmenting path and the cardinality
of the matching in the equality tree increases, as in cases of 9–18 and 8–12. Otherwise,
as in case of 4–11 the number of vertices in R ∩ S increases by 1 (with the addition of
11). Some edges, such as 3–13, may leave the equality tree, but this does not deplete
S or invalidate the existing matching.
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11 Shortest Paths and Minimum Spanning Trees

11.1 Bellman’s equations

In the single-destination shortest path problem one is given a destination t ∈ V
and simultaneously looks for shortest paths from any vertex i ∈ V \ {t} to t. It is
equivalent to the minimum cost flow problem on the same network where one unit of
flow is to be routed from each vertex i ∈ V \ {t} to t, i.e. the one with supply bi = 1
at every vertex i ∈ V \ {t} and demand bt = −(|V | − 1) at vertex t.

Let λi for i ∈ V be the dual solution corresponding to an optimal spanning tree solution
of this flow problem, and recall that for every edge (i, j) ∈ E with xij > 0,

λi = cij + λj .

By setting λt = 0 and adding these equalities along a path from i to t, we see that
λi is equal to the length of a shortest path from i to t. Moreover, since bi = 1 for all
i ∈ V \ {t}, and given λt = 0, the dual problem is to

maximize
∑

i∈V \{t}

λi subject to λi ≤ cij + λj for all (i, j) ∈ E.

In an optimal solution, λi will thus be as large as possible subject to the constraints,
i.e. it will satisfy the so-called Bellman equations

λi = min
j:(i,j)∈E

{cij + λj} for all i ∈ V \ {t},

with λt = 0. The intuition behind these equalities is that in order to find a shortest
path from i to t, one should choose the first edge (i, j) on the path in order to minimize
the sum of the length of this edge and that of a shortest path from j to t. This situation
is illustrated in Figure 14.

i tj
cij λk

Figure 14: Illustration of the Bellman equations for the shortest path problem

50



11.2 Bellman-Ford algorithm

Let λi(k) be the length of a shortest path from i to t that uses at most k edges. Then,
λt(k) = 0 for all k ≥ 0, and

λi(0) =∞ and

λi(k) = min
j:(i,j)∈E

{cij + λj(k − 1)}

for all i ∈ V \ {t} and k ≥ 1.

The algorithm that successively computes λi(k) for all i and larger and larger values
of k is known as the Bellman-Ford algorithm. It is an example of a method called
dynamic programming, which can be applied to problems that are decomposable
into overlapping subproblems and have what is called optimal substructure, such that
an overall solution can be constructed efficiently from solutions to the subproblems.

Note that λi(|V |) < λi(|V | − 1) for some i ∈ V if and only if there exists a cycle of
negative length. In that case λi = −∞. Otherwise λi = λi(|V |−1). So O(|V |) iterations
of the Bellman-Ford algorithm suffice to determine λi. Each iteration requires O(|E|)
steps, for an overall running time of O(|E| · |V |). Given the values λi for all i ∈ V , a
shortest path from i to t then leads along an edge (i, j) ∈ E such that λi = cij + λj .

11.3 Dijkstra’s algorithm

The Bellman-Ford algorithm works even if some edges have negative length. If all
edges have non-negative lengths then the running time can sometimes be decreased.
The idea is to collect vertices in the order of increasing shortest path length to t.
Assume E = V × V , and set cij =∞ if necessary. The following lemma will be useful.

Lemma 11.1. Consider a graph with vertices V and edge lengths cij ≥ 0 for all
i, j ∈ V . Fix t ∈ V and let λi denote the length of a shortest path from i ∈ V to t. Let
j ∈ V \ {t} such that cjt = mini∈V \{t} cit. Then, λj = cjt and λj = mini∈V \{t} λi.

Proof. For i 6= t, consider a shortest path from i to t, and let (`, t) be the last edge on
this path. Then, λi ≥ λ` ≥ c`t ≥ cjt. This holds in particular for i = j, and on the
other hand λj ≤ cjt. Thus λj = cjt ≤ λi.

Dijkstra’s algorithm uses this lemma to determine λj for a particular vertex j,
removes j from the graph, and repeats the process for the new graph:

1. Find a vertex j with cjt = mini∈V \{t} cit. Set λj = cjt.

2. For every vertex i ∈ V \ {j}, set cit = min{cit, cij + cjt}.
3. Remove vertex j from V . If |V | > 1, return to Step 1.
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Figure 15: An iteration of Dijkstra’s algorithm with t = 4. In the graph on the left,
c2t = mini∈V \{t} cit and therefore, by Lemma 11.1, λ2 = c2t = 1. The graph on the
right is then obtained by removing vertex 2 and updating c14 to min{c14, c12 + c24} =
min{∞, 5 + 1} = 6 and c34 to min{c34, c32 + c24} = min{6, 4 + 1} = 5.

The algorithm performs |V | − 1 iterations, each of which determines the new length of
one edge for each of the remaining O(|V |) vertices. The overall running time is thus
O(|V |2). This improves on the Bellman-Ford algorithm in graphs with many edges,
and is optimal in the sense that any algorithm for the single-destination shortest path
problem has to inspect all of the edges, of which there are Ω(|V |2) in the worst case.

One might wonder if there exists a way to transform the edge lengths to make them
non-negative without affecting the structure of the shortest paths, so that Dijkstra’s
algorithm could be used in the presence of negative lengths as well. Let λi be the
length of a shortest path from vertex i to vertex t, and recall that λi ≤ cij + λj for all
(i, j) ∈ E. Let c̄ij = cij + λj − λi. Then, c̄ij ≥ 0 for every edge (i, j) ∈ E, and for an
arbitrary path v1, v2, . . . , vk,

k−1∑
i=1

c̄vivi+1
=

k−1∑
i=1

(cvivi+1
+ λvi+1

− λvi) = λvk − λv1 +

k−1∑
i=1

cvivi+1
.

So indeed, changing edge lengths from cij to c̄ij allows Dijkstra’s algorithm to work
correctly, and it does not affect the structure of the shortest paths.

This observation is not very useful in the context of single-pair or single-destination
shortest path problems: we do not know the values λi, and computing them is at least as
hard as the problem we are trying to solve. For the all-pairs shortest path problem,
however, which requires us to find a shortest path between every pair of vertices i, j ∈ V ,
the situation is different. The straightforward solution to this problem is to run the
Bellman-Ford algorithm |V | times, once for every possible destination vertex. In a graph
with Ω(|V |2) edges, this leads to an overall running time of |V | · O(|V |3) = O(|V |4).
Using the above observation, we can instead invoke the Bellman-Ford algorithm for one
destination vertex t to obtain the shortest path lengths λi for all i ∈ V , and compute
shortest paths for the remaining destination vertices by running Dijkstra’s algorithm
on the graph with edge lengths c̄ij . This improves the asymptotic running time to
O(|V |3) + |V − 1| ·O(|V |2) = O(|V |3).

52



11.4 Minimal spanning tree problem

The minimum spanning tree problem for a network (V,E) with associated costs
cij for each edge (i, j) ∈ E asks for a spanning tree of minimum cost, where the cost
of a tree is the sum of costs of all its edges. This problem arises, for example, if one
wishes to design a communication network that connects a given set of locations. The
following property of minimum spanning trees will be useful.

Theorem 11.2. Let (V,E) be a graph with edge costs cij for all (i, j) ∈ E. Let U ⊆ V
and (u, v) ∈ U × (V \ U) such that cuv = min(i,j)∈U×(V \U) cij. Then there exists a
spanning tree of minimum cost that contains (u, v).

Proof. Let T ⊆ E be a spanning tree of minimum cost. If (u, v) ∈ T we are done.
Otherwise, T ∪ {(u, v)} contains a cycle, and there must be another edge (u′, v′) ∈ T
such that (u′, v′) ∈ U × (V \U). Then, (T ∪{(u, v)}) \ {(u′, v′)} is a spanning tree, and
its cost is no greater than that of T .

Prim’s algorithm uses this property to inductively construct a minimum spanning
tree. It proceeds as follows:

1. Set U = {1} and T = ∅.
2. If U = V , return T . Otherwise find an edge (u, v) ∈ U × (V \ U) such that
cuv = min(i,j)∈U×(V \U) cij .

3. Add v to U and (u, v) to T , and return to Step 2.

It is called a greedy algorithm, because it always chooses an edge of minimum cost.

Example. In this example, Prim’s algorithm adds edges in the sequence {1, 3}, {3, 6},
{6, 4}, {3, 2}, {2, 5}.
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After each iteration, we may compute and store for every j ∈ V \ U a minimum cost
edge to U . This only needs comparison between the previously stored edge and the
edge to the vertex newly added to U . We then add to U the vertex that is closest to
U . So each iteration needs time O(|V |). The algorithm performs |V | − 1 iterations, so
has overall running time of O(|V |2).
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12 Semidefinite Programming

12.1 Primal-dual interior-point methods

The ellipsoid algorithm is not the most effective method of solving a linear program.
We illustrate the primal-dual path following method for the LP and dual LP

minimize c>x s.t. Ax = b, x ≥ 0,

maximize λ>b s.t. λTA+ sT = cT , s ≥ 0.

Constraints of the form xi ≥ 0 and si ≥ 0 are problematic for Newton’s method. We
drop those, and consider new primal and dual objective functions, for µ > 0,

c>x− µ
∑
i log xi and λ>b+ µ

∑
j log sj .

The term of −µ log xi provides a so-called barrier function which prevents xi from
getting close to 0. Its influence decreases as µ tends to 0. By considering the Lagrangian
it can be shown that x, λ, s are optimal for the modified primal and dual if

Ax = b, x ≥ 0,

ATλ+ s = c, s ≥ 0,

xisi = µ for all i = 1, . . . , n.

(12.1)

Suppose that we have feasible solutions that satisfy (12.1). Then cTx−λT b = nµ. The
key idea is to follow a path on which simultaneously we let µ → 0 and solve (12.1).
At each iteration of the algorithm we use Newton’s method to compute a solution
(x, λ, s)k + (δx, δλ, δs) that satisfies (12.1). At iteration k we take µ = µk, where
perhaps µk = (s>x)k−1/(2n). It is possible to prove that such an algorithm decreases
the duality gap µk from ε0 to ε in a time that is O(

√
n log(ε0/ε)).

12.2 Semidefinite programming problem

The set {(x, s) : x ≥ 0, s ≥ 0} is a convex cone. Interior point methods can also be
effective when the regional constraint is some other convex cone.

Let Sn = {A ∈ Rn×n : AT = A} be the set of all symmetric n × n matrices. The
subset Sn+ is the set of positive semidefinite symmetric matrices, i.e. matices A such
that zTAz ≥ 0 for all z ∈ Rn. We write A � 0. It is easily seen that Sn+ is a convex
cone, i.e. αA+ βB ∈ Sn+ for all α, β ≥ 0 and all A,B ∈ Sn+.

A linear function of X ∈ Sn can be expressed in terms of the inner product

tr(CX) =

n∑
i=1

n∑
j=1

cijxij
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for some C ∈ Sn. A semidefinite program (SDP) has the form

minimize tr(CX)
subject to tr(AiX) = bi for all i = 1, . . . ,m

X � 0,
(12.2)

where C,A1, . . . , Am ∈ Sn and b ∈ Rm.

The linear program (2.2) is a special case of semidefinite programming:

minimize 〈diag(c),diag(x)〉
subject to 〈diag(ai),diag(x)〉 = bi for all i = 1, . . . ,m

diag(x) � 0,

where ai = (ai1, . . . , ain)T , for i = 1, . . . ,m, is a vector consisting of the elements of
the ith row of A. This problem can be brought into the form of (12.2) by replacing the
diagonal matrix diag(x) by a general symmetric matrix X, and adding linear constraints
to ensure that the off-diagonal entries of X are zero.

Semidefinite programming has been called linear programming for the 21st century.

SDPs can be viewed as having an infinite number of linear constraints on X, namely,
zTXz ≥ 0 for all z ∈ Rn. As a consequence, there are optimization problems that can
be written as an SDP, but not as an LP.

Semidefinite programming includes important classes of convex optimization prob-
lems as special cases, for example linear programming and quadratically constrained
quadratic programming.

While no algorithm is known for solving SDPs in a finite number of steps, they can
be solved approximately in polynomial time, by a variant of the ellipsoid method, or a
barrier method of the type described above. The constraint X � 0 in an SDP can be
handled by the barrier

−µ
n∑
i=1

log(κi(X)) = −µ log

(
n∏
i=1

κi(X)

)
= −µ log(det(X)),

where κi is the ith eigenvalue of X. This works because X � 0 if and only if κi ≥ 0 for
all i = 1, . . . , n.

The Lagrangian dual of SDP is

DSDP : maximize
y

min
X�0

tr(CX) +
∑
i

yi(bi − tr(AiX))

= maximize
y

y>b s.t. C −
∑
i

yiAi � 0.

This is because tr(C −
∑
i yiAi)X) > −∞ for all X � 0 iff Z = C −

∑
i yiAi � 0. The

complementary slackness condition is tr(ZX) = 0. This can also be used in a barrier
method as was xisi = µ in (12.1).

We now look at some application of semidefinite programming.
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12.3 Max-cut problem

In the max-cut problem one is given a undirected graph G = (V,E) and wishes to
partition the n vertices into two sets, S and V \ S, so as to maximize the number of
edges in S × (V \ S). The max-cut problem is NP-complete and thus cannot be solved
exactly in polynomial time unless P = NP.

A maximization problem is said to lie in class APX (approximable) if there exists a
constant α < 1 and algorithm with polynomial running time (called an α-approximation
algorithm) that will provide a solution guaranteed to differ from the optimum by no
worse than a factor of α. A 0.87856-approximation algorithm for the max-cut problem
can be obtained using semidefinite programming.

Theorem 12.1 (Goemans and Williamson, 1995). There exists a 0.87856-approxi-
mation algorithm for the max-cut problem.

Proof sketch. The max-cut problem can be written as

maximize
∑
{i,j}∈E

1− xixj
2

subject to xi ∈ {−1, 1} for all i ∈ V .

(12.3)

By taking xi = 1 for i ∈ S and xj = −1 for j ∈ V \ S the objective function evaluates
the number of edges in S × (V \ S).

Since the max-cut problem is NP-complete, an optimal solution of (12.3) cannot be
found in polynomial time unless P = NP. Note, however, that∑

{i,j}∈E

1− xixj
2

=
|E|
2
− 1

4
xTCx =

|E|
2
− 1

4
tr(CxxT ),

where C is the graph’s adjacency matrix with Cij = 1 if {i, j} ∈ E and Cij = 0 other-
wise. Moreover, xxT is a positive semidefinite matrix. So we can relax the constraints
and obtain an upper bound on the optimal solution of (12.3), by replacing xxT by a
general positive semidefinite matrix X with Xii = 1 for all i ∈ V . We arrive at the
following optimization problem, which is an SDP:

maximize
|E|
2
− 1

4
tr(CX)

subject to Xii = 1 for all i ∈ V
X � 0.

Goemans and Williamson showed how to use a polynomial time algorithm to find a near
optimal solution to this SDP, and then derive from it (by rounding) a feasible solution
to (12.3). The reduction in objective function value that takes place in this process is,
surprisingly, bounded by a factor of 0.87856. So this procedure finds, in polynomial
time, a solution with a cut value that is at least 0.87856 of the true max-cut value.
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12.4 Symmetric rendezvous search game

Suppose that two players are placed in two rooms. Each room has 3 telephones, and
these are pairwise connected at random, in a manner unknown to the players. On the
stroke of each hour, 1, 2, . . . , each player picks up one of his telephones and tries to
communicate with the other player. They wish to minimize the expected number of
attempts required until this occurs. Suppose that at time 1 each player has picked up
a telephone at random, and they have failed to connect.

I II

Imagine that for each player the telephones are arranged around a circle, and players
have a common notion of clockwise. Player I labels the telephone which he picked at
time 1 as ‘a’. He labels the two phones that are one and two positions clockwise from a
as ‘b’ and ‘c’, respectively. His possible pure strategies for time 2 are to pick up a, b or
c. Suppose he adopts these with probabilities x = (x1, x2, x3). We assume the players
are symmetric (perhaps reading what they should do in these circumstances from the
same instruction manual), and so player II must use the same mixed strategy. The
probability that the players fail to pick up connected telephones at the next attempt
(i.e. fail to rendezvous) is

x>C1x = x>

 1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

x.

The matrix C1 is positive definite, and so the minimizer is easily found to be x =
( 1
3 ,

1
3 ,

1
3 ), with x>C1x = 2/3.

Similarly, thinking about both times 2 and 3, there are 9 pure strategies: aa, ab, ac, ba,
bb, bc, ca, cb, cc. Suppose the players adopt these with probabilities x = (x1, . . . , x9).
One can show that the probability that the players have not yet managed to speak

57



after the 3rd attempt is

x>C2x = x>



1 1
2

1
2

1
2

1
2 0 1

2 0 1
2

1
2 1 1

2 0 1
2

1
2

1
2

1
2 0

1
2

1
2 1 1

2 0 1
2 0 1

2
1
2

1
2 0 1

2 1 1
2

1
2

1
2

1
2 0

1
2

1
2 0 1

2 1 1
2 0 1

2
1
2

0 1
2

1
2

1
2

1
2 1 1

2 0 1
2

1
2

1
2 0 1

2 0 1
2 1 1

2
1
2

0 1
2

1
2

1
2

1
2 0 1

2 1 1
2

1
2 0 1

2 0 1
2

1
2

1
2

1
2 1


x.

C2 is not positive definite. (It’s eigenvalues are 4, 1, 1, 1, 1, 1, 1,− 1
2 ,−

1
2 .) This means

that the quadratic form x>C2x has local minima. One such is given by x> =
(1/9)(1, 1, 1, 1, 1, 1, 1, 1, 1), which gives x>C2x = 4/9. But better is
x> = (1/3)(1, 0, 0, 0, 0, 1, 0, 1, 0), which gives x>C2x = 1/3. How might we prove this
is best?

Let J2 be the 9×9 matrix of 1s. Note that for x to be a vector of probabilities, we must
have x>Jx = 9. As with the max-cut problem we think of relaxing xx> to a matrix
X � 0 and consider the SDP

minimize tr(C2X) s.t. X ∈ Sn, X ≥ 0, X � 0 and tr(J2X) = 9.

One can numerically compute that the optimal value of this SDP. It is 1/3. This
provides a lower bound on the probability that the players do not rendezvous by the
end of the 3rd attempt. This is achieved by x> = (1/3)(1, 0, 0, 0, 0, 1, 0, 1, 0) — so this
strategy does indeed minimize the probability that they have not yet met by the end
of the 3rd attempt.

These ideas can be extended (Weber, 2008) to show that the expected time to ren-
dezvous is minimized when players adopt a strategy in which they choose their first
telephone at random, and if this does not connect them then on successive pairs of
subsequent attempts they choose aa, bc or cb, each with probability 1/3. Given that
they fail to meet at the first attempt, the expected number of further attempts required
is 5/2. This is less than 3, i.e. the expected number of steps required if players simply
try telphones at random at each attempt. There are many simply-stated but unsolved
problems in the field of search games.
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13 Branch and Bound

There are three conceptually different approaches for optimization problems that are
computationally hard: (i) an exact method, which finds optimal solutions but has an
exponential worst-case running time, (ii) heuristic methods, which need not offer guar-
antees regarding running time or solution quality, but often provide a good tradeoff
between the two in practice, and (iii) approximation algorithms, which run in polyno-
mial time and return solutions with a guaranteed bound on the suboptimality. We met
an example of (iii) for the max-cut problem. We start with another example of (iii)
and then continue with (i) and (ii).

13.1 Knapsack problem

In the 0-1 knapsack problem we are to

maximize
∑n
i=1 xivi

subject to
∑n
i=1 xiwi ≤ B, xi ∈ {0, 1}.

Assume v1/w1 ≥ v2/w2 ≥ · · · vn/wn and wi < B for all i. A greedy algorithm is to
place items in the knapsack in order 1, 2, . . . , k, until item k + 1 does not fit. Suppose
the optimal value is OPT. One can easily prove that

OPT ≤ v1 + · · ·+ vk + vk+1. (13.1)

So either v1 + · · · + vk or vk+1 exceeds OPT/2, and by selecting the greater of these
we have a 1/2-approximation algorithm. In fact, we can find a (1 − ε)-approximation
algorithm for any ε > 0, as follows.

For a set S let v(S) =
∑
i∈S vi and w(S) =

∑
i∈S wi. Suppose O is a set of optimal

items for the knapsack and |O| > m. Let H be the subset of O consisting of its m
most valuable items. Consider filling the knapsack with H ∪ G, where G is obtained
by filling the space B − w(H) by using the greedy algorithm on items with values
no more than values in H, i.e. taking such items in decreasing order of vi/wi until
one does not fit; suppose that is j. By (13.1) we have v(O) ≤ v(H ∪ G) + vj . But
vj ≤ v(H)/m ≤ v(O)/m. Hence v(H ∪G) ≥ (1− 1/m)v(O).

Suppose we take each subset K for which |K| ≤ m, and from it create a packing by using
the greedy algorithm on the remaining items with values no more than values in K to
fill the space B−w(K). We will either find the optimal packing, say O, when |O| ≤ m,
or at some point take K = H and construct H∪G such that v(H∪G) ≥ (1−1/m)v(O).

The number of subsets K which we must examine is at most
∑m
i=1

(
n
i

)
= O(mnm),

so running time is polynomial in n for fixed m. The knapsack problem lies in the
PTAS, which is defined as the class of problems which having a polynomial-time
approximation scheme. Clearly PTAS⊆APX. It can be shown that there is strict
inequality unless P=NP.
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13.2 Branch and bound technique

Suppose we wish to solve the knapsack problem exactly. It is NP-hard, so there is no
polynomial time algorithm unless P=NP. However, there is something we can do. A
useful fact is that if we have partially filled the knapsack with some items in the set
A, and items in set B = {i1, i2, . . . } are still available for inclusion, with vi1/wi1 ≥
vi2/wi2 ≥ · · · , then the value we can obtain by completing the packing optimally is
bounded above by ∑

i∈A
vi + vi1 + · · ·+ vik + α(vik+1

/wik+1
),

where
∑
i∈A wi + wi1 + wi2 + · · · + wik + α = B, and α < wik+1

. This bound is very
easy to compute.

Branch and bound is a general method for solving optimization problems, especially
in the context of non-convex and combinatorial optimization. Suppose we want to

minimize f(x)
subject to x ∈ X

for some feasible region X. Branch and bound uses divide and conquer, which splits a
problem into smaller and smaller subproblems until they become easy to solve. For the
above minimization problem, it works by splitting X into k ≥ 2 sets X1, . . . , Xk such
that

⋃
i=1,...,kXi = X. This step is called branching, since its recursive application

defines a tree structure, the so-called search tree, whose vertices are the subsets of X.
Once optimal solutions have been found for the subsets X1, . . . , Xk, it is easy to obtain
a solution for X, because minx∈X f(x) = mini=1,...,k minx∈Xi f(x).

Of course, branching as such doesn’t make the problem any easier to solve, and for
an NP-hard problem we may have to explore an exponential number of vertices of the
search tree. In practice we might hope, however, that we will be able to prune large
parts of the tree that cannot contain an optimal solution. The procedure that allows us
to do this is known as bounding. It tries to find lower and upper bounds on the optimal
solution, i.e. functions ` and u such that for allX ′ ⊆ X, `(X ′) ≤ minx∈X′ f(x) ≤ u(X ′).
Then, if `(Y ) ≥ u(Z) for two sets Y,Z ⊆ X, then Y can be discarded. A particular
situations where this happens is when Y does not contain any feasible solutions, and
we assume that `(Y ) =∞ by convention in this case.

For the upper bound, it suffices to store the value U = f(x) of the best feasible solution
x ∈ X found so far. A good way to obtain a lower bound for a set Y ⊆ X is by
letting `(Y ) = minx∈Y ′ f(x) for some set Y ′ ⊇ Y for which minimization of f is
computationally tractable. It is easy to see that this indeed provides a lower bound.
Moreover, if minimization over Y ′ yields a solution x ∈ Y , then this solution is optimal
for Y . The branch and bound method stores U and a list L of active sets Y ⊆ X for
which no optimal solution has been found so far, corresponding to vertices in the search
tree that still need to be explored, along with their associated lower bounds. It then
proceeds as follows:
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1. Initialize: set U =∞. L is a list of subsets of X. Start with L = {X}.
2. Branch: pick a set Y ∈ L, remove it from L, and split it into k ≥ 2 sets Y1, . . . , Yk.

3. Bound: for i = 1, . . . , k, compute `(Yi). If this yields x ∈ X such that `(Yi) =
f(x) < U , then set U to f(x). If `(Yi) < U , but no x ∈ X as above is found, then
add Yi to L.

4. If L = ∅, then stop. The optimum objective value is U . Otherwise go to Step 2.

To apply the method in a concrete setting, we need to specify how a set Y to branch
on is chosen and how it is split into smaller sets, and how lower bounds are computed.
These decisions are of course critical for the practical performance of the procedure.

13.3 Dakin’s method

Dakin (1965) proposed an obvious way of using branch and bound to solved integer
linear programs. Lower bounds are obtained by solving the LP relaxation, i.e. the
linear program obtained by dropping the integrality constraints.

Assume that we are branching on a set Y ∈ L, and that the LP relaxation corresponding
to Y has optimal solution y. If y ∈ Y , then y is optimal for Y . Otherwise, there is some
i such that yi is not integral, and we can split Y into two sets Y 1 = {x ∈ Y : xi ≤ byic}
and Y 2 = {x ∈ Y : xi ≥ dyie}. Note that Y 1 ∪ Y 2 = Y , as desired. Moreover, this
branching rule forces the solution away from its current value y /∈ Y . While this does
not guarantee that yi becomes integral in the next step, and may even force another
variable away from its integral value, it works remarkably well in practice. It is worth
noting that we do not have to start from scratch when solving the LP relaxation for Yi:
it was obtained by adding a constraint to an LP that is already solved, and the dual
simplex method often finds a solution satisfying the additional constraint very quickly.
In order to minimize the number of solved LPs that have to be stored to implement
this approach, it makes sense to branch on a set obtained in the previous step whenever
possible, i.e. to traverse the search tree in a depth-first manner.

Example 13.1. Assume that we want to

minimize x1 − 2x2
subject to −4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4
x1 ≥ 0, x2 ≥ 0
x1, x2 ∈ Z.

An illustration is shown in Figure 16. Let f(x) = x1 − 2x2, and X = Z2 ∩ X̃ where

X̃ = {x ∈ R2 : −4x1 + 6x2 ≤ 9, x1 + x2 ≤ 4, x1 ≥ 0, x2 ≥ 0 }.

The search tree for an application of Dakin’s method is shown in Figure 17.

61



x1

x2

0 1

1

2

2

3

3

x1 − 2x2 = −2
x0

x2 ≥
⌈
x02
⌉

x2 ≤
⌊
x02
⌋x1

x1 ≤
⌊
x11
⌋

x1 ≥
⌈
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x4

Figure 16: Illustration of Dakin’s method, applied to the IP of Example 13.1

• Start with U = ∞ and L = {X}. By solving the LP relaxation for X, we find
that `(X) = minx∈X̃ f(x) = f(x0) = −7/2 for x0 = (3/2, 5/2).

• Set X is the only candidate for branching and can be split into X1 = Z2 ∩ X̃1

and X2 = Z2 ∩ X̃2, where

X̃1 = {x ∈ X̃ : x2 ≤ 2} and X̃2 = {x ∈ X̃ : x2 ≥ 3}.

• Bound X1 and X2 by solving the corresponding LP relaxations, and obtain
`(X1) = minx∈X̃1 f(x) = f(x1) = −13/4 for x1 = (3/4, 2), and X̃2 = ∅. We
thus set L = {X1}.

• Branch by splitting X1 into X3 = Z2 ∩ X̃3 and X4 = Z2 ∩ X̃4, where

X̃3 = {x ∈ X̃1 : x1 ≤ 0} and X̃4 = {x ∈ X̃1 : x1 ≥ 1},

• Bound X3 and X4 to obtain `(X3) = minx∈X̃3 f(x) = f(x3) = −3 for x3 =
(0, 3/2) and `(X4) = minx∈X̃4 f(x) = f(x4) = −3 for x4 = (1, 2). Since x4 ∈ X,
we set U = f(x4) = −3. Then, `(X3) ≥ U , so we can discard X3 and are done.

X

X1

`(X1) = − 7
2

X3

`(X3) = −3 ≥ u(X4)
pruned

X4

`(X4) = u(X4) = −3
optimal

X2

`(X2) = ∞ ≥ u(X)
pruned

Figure 17: Search tree explored by Dakin’s method for the IP of Example 13.1
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14 Heuristic Algorithms

14.1 The travelling salesman problem

Recall that in the travelling salesman problem (TSP) we are given a matrix A ∈ Nn×n
and are looking for a permutation σ ∈ Sn that minimizes aσ(n)σ(1) +

∑n−1
i=1 aσ(i)σ(i+1).

Matrix entry aij can be interpreted as a cost associated with edge (i, j) ∈ E of a graph
G = (V,E), and we are then trying to find a tour, i.e. a cycle in G that visits every
vertex exactly once, of minimum overall cost. We have seen that the TSP is NP-hard,
but we could try to encode it as an integer program and solve it using branch and
bound. Consider variables

xij ∈ {0, 1} for i, j = 1, . . . , n, (14.1)

encoding whether the tour traverses edge (i, j). There are various ways to ensure that
these variables indeed encode a tour, i.e. that xij = 1 if and only if σ(n) = i and
σ(1) = j, or σ(k) = i and σ(k + 1) = j for some k ∈ {1, . . . , n − 1}. Of course, there
has to be exactly one edge entering and one edge leaving every vertex, i.e.

n∑
i=1

xij = 1 for j = 1, . . . , n,

n∑
j=1

xij = 1 for i = 1, . . . , n. (14.2)

The so-called cut-set formulation additionally requires that there are at least two edges
across every cut S ⊆ V , whereas the subtour elimination formulation makes sure that
no set S ⊂ V contains more than |S| − 1 edges. The problem with both of these
formulations is of course that they require an exponential number of constraints, one
for each set S ⊆ V .

A polynomial formulation can be obtained by introducing, for i = 1, . . . , n, an auxiliary
variable ti ∈ {0, . . . , n− 1} indicating the position of vertex i in the tour. If xij = 1, it
holds that tj = ti + 1. If xij = 0, on the other hand, then tj ≥ ti − (n − 1). This can
be written more succinctly as

tj ≥ ti + 1− n(1− xij) for all i ≥ 1, j ≥ 2, i 6= j. (14.3)

Since values satisfying (14.3) exist for every valid tour, adding this constraint does not
affect solutions corresponding to valid tours. On the other hand, it suffices to rule
out subtours, i.e. cycles of length less than |V |. To see this, consider a solution that
satisfies (14.3), and assume for contradiction that it consists of two or more subtours.
Summing the constraints over the edges in a subtour that does not contain vertex 1
leads to the nonsense that 0 ≥ k, where k is the number of edges in the subtour.

A minimum cost tour can thus be found by minimizing
∑
i,j xijaij subject to (14.1),

(14.2), and (14.3). This integer program has a polynomial number of variables and
constraints and can be solved using Dakin’s method, which bounds the optimum by
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relaxing the integrality constraints (14.1). There are, however, other relaxations that
are specific to the TSP and can provide better bounds.

Observe, for example, that the integer program obtained by relaxing the subtour elimi-
nation constraints (14.3) is an instance of the assignment problem (9.1). It can be solved
efficiently in practice using the network simplex method or Hungarian algorithm, which
yields a solution consisting of one or more subtours. If there is more than one sub-
tour, then taking the set {e1, . . . , ek} ⊆ E of edges of one or more of the subtours
and disallowing each of them in turn splits the feasible set Y into Y1, . . . , Yk, where
Yi = {x ∈ Y : xuv = 0, ei = (u, v)}. Clearly, the optimal TSP tour cannot contain all
edges of a subtour, so it must be contained in one of the sets Yi. Moreover, adding a
constraint of the form xij = 0 is equivalent to setting aij to a large enough value, so
the new problem will still be an instance of the assignment problem. Note that none
of the sets Yi contains the optimal solution of the current relaxation, so `(Yi) ≥ `(Y )
for all i, and `(Yi) > `(Y ) if the optimal solution of the current relaxation was unique.

14.2 Heuristic algorithms

For all we know, a complete exploration of the search tree, either explicitly or implic-
itly, might be required to guarantee that an optimal solution is found. When this is
impractical, heuristic methods can be used to find a satisfactory, but possibly sub-
optimal, solution. Heuristics sacrifice solution quality in order to gain computational
performance or conceptual simplicity.

14.3 Heuristics for the TSP

A straightforward way of constructing a TSP tour is by starting from an arbitrary
vertex, traversing a minimum cost edge to an unvisited vertex until all vertices have been
visited, and returning to the initial vertex to complete the tour. This greedy algorithm
is known as the nearest neighbor heuristic and has an asymptotic complexity of
O(n2), where n is the number of vertices. Intuitively it will work well most of the
time, but will sometimes have to add an edge with very high cost because all vertices
connected to the current one by an edge with low cost have already been visited.

An alternative procedure is to order the edges by increasing cost and adding them to
the tour in that order, skipping edges that would lead to a vertex with degree more than
two or a cycle of length less than n. This so-called savings heuristic has complexity
O(n2 log n), which is the complexity of sorting a set with n2 elements.

Another general approach are insertion heuristics, which start with a subtour, i.e. a
tour on a subset of the set of vertices, and extend it with additional vertices. The initial
subtour can be a cycle of two or three vertices . The cheapest insertion heuristic
then chooses a vertex, and a place to insert it into the subtour, in order to minimize
the overall length of the resulting subtour. The farthest insertion heuristic, on
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the other hand, inserts a vertex whose minimum distance to any vertex in the current
subtour is maximal. The idea behind the latter strategy is to fix the overall layout of
the tour as soon as possible.

14.4 Local search

Of course, optimization does not need to end once we have constructed a tour. Rather,
we could try to make a small modification to the tour in order to reduce its cost,
and repeat this procedure as long as we can find such an improving modification. An
algorithm with this general procedure is known as a local search algorithm, because
it makes local modifications to a solution to obtain a new solution with a better objective
value. A tour created using the nearest neighbor heuristic, for example, will usually
contain a few edges with very high cost, so we would be interested in local modifications
that eliminate these edges from the tour.

More generally, suppose we want to

minimize c(x)
subject to x ∈ X,

and that for any feasible solution x ∈ X, the cost c(x) and a neighborhood N(x) ⊆ X
can be computed efficiently. Local search then proceeds as follows:

1. Find an initial feasible solution x ∈ X.

2. Find a solution y ∈ N(x) such that c(y) < c(x).

3. If there is no such solution, then stop and return x; otherwise set the current
solution x to y and return to Step 2..

The solution returned by this procedure is a local optimum, in that its cost is no
larger than that of any solution in its neighborhood. It need not be globally optimal,
as there might be a solution outside the neighborhood with strictly smaller cost.

Any of the basic tour construction heuristics can be used to find an initial feasible
solution in Step 1., and the whole procedure can also be run several times with different
initial solutions. Step 2. requires a choice if more than one neighboring solution provides
a decrease in cost. Natural options include the first such solution to be found, or the
solution providing the largest decrease.

Most importantly, however, any implementation of a local search method must specify
the neighborhood function N . A natural neighborhood for the TSP is the k-OPT
neighborhood. Here, the neighbors of a given tour are obtained by removing any set of
k edges, for some k ≥ 2, and reconnecting the k paths thus obtained to a tour by adding
k edges. Viewing tours as permutations, k-OPT cuts a permutation into k segments
and reverses and swaps these segments in a arbitrary way. An illustration for k = 2
and k = 3 is shown in Figure 18.

65



4 3

2

16

5

4 3

2

16

5

4 3

2

16

5

Figure 18: A TSP tour (left) and neighboring tours under the 2-OPT (middle) and
3-OPT neighborhoods (right). The tours respectively correspond to the permutations
123456, 143256, and 126534.

The choice of k provides a tradeoff between solution quality and speed: the k-OPT
neighborhood of a solution contains its `-OPT neighborhood if k ≥ `, so the quality of
the solution increases with k; the same is also true for the complexity of the method,
because the k-OPT neighborhood of a tour of length n has size O(nk) and computing
the change in cost between two neighboring tours requires O(k) operations. Empirical
evidence suggests that 3-OPT often performs better than 2-OPT, while there is little
gain in taking k > 3.

Note that the simplex method for linear programming can also be viewed as a local
search algorithm, where two basic feasible solutions are neighbors if their bases differ
by exactly one element. We have seen that in this case every local optimum is also a
global optimum, so that the simplex method yields a globally optimal solution.

In general, however, local search might get stuck in a local optimum and fail to find a
global one. Consider for example the TSP instance given by the cost matrix

A =


0 1 0 4 4
4 0 1 0 4
4 4 0 1 0
0 4 4 0 1
1 0 4 4 0

 .

There are 4! = 24 TSP tours, and

c(12345) = 5, c(13245) = 6, c(14235) = 10, c(15234) = 6,
c(12354) = 6, c(13254) = 12, c(14253) = 20, c(15243) = 12,
c(12435) = 6, c(13425) = 10, c(14325) = 17, c(15324) = 12,
c(12453) = 10, c(13452) = 6, c(14352) = 9, c(15342) = 17,
c(12534) = 10, c(13524) = 0, c(14523) = 10, c(15423) = 17,
c(12543) = 17, c(13542) = 12, c(14532) = 17, c(15432) = 20.

It is easily verified that the tour 12345 is a local optimum under the 2-OPT neighbor-
hood, while the global optimum is the tour 13524.
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14.5 Simulated annealing

To prevent local search methods from getting stuck in a local optimum, one could allow
transitions to a neighbor even if it has higher cost, with the hope that solutions with
lower cost will be reachable from there. Simulated annealing implements this idea
using an analogy to the process of annealing in metallurgy, in which a metal is heated
and then cooled gradually in order to bring it to a low-energy state that comes with
better physical properties.

In each iteration, simulated annealing considers a neighbor y of the current solution x
and moves to the new solution with probability

pxy = min

(
1, exp

(
−c(y)− c(x)

T

))
,

where T ≥ 0 is a parameter, the temperature, that can vary over time. With the
remaining probability the solution stays the same. When T is large, the method allows
transitions even when c(y) exceeds c(x) by a certain amount. As T approaches zero, so
does the probability of moving to a solution with larger cost.

It can further be shown that with a suitable cooling schedule that decreases T suffi-
ciently slowly from iteration to iteration, the probability of reaching an optimal solution
after t iterations tends to 1 as t tends to infinity. To motivate this claim, consider the
special case where every solution has k neighbors and a neighbor of the current solution
is chosen uniformly at random. The behavior of the algorithm can then be modeled as
a Markov chain with transition probabilities

Pxy =


pxy/k if y ∈ N(x),

1−
∑
z∈N(x) pxz/k if y = x,

0 otherwise.

This Markov chain has a unique stationary distribution π, i.e. a distribution over
X such that for all x ∈ X, πx =

∑
y∈X πyPyx. In addition it can be shown that π

must satisfy the detailed balance condition that πxPxy = πyPyx for every pair of
solutions x, y ∈ X. In fact, detailed balance is not only necessary but also sufficient for
stationary, because it implies that

∑
x∈X πxPxy =

∑
x∈X πyPyx = πy

∑
x∈X Pyx = πy.

It is not hard to show that π with

πx =
e−c(x)/T∑
z∈X e

−c(z)/T

for every x ∈ X is a distribution and satisfies detailed balance, and must therefore be
the stationary distribution. Letting Y ⊆ X be the set of solutions with minimum cost
and πY =

∑
x∈Y πx, we conclude that πY /(1− πY )→∞ as T → 0.

The idea now is to decrease T slowly enough for the Markov chain to be able to reach
its stationary distribution. A common cooling schedule is to set T = c/ log t in iteration
t, for some constant c.

67



15 Non-cooperative Games

The rest of the course is about situations in which multiple self-interested entities,
or agents, operate in the same environment. Game theory provides mathematical
models, so-called games, for studying such situations. We focus for now on non-
cooperative games, in which agents independently optimize different objectives and
outcomes must be self-enforcing. Later, we consider cooperative games and focus
upon conditions under which cooperation among subsets of agents can be sustained.

15.1 Games and solutions

The central object of study in non-cooperative game theory is the normal-form game.
This is a tuple Γ = (N, (Ai)i∈N , (pi)i∈N ) where N is a finite set of players, and for
each player i ∈ N , Ai is a non-empty and finite set of actions available to i and
pi : ("i∈NAi) → R is a function mapping each action profile, i.e. each combination of
actions, to a real-valued payoff for i. Unless noted otherwise, the results we consider
are invariant under positive affine transformations of payoffs, and payoffs will not be
comparable across players.

More complicated games in which players move sequentially and base their decisions on
their and others’ earlier moves can also be represented as normal-form games, by en-
coding every possible course of action in the former by an action of the latter. However,
this generally leads to a large increase in the number of actions.

A two-player game with m actions for player 1 and n actions for player 2 can be
represented by matrices P,Q ∈ Rm×n, where pij and qij are the payoffs of players 1
and 2 when player 1 plays action i and player 2 plays action j. Two-player games are
therefore sometimes referred to as bimatrix games, and players 1 and 2 as the row
and column player, respectively. The concepts and results we address for two-person
games extend in a straightforward way to games with more than two players.

Assume players can choose their actions randomly and denote the set of possible strate-
gies of the two players by X and Y , respectively, i.e. X = {x ∈ Rm≥0 :

∑m
i=1 xi = 1}

and Y = {y ∈ Rn≥0 :
∑n
i=1 yi = 1}. A pure strategy is a strategy that chooses some

action with probability 1. A profile (x, y) ∈ X × Y of strategies induces a lottery over
outcomes, and we write p(x, y) = xTPy and q(x, y) = xTQy for the expected payoff of
the two players in this lottery.

Consider for example the well-known prisoner’s dilemma, involving two suspects
accused of a crime who are being interrogated separately. If both remain silent, they
walk free after spending a few weeks in detention. If one of them testifies against the
other and the other remains silent, the former is released immediately while the latter
receives a ten-year sentence. If both testify, each of them receives a five-year sentence.
The representation as a normal-form game is shown in Figure 19.
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S T

S (2, 2) (0, 3)

T (3, 0) (1, 1)

Figure 19: Representation of the prisoner’s dilemma as a normal-form game. The
matrices P and Q are displayed as a single matrix with entries (pij , qij), and players 1
and 2 respectively choose a row and a column of this matrix. Action S corresponds to
remaining silent, action T to testifying.

It is easy to see that both players should choose T because this action yields a strictly
larger payoff than action S for every action of the respective other player. More gen-
erally, for two strategies x, x′ ∈ X of the row player, x is said to strictly dominate
x′ if for every strategy y ∈ Y of the column player, p(x, y) > p(x′, y). Dominance
for the column player is defined analogously. Strategy profile (T, T ) in the prisoner’s
dilemma is what is called a dominant strategy equilibrium, a profile of strategies
that dominate every other strategy of the respective player. The source of the dilemma
is that outcome resulting from (T, T ) is strictly worse for both players than the outcome
resulting from (S, S). More generally, an outcome that is weakly preferred to another
outcome by all players, and strictly preferred by at least one player is said to Pareto
dominate that outcome. An outcome that is Pareto dominated is clearly undesirable.

In the absence of dominant strategies, it is less obvious how players should proceed.
Consider for example the game of chicken illustrated in Figure 20. It models a situation
in which two cars drive towards each other on a collision course. Unless one of the drivers
yields, both may die in a crash. If one of them yields while the other goes straight,
however, the former will be called a “chicken”, or coward. It is easily verified that this
game does not have any dominant strategies.

C D

C (2, 2) (1, 3)

D (3, 1) (0, 0)

Figure 20: The game of chicken, where players can chicken out or dare

The most cautious choice in a situation like this would be to ignore that the other
player is self-interested and choose a strategy that maximizes the payoff in the worst
case, taken over all of the other player’s strategies. A strategy of this type is known as
a maximin strategy, and the payoff thus obtained as the player’s security level. It
is easy to see that it suffices to maximize the minimum payoff over all pure strategies
of the other player, i.e. to choose x such that minj∈{1,...,n}

∑m
i=1 xipij is maximized.

Thus the maximin strategy and the security level for the row player can be found from
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the following linear program with variables v ∈ R and x ∈ Rm:

maximize v

subject to

m∑
i=1

xipij ≥ v for j = 1, . . . , n,

m∑
i=1

xi = 1, x ≥ 0.
(15.1)

The unique maximin strategy in the game of chicken is to yield, for a security level
of 1. This also illustrates that a maximin strategy need not be optimal: assuming that
the other player yields, the best response is in fact to go straight. Formally, strategy
x ∈ X of the row player is a best response to strategy y ∈ Y of the column player if
for all x′ ∈ X, p(x, y) ≥ p(x′, y). The concept of a best response for the column player
is defined analogously.

A pair of strategies (x, y) ∈ X × Y such that x is a best response to y and y is a best
response to x is called a (Nash) equilibrium. It is easily verified that both (C,D) and
(D,C) are equilibria of the game of chicken. There is one more equilibrium, in which
both players randomize between their two actions, giving each probability 1/2.

15.2 Minimax theorem for zero-sum games

In the special case that interests of the two players are diametrically opposed, maximin
strategies are optimal in a very strong sense. A two-player game is a zero-sum game
if qij = −pij for all i = 1, . . . ,m and j = 1, . . . , n. It is also then called a matrix
game, because it can be represented just by the matrix P containing the payoffs of
the row player. Assuming invariance of utilities under positive affine transformations,
results for zero-sum games in fact apply to the larger class of constant-sum games,
in which the payoffs of the two players always sum up to the same constant. For games
with more than two players, these properties are far less interesting, as one can always
add an extra player who “absorbs” the payoffs of the others.

Theorem 15.1 (von Neumann, 1928). Let P ∈ Rm×n, X = {x ∈ Rm≥0 :
∑m
i=1 xi = 1},

Y = {y ∈ Rn≥0 :
∑n
i=1 yi = 1}. Then,

max
x∈X

min
y∈Y

p(x, y) = min
y∈Y

max
x∈X

p(x, y).

Proof. Again consider the linear program (15.1), and recall that the optimal solution
of this linear program is equal to maxx∈X miny∈Y p(x, y). By adding a slack variable
z ∈ Rn with z ≥ 0 we obtain the Lagrangian

L(v, x, z, w, y) = v +

n∑
j=1

yj

( m∑
i=1

xipij − zj − v
)
− w

( m∑
i=1

xi − 1
)

=
(

1−
n∑
j=1

yj

)
v +

m∑
i=1

( n∑
j=1

pijyj − w
)
xi −

n∑
j=1

yjzj + w,
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where w ∈ R and y ∈ Rn. The Lagrangian has a finite maximum for v ∈ R and x ∈ Rm
with x ≥ 0 if and only if

∑n
j=1 yj = 1,

∑n
j=1 pijyj ≤ w for i = 1, . . . ,m, and y ≥ 0.

The dual of (15.1) is therefore

minimize w

subject to

n∑
j=1

pijyj ≤ w for i = 1, . . . ,m,

n∑
j=1

yj = 1, y ≥ 0.

It is easy to see that the optimal solution of the dual is miny∈Y maxx∈X p(x, y), and
the theorem follows from strong duality.

The number maxx∈X miny∈Y p(x, y) = miny∈Y maxx∈X p(x, y) is called the value of
the matrix game with payoff matrix P .

The solution of a matrix game can be found by solving the linear program (15.1). This
problem can be simplified by first adding a constant to every element of P so that
P > 0. This does not change the equilibrium of the game, but ensures that at the
solution we must have v > 0. By setting x′ = x/v, and noting that 1/v =

∑
i x
′
i, we

can rewrite (15.1) as

minimize

m∑
i=1

x′i subject to

m∑
i=1

x′ipij ≥ 1 for j = 1, . . . , n, x′ ≥ 0.

Alternatively, we might apply a similar transformation to the dual and solve

maximize

n∑
i=1

y′i subject to

n∑
i=1

pijy
′
i ≤ 1 for j = 1, . . . , n, ȳ′ ≥ 0.

15.3 Equilibria of matrix games

The minimax theorem implies that every matrix game has an equilibrium, and in fact
characterizes the set of equilibria of these games.

Theorem 15.2. A pair of strategies (x, y) ∈ X × Y is an equilibrium of the matrix
game with payoff matrix P if and only if it is a minimax point, i.e.

min
y′∈Y

p(x, y′) = max
x′∈X

min
y′∈Y

p(x′, y′) and

max
x′∈X

p(x′, y) = min
y′∈Y

max
x′∈X

p(x′, y′).
(15.2)

Proof. For all (x, y) ∈ X × Y ,

min
y′∈Y

max
x′∈X

p(x′, y′) ≤ max
x′∈X

p(x′, y) ≥ p(x, y) ≥ min
y′∈Y

p(x, y′) ≤ max
x′∈X

min
y′∈Y

p(x′, y′),

and the first and last term are equal by Theorem 15.1.
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If (x, y) is an equilibrium, the second and third inequality hold with equality. This
means that the first and last inequality have to hold with equality as well, and (15.2)
follows.

On the other hand, if (15.2) is satisfied, then the first and last inequality hold with
equality. This means that the second and third inequality have to hold with equality
as well, so (x, y) is an equilibrium.

Some other properties specific to matrix games are stated in the following theorem.
These are that all equilibria yield the same payoffs and that any pair of strategies
of the two players, such that each of them is played in some equilibrium, is itself an
equilibrium.

Theorem 15.3. Let (x, y), (x′, y′) ∈ X×Y be equilibria of the matrix game with payoff
matrix P . Then p(x, y) = p(x′, y′), and (x, y′) and (x′, y) are equilibria as well.

Proof. Since equilibrium strategies are best responses to each other, we have that

p(x, y) ≤ p(x, y′) ≤ p(x′, y′) ≤ p(x′, y) ≤ p(x, y).

Since the first and last term are the same, the inequalities have to hold with equality
and the first claim follows. Then,

p(x, y′) = p(x′, y′) ≥ p(z, y′) for all z ∈ X,

p(x, y′) = p(x, y) ≤ p(x, z) for all z ∈ Y ,

p(x′, y) = p(x, y) ≥ p(z, y) for all z ∈ X, and

p(x′, y) = p(x′, y′) ≥ p(x′, z) for all z ∈ X,

where the inequalities hold because (x, y) and (x′, y′) are equilibria. Thus (x, y′) and
(x′, y) are pairs of strategies that are best responses to each other, and the second claim
follows as well.

Theorems 15.1, 15.2, and 15.3 together also imply that the set of equilibria of a matrix
game is convex.
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16 Solution of Two-person Games

16.1 Nash’s theorem

Many of the results concerning equilibria of matrix games do not carry over to bimatrix
games, with the exception of existence.

Theorem 16.1 (Nash, 1951). Every bimatrix game has an equilibrium.

We use the following result.

Theorem 16.2 (Brouwer fixed point theorem). Let f : S → S be a continuous func-
tion, where S ⊆ Rn is closed, bounded, and convex. Then f has a fixed point.

Proof of Theorem 16.1. Define X and Y as before, and observe that X × Y is closed,
bounded, and convex. For x ∈ X and y ∈ Y define si(x, y) and tj(x, y) as the additional
payoff the two players could obtain by playing their ith or jth pure strategy instead of
x or y, i.e.

si(x, y) = max {0, p(emi , y)− p(x, y)} for i = 1, . . . ,m and

tj(x, y) = max {0, q(x, enj )− q(x, y)} for j = 1, . . . , n,

where ek` denotes the `th unit vector in Rk. Further define f : (X × Y )→ (X × Y ) by
letting f(x, y) = (x′, y′) with

x′i =
xi + si(x, y)

1 +
∑m
k=1 sk(x, y)

and y′j =
yj + tj(x, y)

1 +
∑n
k=1 tk(x, y)

for i = 1, . . . ,m and j = 1, . . . , n. Function f is continuous, so by Theorem 16.2 is must
have a fixed point, i.e. a pair of strategies (x, y) ∈ X × Y such that f(x, y) = (x, y).

Further observe that there has to exist i ∈ {1, . . . ,m} such that xi > 0 and si(x, y) = 0,
since otherwise

p(x, y) =

m∑
k=1

xkp(e
m
k , y) >

m∑
k=1

xkp(x, y) = p(x, y).

Therefore, and since (x, y) is a fixed point,

xi =
xi + si(x, y)

1 +
∑m
k=1 sk(x, y)

and thus
m∑
k=1

sk(x, y) = 0.
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This means that for k = 1, . . . ,m, sk(x, y) = 0, and therefore

p(x, y) ≥ p(emk , y).

It follows that

p(x, y) ≥ p(x′, y) for all x′ ∈ X.

An analogous argument shows that q(x, y) ≥ q(x, y′) for all y′ ∈ Y , so (x, y) must be
an equilibrium.

Our requirement that a bimatrix game has a finite number of actions is crucial for this
result. This can be seen very easily by considering a game where the set of actions of
each player is the set of natural numbers, and players get a payoff of 1 if they choose a
number that is greater than the one chosen by the other player, and zero otherwise.

16.2 The complexity of finding an equilibrium

The proof of Theorem 16.1 relies on fixed points of a continuous function and does not
give rise to a finite method for finding an equilibrium. Quite surprisingly, equilibrium
computation turns out to be more or less a combinatorial problem.

Define the support of strategy x ∈ X as S(x) = {i ∈ {1, . . . ,m} : xi > 0}, and that
of strategy y ∈ Y as S(y) = {j ∈ {1, . . . ,m} : yj > 0}. It is easy to see that a mixed
strategy is a best response if and only if all pure strategies in its support are best
responses: if one of them was not a best response, then the payoff could be increased
by reducing the probability of that strategy, and increasing the probabilities of the
other strategies in the support appropriately. In other words, randomization over the
support of an equilibrium does not happen for the player’s own sake, but to allow the
other player to respond in a way that sustains the equilibrium.

It also follows from these considerations that finding an equilibrium boils down to find-
ing its supports. Once the supports are known, the precise strategies can be computed
by solving a set of equations, which in the two-player case are linear. For supports
of sizes k and `, there is one equation for each player stating that the probabilities
sum up to one, and k − 1 or ` − 1 equations, respectively, stating that the expected
payoff is the same for every pure strategy in the support. Solving these k + ` equa-
tions in k + ` variables yields k values for player 1 and ` values for player 2. If the
solution corresponds to a strategy profile and expected payoffs are maximized by the
pure strategies in the support, then an equilibrium has been found. An equilibrium
with supports of size two in the game of chicken would have to satisfy x1 + x2 = 1,
y1 + y2 = 1, 2x1 + 1x2 = 3x1 + 0x2, and 2y1 + 1y2 = 3y1 + 0y2. The unique solution,
x1 = x2 = y1 = y2 = 1/2, also satisfies the additional requirements and therefore is
an equilibrium. No equilibrium with full supports exists in the prisoner’s dilemma,
because the corresponding system of equalities does not have a solution.
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A procedure for finding an equilibrium, and in fact all equilibria, is to iterate over
all possible supports and check for each of them whether there is an equilibrium with
that support. The running time of this method is finite, but clearly exponential in
general. It is natural to ask whether there is a hardness result that stands in the
way of a polynomial-time algorithm. While the equilibrium condition can easily be
verified for a given pair of strategies, which implies membership in NP, the notion of
NP-hardness seems inappropriate: equilibria always exist and the decision problem is
therefore trivial. On the other hand, NP-hardness follows immediately if the problem
is modified slightly to obtain a non-trivial decision problem.

Theorem 16.3. Given a bimatrix game, it is NP-complete to decide whether it has
at least two equilibria; an equilibrium in which the expected payoff of the row player is
at least a given amount; an equilibrium in which the expected sum of payoff of the two
players is a least a given amount; an equilibrium with supports of a given minimum
size; an equilibrium whose support includes a given pure strategy; or an equilibrium
whose support does not include a given pure strategy.

Theorem 16.1 is an existence statement, but its proof does not identify an equilibrium.
We now consider an algorithm that searches the possible supports in an organized way.
It provides an alternative, combinatorial, proof of the existence of an equilibrium.

16.3 Symmetric games

A symmetric game is one in which Q = PT . An equilibrium can be identified using
the following lemma.

Lemma 16.4. Consider the symmetric game with payoff matrix P . Suppose x, z are
such that

x ≥ 0, x 6= 0, z ≥ 0, Px+ z = 1 and xT z = 0. (16.1)

Then a symmetric equilibrium is one in which both players use the same mixed strategy,
x̄ = x/

∑m
i=1 xi.

Proof. Suppose the column player uses mixed strategy x̄. For any strategy x̃ ∈ X

p(x̃, x̄) = x̃TPx̄ =
1∑m
i=1 xi

− x̃T z∑m
i=1 xi

.

So p(x̃, x̄) ≤ 1/
∑m
i=1 xi, with equality if x̃ = x̄.

16.4 Lemke-Howson algorithm for a symmetric game

Returning to (16.1), we now describe an algorithm for finding an equilibrium of a
symmetric game. The basic feasible solution v0 = (x, z) = (0, 1) satisfies all conditions
of Lemma 16.1 except for 1>x > 0. For convenience in describing an algorithm, let us
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say that strategy i is represented if either it is a best response (zi = 0) or is not used
(xi = 0). It is twice-represented if xi = zi = 0. It is missing if xizi > 0.

Let S = {(x, z) : Px + z = 1, x ≥ 0, z ≥ 0}. Let us assume no degeneracy, so that
every vertex of S has exactly m neighbours. Fix a strategy, say i = 1, and consider
the set V , consisting of all vertices of S in which every strategy is represented or twice-
represented, except possibly strategy 1 (which may be missing). Let v0 be the vertex
(x, z) = (0, 1). Note that v0 ∈ V since in v0 every strategy is represented.

There is exactly one neighbouring vertex to v0 that is also in V . This is the vertex
reached by increasing x1 from 0. As we increase x1 from 0 some zj becomes 0. (This
can be done in a tableau, similarly to the simplex algorithm). If it is z1 that becomes 0
then we have a solution to (16.1). Otherwise, we now have x1z1 > 0 and xj = zj = 0;
so increase xj until some other variable becomes 0. Continue in this manner. After
each pivot, in which some variable has been increased from 0, we are at a node where
xj = zj = 0 for some k, and still x1z1 > 0, and for all other k we have xkzk = 0. Either
xj or zj has just become 0. At the next step we increase the other member of this
pair, until some other variable becomes 0. If this is x1 or z1 we now have a solution to
(16.1). Otherwise we continue.

This algorithm (Lemke-Howson, 1964) must terminate in an equilibrum. The rea-
soning is cute. Firstly, note that since S is bounded it must be the case that as we
increase a nonbasic variable from 0, some basic variable must decrease and eventually
reach 0, completing a pivot step from one vertex to another. Second, there is only one
way to leave v0 and remain in V ; similarly, having reached vi there is only one way
to leave vi and remain in V without returning to the vertex from which the path just
arrived. Thus, the path never revisits a vertex. Thirdly, there are a finite number of
vertices in V , so eventually the algorithm can go no further. The only way this can
happen is to have reached a vertex at which no strategy is twice-represented. Since
this is not v0 it must be one for which 1>x > 0.

Example 16.5. Suppose

P =

 0 3 0
0 0 3
2 2 2

 .

We start at v0 = (x, z) = (0, 0, 0, 1, 1, 1). If we choose i = 2 then the unique neigh-
bouring member of V which has strategy 2 missing is obtained by increasing x2, to
reach v1 = (0, 13 , 0, 0, 1,

1
3 ). In moving from v0 to v1, the variable z1 has decreased

to 0 and strategy 1 is now twice-represented. So let us now increase x1 and move
to v2 = ( 1

6 ,
1
3 , 0, 0, 1, 0). Now z3 has been decreased to 0 and strategy 3 is twice-

represented, so we increase x3 to reach v3 = (0, 13 ,
1
6 , 0,

1
2 , 0). Now x1 has decreased to

0, strategy 1 is again twice-represented, so we increase z1, to reach v4 = (0, 16 ,
1
3 ,

1
2 , 0, 0).

Now z2 is decreased to 0, all strategies are represented, and xT z = 0. We have the
equilibrium p̄ = (0, 13 ,

2
3 ).

As we move amongst vertices in V we are at each step increasing some variable xi
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(or zi) associated with an twice-represented strategy i, which is complementary to the
variable zi or (or xi) that was decreased to 0 at the previous step.

v0

v1

v2

v3
v4

x1

x2 x3

x1 x2 x3 z1 z2 z3
v0 : 0 0 0 1 1 1
v1 : 0 1

3 0 0 1 1
3

v2 : 1
6

1
3 0 0 1 0

v3 : 0 1
3

1
6 0 1

2 0
v4 : 0 1

6
1
3

1
2 0 0

In this example there is only one equilibrium. If we had started with i = 1 we would
have reached v4 along a different path.

The algorithm will find one equilibrium, but if there is more than one it cannot guar-
antee to find them all. Starting with different i to be dropped we might reach the same
equilibrium or a different equilibrium. If we start at an one equilibrium we will follow
a path to a different equilibrium or to v0.

There is an interesting corollary of this analysis.

Corollary 16.6. A nondegenerate bimatrix game has an odd number of Nash equilibria.

Proof. Let V be the set of vertices in which only Player I’s first strategy might be
missing (i.e. such that x1z1 > 0). Every equilibrium of P × Q is a member of V
(since equilibriums are vertices for which all strategies are represented). In the graph
formed by vertices in V , each vertex has degree 1 or 2. So this graph consists of disjoint
paths and cycles. The endpoints of the paths are the Nash equilibriums and the special
vertex (x, y) = (0, 0). There are an even number of endpoints, so the number of Nash
equilibria must be odd.
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17 Linear complimentarity problem

17.1 Linear complementarity problem

The linear complementarity problem (LCP) unifies linear programing, quadratic
programing and two-person non-zero sum games (bimatrix games). Let M be a n×n
matrix, and q ∈ Rn. The LCP is to find z, w ∈ Rn, such that

w −Mz = q, z, w ≥ 0 and z>w = 0. (17.1)

Note that nothing is to be maximized or minimized in this problem.

17.2 Quadratic programming as a LCP

Let D be a positive definite symmetric matrix and consider

QP : minimize c>x+ 1
2x
>Dx

subject to Ax ≥ b, x ≥ 0.

Consider minimizing over non-negative x and v, the Lagrangian

L = c>x+ 1
2x
>Dx+ ȳ>(b−Ax+ v).

From the Lagrangian sufficiency theorem we see that (x̄, v̄) minimizes L if

Ax̄− b = v̄,
∂

∂x
L = c+Dx̄−A>ȳ = ū,

ȳ>v̄ = 0, x̄>ū = 0, x̄, v̄, ȳ, ū ≥ 0.

So x̄ is an optimal solution to QP if there exist vectors x̄, ȳ, ū and v̄ such that(
ū
v̄

)
−
(
D −A>
A 0

)(
x̄
ȳ

)
=

(
c
−b

)
(
ū
v̄

)
≥ 0

(
x̄
ȳ

)
≥ 0 and

(
ū
v̄

)>(
x̄
ȳ

)
= 0.

This defines a LCP, whose solution is an optimal solution to QP. A linear programming
problem is the special case D = 0.
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17.3 Knapsack as a LCP

Suppose one is given item of sizes {a1, . . . , an} and wishes to find a subset which exactly
fill a knapsack of size B.

Find x : aTx = B, xi ∈ {0, 1}, i = 1, . . . , n. (17.2)

The constraint xi ∈ {0, 1} can be written as wi = 1 − xi and xiwi = 0. This makes
(17.2) equivalent to the LCP of finding x,w ≥ 0 such that xTw = 0 and

w1

...
wn
wn+1

wn+2

−

−1 · · · 0 0 0

... · · ·
... 0 0

0 · · · −1 0 0
aT −α 0
−aT 0 −β




x1
...
xn
xn+1

xn+2

 =


1
...
1

−B
B


where α and β are any positive numbers. Notice that the constaints in the last two
rows force aTx = B.

17.4 Lemke’s algorithm

Lemke’s algorithm finds a solution to a linear complementarilty problem. If q > 0
then a solution to the LCP is w = q and z = 0. So suppose q 6> 0. Let d = (1, 1, . . . , 1)>,
introduce a new variable, λ, and consider

w −Mz − λd = q.

For λ > 0 large enough, we have the solution w = q + λd ≥ 0, and z = 0. Imagine
decreasing λ from a large value until some component of w becomes 0. At this point
(where λ = −mini qi = −qk) we have wk = zk = 0, and complementary slackness, i.e.
wizi = 0 for all i. We have found an intial basic feasible solution.

Our next step is to move to a neighbouring basic feasible solution by increasing zk (i.e.
we perform a pivot step that puts zk into the basis). Suppose that as we increase zk
one of the existing basic variables decreases, eventually reaches 0 and so must leave the
basis. (If this does not happen then the algorithm fails. But there are special cases for
which this cannot happen, such as the bimatrix games.)

• If the departing basic variable is λ then we now have a solution to the LCP.

• If the departing basic variable is not λ then we are left with a new BFS in which
w` = z` = 0 for some `.

We continue in this fashion, moving amongst solutions that are always complementary
slack, i.e. wizi = 0 for all i, and such that λ > 0 and w` = z` = 0 for some `. After
each pivot, we note which which of the variables it was, w` or z`, that has just left
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the basis, and then increase the other one — continuing in this fashion until eventually
it is λ that leaves the basis. At that point we have a solution to the LCP. Note that
there are only a finite number of complementary bases and they do not repeat. Each
BFS that we can reach has exactly two neighbouring BFS, one of which precedes it and
one of which follows it. Thus no BFS can be reached more than once and so λ must
eventually leave the basis.

17.5 Complementary pivoting

A general bimatrix game can be recast as symmetric game with m+ n pure strategies
and payoff matrices

P̄ =

(
0 P
Q> 0

)
, Q̄ = P̄> =

(
0 Q
P> 0

)
. (17.3)

Lemma 16.4 may be reformulated as follows.

Lemma 17.1. Consider the symmetric game with payoff matrix P̄ given in (17.3).
Suppose s = (x, y) such that s ≥ 0, P̄ s ≤ 1, s>(1 − P̄ s) = 0, 1>x > 0, and 1>y > 0.
Then s/1>s is a symmetric equilibrium for this symmetric game, and x̄ = x/1>x and
ȳ = y/1>y are an equilibrium pair for the original nonsymmetric game.

We can implement the Lemke-Howson algorithm by a process of complementary
pivoting in two tableaus. Adding slack variables z ∈ Rm and w ∈ Rn turns the best
response conditions into QTx+w = 1, Py+z = 1, xT z = yTw = 0, where x, y, z, w ≥ 0.

Notice that we can write the conditions for an equilibrium as in (17.1):(
z
w

)
−
(

0 −P
−Q> 0

)(
x
y

)
=

(
1n
1m

)
,

(
x
y

)
≥ 0,

(
z
w

)
≥ 0,

(
x
y

)>(
z
w

)
= 0, x 6= 0, y 6= 0.

The pair (x, y) then is said to be completely labelled if and only if xT z = 0 and yTw = 0.
We might start with x = y = 0. We pick some i and increase xi from 0 so now xi > 0
and zi > 0; we say label i is being dropped. When xi is increased as much as possible,
a different constraint starts to hold with equality, for example, wj = 0; we say j is
picked up. Since now yj = wj = 0 this label is twice represented. So the next step is
to increase yj from 0. This might cause some yk or zk to reach 0, so k is picked up.
From this point we increase wk or xk, respectively. We continue in this way until label
i is again picked up, which means that (x, y) is again fully labelled, but now x 6= 0
and y 6= 0. This procedure can be carried out through alternatively pivoting in two
tableaus, similarly to pivoting in the simplex method.
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Consider for example the bimatrix game given by

P =

 3 3
2 5
0 6

 and Q =

 3 2
2 6
3 1

 ,

Indexing z and w by M = {1, . . . ,m} and N = {m + 1, . . . ,m + n}, respectively, the
constraint QTx+ w = 1 can be written in tableau form as follows:

x1 x2 x3 w4 w5

3 2 3 1 0 1
2 6 1 0 1 1

Assume that label 2 is dropped by increasing x2 from 0. By pivoting we obtain the
following tableau:

7
3 0 8

3 1 − 1
3

2
3

1
3 1 1

6 0 1
6

1
6

The second row now corresponds to variable x2 that has entered the basis. On the
other hand, variable w5 has left the basis. We thus want to turn to the constraint
Py+ z = 1 and drop the duplicate label 5. The initial tableau for this constraint looks
as follows:

y4 y5 z1 z2 z3
3 3 1 0 0 1
2 5 0 1 0 1
0 6 0 0 1 1

By pivoting on the second column, corresponding to y5, and on the third row, we pick
up label 3 and obtain the following tableau:

3 0 1 0 − 1
2

1
2

2 0 0 1 − 5
6

1
6

0 1 0 0 1
6

1
6

Pivoting one more time in each of the two polytopes, we drop label 3 to pick up label 4:

7
8 0 1 3

8 − 1
8

1
4

3
16 1 0 − 3

48
3
16

1
8

and then drop label 4 to pick up label 2:

0 0 1 − 3
2

3
4

1
4

1 0 0 1
2 − 5

12
1
12

0 1 0 0 1
6

1
6

At this point we have a fully labelled pair. The final tableaus are the final two above.
Reading off the values of x and y from the last column of each tableau and scaling them
appropriately yields the equilibrium x = (0, 1/3, 2/3), y = (1/3, 2/3).
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17.6 Sperner’s lemma

We have seen two approaches to proving that a Nash equilibrium of a bimatrix game
exists: Brouwer’s fixed point theorem and the path following parity argument used in
the Lemke-Howson algorithm. They can be connected via Sperner’s lemma.

Sperner’s lemma is a combinatorial version of Brouwer’s fixed point theorem. Consider
the triangulation shown in Figure 17.6. The colour of each vertex x depends on whether
f(x) lies to the northeast, northwest, or south of x. Along the base, there are always an
odd number of edges with differently coloured endpoints, shown here black and white.
Each small triangle has either 0, 1 or 2 such edges. Coming in from the outside and
then entering and leaving each triangle through a side of black and white endpoints,
we must eventually leave through the base, or reach a vertex with just one such edge.
That is a triangle whose vertices have all three colours (a rainbow triangle). The path
following is reminescent of the Lemke-Howson algorithm. Sperner’s lemmas says that
there must always be a rainbow triangle. To prove Brouwer’s fixed point theorem one
imagines the triangulation becoming increasingly fine. In the limit, rainbow triangles
become fixed points.

x

x

x

f(x)

f(x)

f(x)

Figure 21: Sperner’s lemma. Along each side of the large triangle there is an odd
number of edges whose two endpoints are differently coloured.Entering along the base
across such an edge and following a path crossing edges which are similarly coloured,
we must, with at least one choice of initial entry edge, reach a rainbow triangle. Notice
that this also proves that the number of rainbow triangles is odd. In this example there
are 3 rainbow triangles. Only one is found by a following a path entering at the base.
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18 Cooperative Games

18.1 Coalitional games

A coalitional game is given by a set N = {1, . . . , n} of players, and a valuation
or characteristic function v : 2N → R that maps each coalition of players to its
value, the joint payoff the coalition can obtain by working together. The payoff can
be distributed arbitrarily among its members due to their having transferable utility
(or payoff). We are interested in which coalitions of players are likely to form and how
payoff is distributed so that their members are satisfied.

For a given game (N, v), a vector of payoffs x ∈ Rn is said to satisfy (economic)
efficiency if

∑
i∈N xi = v(N) and individual rationality if xi ≥ v({i}) for i =

1, . . . , n. The first condition intuitively ensures that no payoff is wasted, while the
second condition ensures that each player obtains at least the same payoff it would be
able to obtain on its own. A payoff vector that is both efficient and individually rational
is also called an imputation. The set of imputations might be empty. However, it is
non-empty for a superadditive game, i.e. one in which v(S ∪ T ) ≥ v(S) + v(T ) for
all disjoint subsets S and T .

18.2 The core

Efficiency and individual rationality may not be enough to guarantee a stable outcome.
For any two imputations x and y,

∑
i∈N xi =

∑
i∈N yi = v(N), so yi > xi for some

i ∈ N implies that yj < xj for some other j ∈ N . However, there could be some
coalition S ⊆ N such that yi > xi for all i ∈ S. If in addition

∑
i∈S yi ≤ v(S), the

members of S could increase their respective payoffs by exiting from the grand coalition,
forming the coalition S, and distributing the payoff thus obtained according to y. The
core is the set of imputations that are stable against this kind of action. Formally,
imputation x is in the core of game (N, v) if

∑
i∈S xi ≥ v(S) for all S ⊆ N .

Consider a situation where n ≥ 2 members of an expedition have discovered a treasure,
and any pair of them can carry one piece of the treasure back home. This situation
can be modeled by a coalitional game (N, v) where N = {1, . . . , n} and v(S) = |S|/2 if
|S| is even and v(S) = (|S| − 1)/2 if |S| is odd. The core then contains all imputations
if n = 2, the single imputation (1/2, . . . , 1/2) if n ≥ 4 is even, and is empty if n is
odd. The latter can be shown using the following characterization of games with a
non-empty core.

Call a function λ : 2N → [0, 1] balanced if for every player the weights of all coalitions
containing that player sum to 1, i.e. if for all i ∈ N ,

∑
S⊆N\{i} λ(S ∪ {i}) = 1. A

game (N, v) is called balanced if for every balanced function λ,
∑
S⊆N λ(S)v(S) ≤

v(N). The intuition behind this definition is that each player allocates one unit of
time among the coalitions it is a member of, and each coalition earns a fraction of
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its value proportional to the minimum amount of time devoted to it by any of its
members. Balancedness of a collection of weights imposes a feasibility condition on
players’ allocations of time, and a game is balanced if there is no feasible allocation
that yields more than v(N).

Theorem 18.1 (Bondareva 1963, Shapley 1967). A game has a non-empty core if and
only if it is balanced.

Proof. The core of a game (N, v) is non-empty if and only if the linear program to

minimize
∑
i∈N

xi

subject to
∑
i∈S

xi ≥ v(S) for all S ⊆ N

has an optimal solution with value v(N). This linear program has the following dual:

maximize
∑
S⊆N

λ(S)v(S)

subject to
∑

S⊆N,i∈S

λ(S) = 1 for all i ∈ N

λ(S) ≥ 0 for all S ⊆ N,

where λ : 2N → [0, 1]. Note that λ is feasible for the dual if and only if it is a
balanced function. Both primal and dual are feasible, so by strong duality their optimal
objective values are the same. This means that the core is non-empty if and only if∑
S⊆N λ(S)v(S) ≤ v(N) for every balanced function λ.

To see that the core of our example game is empty if n is odd, define λ : 2N → [0, 1]
such that λ(S) = 1/(n − 1) if |S| = 2 and λ(S) = 0 otherwise. Then, for all i ∈ N ,∑
S⊆N\{i} λ(S ∪ {i}) = 1, because each player is contained in exactly (n − 1) sets of

size 2. Moreover,
∑
S⊆N λ(S)v(S) = n(n−1)/2 ·1/(n−1) = n/2, which is greater than

v(N) if n is odd.

18.3 The nucleolus

If the core is empty then one might consider weakening the requirement that no coalition
should be able to gain, and instead look for an efficient payoff vector that minimizes
the possible gain over all coalitions. This can intuitively be interpreted as minimizing
players’ incentive to deviate from the solution by forming another coalition, or as a
natural notion of fairness when distributing the joint payoff v(N) among the players.

To this end, define the excess e(S, x) of coalition S ⊆ N for payoff vector x as its gain
from leaving the grand coalition, i.e. e(S, x) = v(S)−

∑
i∈S xi. Excess may be thought
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of as dissatisfaction, because it is the difference between what the coalition could earn
on its own and what it receives with payoff vector x. For a given vector x, let

E(x) = (e(Sx1 , x), e(Sx2 , x), . . . , e(Sx2n−1, x))

where Sx1 , . . . , S
x
2n−1 is an ordering of the coalitions in decreasing order of excess, so

components of E(x) are nonincreasing. If E(x) ≤ 0 then x is in the core. (No coalition
in positively dissatisified.)

The nucleolus is defined as the set of efficient payoff vectors x for which E(x) is
lexicographically minimal. Note that x does not need to be an imputation since we do
not require xi ≥ v({i}). The following algorithm proves that a lexicographic minimum
exists and shows how to compute it.

Step 1. Solve a linear program to minimize the maximum excess.

minimize ε

subject to ε ≥ v(S)−
∑
i∈S xi for all S ⊂ N

0 = v(N)−
∑
i∈N xi.

(P1)

Suppose the optimal value is ε1. Let ∆1 be the set of coalitions for which equality holds
in (P1) in every optimal solution. Clearly if x is in the nucleolus then Ei(x) = ε1 for
all i = 1, . . . , |∆1|. Notice that |∆1| ≥ 1. This is because if each coalition S involved
in the inequality constraint satisfied ε1 > v(S) −

∑
i∈S xi for some optimal solution,

x, then we could take the average of all optimal solutions, say x̄, and deduce that for
this feasible x̄ all the inequality constraints would be strict, contradicting ε1 being the
optimal value. Now if |∆1| < 2n − 2 go to step 2. Otherwise stop.

Step k.

minimize ε

subject to ε1 = v(S)−
∑
i∈S xi for all S ∈ ∆1

...

εk−1 = v(S)−
∑
i∈S xi for all S ∈ ∆k−1

ε ≥ v(S)−
∑
i∈S xi for all S ⊂ N , S 6∈ ∆1 ∪ · · · ∪∆k−1

0 = v(N)−
∑
i∈N xi.

(Pk)

Suppose the optimal value is εk. Let ∆k be the set of all coalitions in which equality
newly holds in (Pk) in every optimal solution. By a similar argument as we used for
|∆1| ≥ 1, we have |∆k| ≥ 1. If |∆1∪· · ·∪∆k| < 2n−2 then go to step k+1. Otherwise
stop.

The algorithm terminates by the end of step 2n − 2. Also notice that consideration of
this algorithm prove the following theorem.
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Theorem 18.2. The nucleolus of any coalitional game is a singleton.

Proof. If x and y are both in the nucleolus then both are optimal solutions at step 1.
This implies that for all S ∈ ∆1, we must have v(S)−

∑
i∈S xi = ε1 = v(S)−

∑
i∈S yi.

The same reasoning holds at each step k. At some point we will consider S = {i} ∈ ∆j ,
and then it must be that v({i})− xi = εj = v({i})− yi and so xi = yi.

Example 18.3. Consider a game with N = {1, 2, 3} and characteristic function values

v({1}) = 1 v({2}) = 2 v({3}) = 1

v({1, 2}) = 2 v({1, 3}) = 3 v({2, 3}) = 5 v({1, 2, 3}) = 4.
(18.1)

To find the nucleolus of this game, we first

minimize ε

subject to x1 ≥ 1− ε, x2 ≥ 2− ε, x3 ≥ 1− ε
x1 + x2 ≥ 2− ε, x1 + x3 ≥ 3− ε
x2 + x3 ≥ 5− ε, x1 + x2 + x3 = 4.

It is easily verified that ε = 1 for the feasible solution x = (0, 1, 3). By adding the
constraints for {1} and {2, 3} and subtracting the constraint for {1, 2, 3} we see that
ε ≥ 1, so the solution must be optimal. For ε = 1, the constraints for {1} and {2, 3}
have to hold with equality in every optimal solution, and the constraints for {3}, {1, 2},
and {1, 2, 3} become redundant. Thus x1 = 0, x2 ≥ 1, x3 ≥ 2, and x2 + x3 = 4. We
now

minimize ε

subject to x1 = 0, x2 ≥ 2− ε
x3 ≥ 3− ε, x2 + x3 = 4

and obtain a unique optimal solution, with ε = 1/2,

x =
(
0, 32 ,

5
2

)
, and E(x) =

(
1, 1, 12 ,

1
2 ,

1
2 , 0,−

3
2

)
.

18.4 Nucleolus in terms of objections

Suppose a subset of players, S, has an objection to payoff x because S would have
lesser excess (be less dissatisfied) if the payoff were changed to y, i.e. e(S, x) > e(S, y).
However, a different coalition T might counter-object on the grounds that

e(T, y) > e(T, x) and e(T, y) ≥ e(S, x).

That is, “Our dissatisfation would increase, and would be as great as that which you
are experiencing.” It can shown that the nucleolus is the unique payoff such that every
objection has a counter-objection.
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19 Bargaining problems

19.1 The Shapley value

A different notion of fairness in distributing the joint payoff of a coalition among its
members was proposed by Shapley, starting from a set of axioms. Call player i ∈ N a
dummy if its contribution to every coalition is exactly its value, i.e. if v(S ∪ {i}) =
v(S) + v({i}) for all S ⊆ N \ {i}. Call two players i, j ∈ N interchangeable if they
contribute the same to every coalition, i.e. if v(S∪{i}) = v(S∪{j}) for all S ⊆ N\{i, j}.
Let a solution be a function φ : R2n → Rn that maps every characteristic function v to
an efficient payoff vector φ(v). Solution φ is said to satisfy

• dummies if φi(v) = v({i}) whenever i is a dummy;

• symmetry if φi(v) = φj(v) whenever i and j are interchangeable; and

• additivity if φ(v + w) = φ(v) + φ(w).

It turns out that there is a unique solution satisfying these axioms.

Theorem 19.1. The Shapley value, given by

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(
v(S ∪ {i})− v(S)

)
,

is the unique solution that satisfies dummies, symmetry, and additivity.

The Shapley value of player i can be interpreted as its average contribution over all
possible sequences in which the players can join the grand coalition. For the three-player
game with characteristic function given in (18.1), we for example have

φ1(v) =
0!2!

3!
(v({1})− v(∅)) +

1!1!

3!
(v({1, 2})− v({2})) +

1!1!

3!
(v({1, 3})− v({3})) +

2!0!

3!
(v({1, 2, 3})− v({2, 3}))

=
1

3
1 +

1

6
0 +

1

6
2 +

1

3
(−1) =

1

3
.

19.2 Shapley value in terms of objections

The Shapley value may also be defined in terms of objections and counter-objections.

If φj(N) > φj(N −{i}), then player i might threaten player j, “Give me more or I will
leave the coalition and you will lose.” Player j has a valid counter-objection if he can
point out that if he leaves the coalition then i loses just as much:

φi(N)− φi(N − {j}) ≥ φj(N)− φj(N − {i})
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If φj(N) < φj(N − {i}), player j might threaten player i, “Give me more or I will
convince the others to exclude you and I will be better off.” Player i has a valid counter-
objection if he can point out that if he gets the others to exclude j then i will be better
off by at least as much.

If every such objection has a counter-objection, then

φi(N)− φi(N − {j}) = φj(N)− φj(N − {i}).

The only solution to this is the Shapley value.

19.3 Bargaining theory

Bargaining theory investigates how agents should cooperate when non-cooperation may
result in outcomes that are Pareto dominated. Formally, a (two-player) bargaining
problem is a pair (F, d) where F ⊆ R2 is a convex set of feasible outcomes and
d ∈ F is a disagreement point that results if players fail to agree on an outcome.
Here, convexity corresponds to the assumption that any lottery over feasible outcomes
is again feasible. A bargaining solution then is a function that assigns to every
bargaining problem (F, d) a unique element of F .

An example of a bargaining problem is the so-called ultimatum game given by F =
{(v1, v2) ∈ R2 : v1 +v2 ≤ 1} and d = (0, 0), in which two players receive a fixed amount
of payoff if they can agree on a way to divide this amount among themselves. This game
has many equilibria when viewed as a normal-form game, since disagreement results in
a payoff of zero to both players. Players’ preferences regarding these equilibria differ,
and bargaining theory tries to answer the question which equilibrium should be chosen.
More generally, a two-player normal-form game with payoff matrices P,Q ∈ Rm×n can
be interpreted as a bargaining problem where F = conv({(pij , qij) : i = 1, . . . ,m, j =
1, . . . , n}), d1 = maxx∈X miny∈Y p(x, y), and d2 = maxy∈Y minx∈X q(x, y), given that
(d1, d2) ∈ F . Here, conv(S) denotes the convex hull of set S.

Two kinds of approaches to bargaining exist in the literature: a strategic one that
considers iterative procedures resulting in an outcome in F , and an axiomatic one that
tries to identify bargaining solutions that possess certain desirable properties. We will
focus on the axiomatic approach in this lecture.

19.4 Nash’s bargaining solution

For a given bargaining problem (F, d), Nash proposed to

maximize (v1 − d1)(v2 − d2)

subject to v ∈ F
v ≥ d.

(19.1)
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Optimization problem (19.1) thus defines the so-called Nash bargaining solution.

Consider for example the two-player game with payoff matrices

P =

(
0 5

3 1

)
and Q =

(
2 2

4 0

)
.

The row player can guarantee a payoff of 15/7 by playing the two rows with probabilities
2/7 and 5/7, respectively. The column player can guarantee a payoff of 2 by playing
the left column.

The bargaining problem corresponding to this game is shown in Figure 22. The set F is
the convex hull of the four payoff vectors (0, 2), (5, 2), (3, 4), and (1, 0), and it contains
the feasible set B = {v ∈ F : v ≥ d} of (19.1). The disagreement point is d = (15/7, 2).

F

B

v1

v2

0 1 2 3 4 5

1

2

3

4
v∗

d

Figure 22: Illustration of the Nash bargaining solution

Level sets of the objective function corresponding to values 0 and 1 and to the optimal
value are drawn as dashed curves. The Nash bargaining solution v∗ is the unique point
in the intersection of F with the optimal level set.

To compute v∗, we first observe that v∗ ∈ {(v1, v2) : v2 = 7 − v1, 3 ≤ v1 ≤ 5}. The
objective function becomes

(v1 − d1)(v2 − d2) = (v1 − 15
7 )(5− v1) = 50

7 v1 − v
2
1 − 75

7 ,

and has a stationary point if 50/7 − 2v1 = 0. We obtain v∗ = (25/7, 24/7), which is
indeed a maximum.

While it is not obvious that maximizing the product of the excess of the two players is
a good idea, it turns out that the Nash bargaining solution can be characterized using
a set of simple axioms. Bargaining solution f is
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1. Pareto efficient if f(F, d) is not Pareto dominated in F for any bargaining
problem (F, d);

2. symmetric if (f(F, d))1 = (f(F, d))2 for every bargaining problem (F, d) such
that (y, x) ∈ F whenever (x, y) ∈ F and d1 = d2;

3. invariant under positive affine transformations if f(F ′, d′) = α◦f(F, d)+β
for any α, β ∈ R2 with α > 0 and any two bargaining problems (F, d) and (F ′, d′)
such that F ′ = {α ◦ x+ β : x ∈ F} and d′ = α ◦ d+ β; and

4. independent of irrelevant alternatives if f(F, d) = f(F ′, d) for any two
bargaining problems (F, d) and (F ′, d) such that F ′ ⊆ F with d ∈ F ′ and
f(F, d) ∈ F ′.

Here, ◦ denotes component-wise multiplication of vectors, i.e. (s ◦ t)T = (s1t1, s2t2) for
all s, t ∈ R2.

In the context of bargaining, Pareto efficiency means that no payoff is wasted, and
symmetry is an obvious fairness property. Invariance under positive affine transforma-
tions should hold because payoffs are just a representation of the underlying ordinal
preferences. The intuition behind independence of irrelevant alternatives is that an
outcome only becomes easier to justify as a solution when other outcomes are removed
from the set of feasible outcomes.

Theorem 19.2. Nash’s bargaining solution is the unique bargaining solution that is
Pareto efficient, symmetric, invariant under positive affine transformations, and inde-
pendent of irrelevant alternatives.

“Proof idea” It is easy to check that Nash’s bargaining solution satisfies the axioms.

It remains to prove that the axioms force the solution to be Nash’s bargaining solution.
Assume d1 = d2 = 0. Touch set F with v1v2 = constant; use axiom 3 to move the
point of touching to (1/2, 1/2); add the set obtained by reflecting F in the line from the
origin through (1/2, 1/2); use axiom 2 to argue (1/2, 1/2) must be the solution; then
use axiom 4 to remove the extra set that was just added.

FFF

Proof. We denote the Nash bargaining solution by fN and begin by showing that it
satisfies the axioms. For Pareto efficiency, this follows directly from the fact that the
objective function is increasing in v1 and v2. For symmetry, assume that d1 = d2
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and let v∗ = (v∗1 , v
∗
2) = fN (F, d). Clearly (v∗2 , v

∗
1) maximizes the objective function,

and by uniqueness of the optimal solution (v∗2 , v
∗
1) = (v∗1 , v

∗
2) and thus fN1 (F, d) =

fN2 (F, d). For invariance under positive affine transformations, define F ′ and d′ as
above, and observe that fN (F ′, d′) is an optimal solution of the problem to maximize
(v1 − α1d1 − β1)(v2 − α2d2 − β2) subject to v ∈ F ′, v1 ≥ d1, and v2 ≥ d2. By setting
v′ = α ◦ v + β, it follows that fN (F ′, d′) = α ◦ fN (F, d) + β. For independence of
irrelevant alternatives, let v∗ = fN (F, d) and F ′ ⊆ F . If v∗ ∈ F ′, it remains optimal
and thus v∗ = fN (F ′, d).

Now consider a bargaining solution f that satisfies the axioms, and fix F and d. Let
z = fN (F, d), and let F ′ be the image of F under an affine transformation that maps
z to (1/2, 1/2) and d to the origin, i.e.

F ′ = {α ◦ v + β : v ∈ F, α ◦ z + β = (1/2, 1/2)T , α ◦ d+ β = 0}.

Since both f and fN are invariant under positive affine transformations, f(F, d) =
fN (F, d) if and only if f(F ′, 0) = fN (F ′, 0). It thus suffices to show that f(F ′, 0) =
(1/2, 1/2).

We begin by showing that for all v ∈ F ′, v1 + v2 ≤ 1. Assume for contradiction
that there exists v ∈ F with v1 + v2 > 1, and let tδ = (1 − δ)(1/2, 1/2)T + δv. By
convexity of F ′, tδ ∈ F ′ for δ ∈ (0, 1). Moreover, since the objective function has a
unique maximum, we can choose δ sufficiently small such that tδ1t

δ
2 > 1/4 = fN (F ′, 0),

contradicting optimality of fN (F ′, 0).

Now let F ′′ be the closure of F ′ under symmetry, and observe that for all v ∈ F ′′,
v1+v2 ≤ 1. Therefore, by Pareto optimality and symmetry of f , f(F ′′, 0) = (1/2, 1/2)T .
Since f is independent of irrelevant alternatives, f(F ′, 0) = (1/2, 1/2)T as required.
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20 Social Choice

20.1 Social welfare functions

Social choice theory asks how the possibly conflicting preferences of a set of agents can
be aggregated into a collective decision, and in particular which properties the aggregate
choice should satisfy and which properties can be satisfied simultaneously. Examples
of settings that can be studied in the framework of social choice theory include voting,
resource allocation, coalition formation, and matching.

Let N = {1, . . . , n} be a set of agents, or voters, and A = {1, . . . ,m} a set of alterna-
tives. Assume that each voter i has a strict linear order �i ∈ L(A) over A, and the goal
is to map the profile (�i)i∈N of individual preference orders to a social preference order.
This is achieved by means of a social welfare function (SWF) f : L(A)n → L(A).

When m = 2, selecting the social preference order that is preferred by a majority of
the voters is optimal in a rather strong sense. A SWF f : L(A)n → L(A) is

• anonymous if the labelling of the voters is irrelevant;

• neutral if the labelling of the alternatives is irrelevant;

• monotone if an alternative cannot become less preferred socially when it becomes
more preferred by individuals.

Theorem 20.1. Consider an SWF f : L(A)n → L(A), where |A| = 2 and n is odd.
Then f is the majority rule if and only if it is anonymous, neutral, and monotone.

Proof sketch. Let A = {a, b}. By anonymity, the social preference only depends on
the number of voters that prefer a to b. By neutrality, the social preference has to
change between a preference profile where bn/2c voters prefer a to b and one where
dn/2e voters prefer a to b. By monotonicity, the socially preferred alternative can never
change from a to b when the number of voters who prefer a to b increases, so this is
actually the unique change, and it follows that f is the majority rule.

In light of this result, it might seem promising to base the decision on pairwise com-
parisons of alternatives even when m > 2. But this is somewhat problematic, since the
pairwise majority relation may contain cycles. In Figure 23 each column lists the pref-

a b c

b c a

c a b

Figure 23: Marquis de Condorcet’s paradox, 1786.
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erences of a particular voter. It is easily verified that a majority of the voters prefers a
over b, a majority prefers b over c, and a majority prefers c over a.

A SWF is said to be

• Pareto optimal: if every voter prefers a to b then a is socially preferred to b;

• independent of irrelevant alternatives (IIA): the social preference with re-
spect to a and b only depends on individual preferences with respect to a and b,
but not on those with respect to other alternatives;

• dictatorial: the social preference order is determined by a single voter.

It turns out that dictatorships are the only SWFs for three or more alternatives that
are Pareto optimal and IIA.

Theorem 20.2 (Arrow, 1951). Consider an SWF f : L(A)n → L(A), where |A| ≥ 3.
If f is Pareto optimal and IIA, then f is dictatorial.

Requiring non-dictatorship and Pareto optimality is rather uncontroversial. So IIA
must be abandoned. For example, Kemeny’s rule does this, choosing a social prefer-
ence order �′ to maximize the number of agreements with the individual preferences.
This maximization problem is NP-hard, but can be written as an integer program.

20.2 Social choice functions

It is often sufficient to identify a single best alternative rather than giving a complete
ranking. This is achieved by a social choice function (SCF) f : L(A)n → A. Two
familiar SCFs are plurality, which chooses an alternative ranked first by the largest
number of voters, and single transferable vote (STV), which successively eliminates
alternatives ranked first by the fewest voters until only one alternative remains.

Consider a situation with three alternatives a, b, and c, and nine voters with preferences
as shown on the left of Figure 24. In this situation, plurality selects alternative a
because it is ranked first by 4 voters, compared to 3 for c and 2 for b. STV first
eliminates alternative b, which is ranked first by only 2 voters. Restricting attention to
the remaining alternatives, a is ranked first by 4 voters and c by 5 voters. Alternative
a is thus eliminated next, while alternative c remains and is selected.

The graph of the majority relations shown in Figure 24 illustrates that alternative b is a
so-called Condorcet winner, i.e. it is preferred to any other alternative by a majority
of the voters, while alternative a is a Condorcet loser, i.e. a majority of voters prefer
any other alternative to a. The example of Figure 23 shows that a Condorcet winner or
loser need not exist, but it is certainly reasonable to require that a Condorcet winner is
selected when it exists, and that a Condorcet loser is never selected. An SCF satisfying
the former property is called Condorcet consistent, and the example of Figure 24 shows
that that neither plurality nor STV are Condorcet consistent.
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4 3 2

a c b

b b c

c a a

b

ca

Figure 24: Preferences of three types of voters over three alternatives and a graph of
majority relations. At the top of each column of the table is the number of voters having
the preference order below. There is a directed edge in the graph from alternative x to
alternative y indicates when a majority of the voters prefer x to y.

20.3 Strategic manipulation

In the situation of Figure 24, plurality results in selection of a. This ignores, however,
that voters of the third type have an incentive to misrepresent their preferences and
claim that they prefer c to b: assuming that ties are broken in favor of c, only a single
voter of the third type would have to change its reported preferences in this way to
ensure that c is selected instead of a, an outcome this voter prefers. A similar problem
exists with STV, since voters of the first type could benefit by pretending their most
preferred alternative is b, with the goal of having this alternative selected instead of
their least preferred alternative, c. More generally, we say that SCF f is manipulable
if there exist situations in which by misrepresenting his true preferences agent i can
cause f to select an outcome which he prefers to the one which would be selected if
he were to give his true preferences. We say ‘i can manipulate f ’. SCF f is called
strategyproof if it is not manipulable.

It is easy to see that when there are just two alternatives then majority rule is strate-
gyproof. So when there are more than two alternatives there are two obvious ways to
achieve strategyproofness: choose an alternative based on the preferences of a single
voter, or ignore all but two alternatives and using majority rule to choose between them.
The first case gives a dictatorship; the second case gives a SCF that is not unanimous
in the sense that there are some alternatives that are not chosen even when all agents
rank it top. It turns out that these trivial cases are in fact the only SCFs that are
strategyproof.

Theorem 20.3 (Gibbard, 1973; Satterthwaite, 1975). Consider an SCF f : L(A)n →
A, where |A| ≥ 3. If f is unanimous and strategyproof, then it is dictatorial.

Lemma 20.4. Suppose f is strategyproof and there is a profile in which a is top ranked
by i, bottom ranked by all others, and a is selected. Then i is decisive for a in the
sense that f(�) = a whenever �i ranks a top.

Proof. Suppose i = 1. Notice that a must remain selected however �2 is changed,
for else 2 can manipulate f to ensure that a, which he prefers least, is not selected.
Similarly, a must remain selected however �3 is subsequently changed, and so on.
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Having changed �2, . . . ,�n, alternative a must still remain selected however �1 is
subsequently changed, provided 1 ranks a top, since otherwise 1 can manipulate f .

Lemma 20.5. GS holds when n = 2.

Proof. If neither 1 and 2 is a dictator then they must both be not-decisive for at
least one alternative. If the only alternative for which each is not-decisive is the same
alternative, say a, then both are decisive for every other alternative, including b and c.
But this results in a contradiction if 1 ranks b top and 2 ranks c top. Hence there must
exist distinct a and b for which 1 and 2 are not-decisive respectively.

Consider two preferences of the form

a �1 b �1 · · ·
b �2 a �2 · · ·

With these profiles f(�1,�2) ∈ {a, b}, else if it were c, either agent could manipulate
by swapping his preference order for a and b, which by unanimity would produce a
selection of either a or b, which he prefers to c. But the selection cannot be a, for then
agent 2 does better by demoting a to the bottom position, where since 1 is not decisive
for a, we know a is not selected and so b is selected (some c cannot be selected since
then 1 could manipulate by swapping preferences of a and b). We are forced to revise
our first assumption and conclude that either 1 or 2 is a dictator.

Proof of GS. Now suppose f is a counterexample to GS for n agents, for least possible
n. Choose an arbitrary �∗n and consider a SCF for the first n− 1 agents defined as

h(�1,�2, . . . ,�n−1) = f(�1,�2, . . . ,�n−1,�∗n).

This is obviously strategy proof, so as GS holds for n−1, either (i) it is not unanimous,
or (ii) it has a dictator. In case (i) there is some a that is not selected even when all
of 1, . . . , n − 1 rank it top. In case (ii) the dictator amongst agents 1, . . . , n − 1 can
ensure the top choice of �∗n is not selected, even if all others also rank it top. In either
case there exists some alternative that some individual can ensure is not chosen, even
if all others rank it top. Suppose, without loss of generality, the alternative is a∗ and
the individual is n.

Next consider a SCF for two agents: g(�1,�2) = f(�1,�1, . . . ,�1,�2). Then g is
unanimous, obviously. It is also strategyproof because if 2 can manipulate g it can
manipulate f , and if 1 can manipulate g by changing �1 to �′1, then by changing
(�1,�1, . . . ,�1) to (�′1,�′1, . . . ,�′1) one agent at a time by increasing index, we see
that at some point f(�′1,�′1, . . . ,�′1,�1, . . . ,�1,�2) is being manipulated by the single
agent who is changing �1 to �′1, in contradiction to f being strategyproof.

Lemma 20.5 implies that g must have a dictator. However, agent 1 cannot be a dictator
because agent 2 can ensure that a∗ is not selected. Agent 2 cannot be a dictator because
otherwise she would be decisive on every alternative and so be a dictator in the original
f also, in contradition to our premise that f has no dictator.
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20.4 Alternative proof of Gibbard-Satterthwaithe theorem

In the following proof the condition of unanimity is replaced by a condition that f be
surjective (i.e. every alternative can be selected by some profile). They are easily seen
to be equivalent conditions. The proof that follows shares elements with the one on
the previous page, but personally I find it harder to read. It is twice as long. Another
issue is notation. I believe it is sometimes better to try to express things in English
sentences rather than overload the reader with the task of parsing notation.

Proof of Gibbard-Satterthwaithe theorem. We need two lemmas. The first
lemma states that a strategyproof SCF is monotone in the sense that the selected
alternative does not change as long as all alternatives ranked below it are still ranked
below it for all voters.

Lemma 20.6. Let f be a strategyproof SCF, � ∈ L(A)n with f(�) = a. Then,
f(�′) = a for every �′ ∈ L(A)n such that for all i ∈ N and b ∈ A \ {a}, a �′i b if
a �i b.

Proof. We start from � and change the preferences of one voter at a time until we
get to �′, showing that the chosen alternative remains the same in every step. Let
b = f(�′1,�−1). By strategyproofness, a �1 b, and thus a �′1 b by assumption. Also
by strategyproofness, b �′1 a, and thus a = b. The claim now follows by repeating the
same argument for the remaining voters.

The second lemma states that the alternative selected by a surjective and strategyproof
SCF must be Pareto optimal.

Lemma 20.7. Let f be a surjective and strategyproof SCF, a, b ∈ A, and � ∈ L(A)n

such that a �i b for all i ∈ N . Then, f(�) 6= b.

Proof. Assume for contradiction that f(�) = b. By surjectivity, there exists �′∈ L(A)n

such that f(�′) = a. Let �′′∈ L(A)n be a preference profile such that for all i ∈ N

a �′′i b �′′i x

for all x ∈ A \ {a, b}. Then, x �i b whenever x �′′i b for some i ∈ N and x ∈ A \ {b},
and x �′i a whenever x �′′i a for some i ∈ N and x ∈ A \ {a}. Thus, by Lemma 20.6,
f(�′′) = f(�) = b and f(�′′) = f(�′) = a, a contradiction.

Proof of Theorem 20.3. We first prove the theorem for n = 2 and then perform an
induction on n.

Let a, b ∈ A with a 6= b and consider � ∈ L(A)2 such that

a �1 b �1 x and b �2 a �2 x
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for all x ∈ A \ {a, b}. Then, by Lemma 20.7, f(�) ∈ {a, b}.

Suppose that f(�) = a, and let �′ ∈ L(A)2 such that

a �′1 b �′1 x and b �′2 x �′2 a

for all x ∈ A \ {a, b}. Then, f(�′) = a, since f(�′) ∈ {a, b} by Lemma 20.7 and
f(�′) 6= b by strategyproofness. Lemma 20.6 now implies that f selects alternative a
for any preference profile in which voter 1 ranks alternative a first.

By repeating the above analysis for every pair of distinct alternatives in A, we obtain
two sets A1, A2 ⊆ A such that Ai is the set of alternatives that are selected for every
preference profile in which voter i ∈ {1, 2} ranks them first. Let A3 = A \ (A1 ∪ A2),
and observe that |A3| ≤ 1: otherwise we would have performed the above analysis for
two elements in A3, which would place one of these elements in A1 or A2 and thus not
in A3.

Now observe that |A| ≥ 3 and |A3| ≤ 1, so |A1 ∪ A2| ≥ 2. Moreover, for x, y ∈ A
with x 6= y, it cannot be the case that x ∈ A1 and y ∈ A2, because this would lead to
a contradiction when voter 1 ranks x first and voter 2 ranks y first. Since a ∈ A1, it
follows that A1∩A2 = ∅ and thus that A2 = ∅. It finally follows that A3 = ∅: otherwise
we could repeat the above analysis for c ∈ A3 and �′′∈ L(A)2 with

c �′′1 a �′′1 x and a �′′2 c �′′2 x

for all x ∈ A \ {a, c}, and conclude that c ∈ A1 or a ∈ A2, a contradiction. It follows
that A1 = A, so voter 1 is a dictator.

Now we assume that the statement of the theorem holds for n voters and prove that it
also holds for n+1 voters. Consider a surjective and strategyproof SCF f : L(A)n+1 →
A, and define g : L(A)2 → A by letting

g(�1,�2) = f(�1,�2, . . . ,�2)

for all �1,�2∈ L(A).

Since f is surjective and strategyproof, and by Lemma 20.7, g is surjective as well.
Assume for contradiction that g is not strategyproof. By strategyproofness of f , the
manipulator must be voter 2, so there must exist �1,�2,�′2 ∈ L(A) and a, b ∈ A
such that g(�1,�2) = a, g(�1,�′2) = b, and b �2 a. For k = 0, . . . , n, let �k =
(�1,�′2, . . . ,�′2,�2, . . . ,�2) ∈ L(A)n+1 be the preference profile where k voters have
preference order �′2 and n − k voters have preference order �2, and let ak = f(�k).
Since an = b �2 a = a0, it must be the case that ak+1 �2 a

k for some k with 0 ≤ k < n,
which means that f is manipulable, a contradiction. It follows that g is strategyproof,
and therefore dictatorial.

If the dictator for g is voter 1, then by Lemma 20.6 voter 1 must also be a dictator for
f . Assume instead that the dictator for g is voter 2, and let h : L(A)n → A be given
by

h(�2, . . . ,�n+1) = f(�∗1,�2, . . . ,�n+1)
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for an arbitrary �∗1 ∈ L(A). Then, h is strategyproof by strategyproofness of f , and
surjective because voter 2 is a dictator for g. Therefore, by the induction hypothesis,
h is dictatorial.

Assume without loss of generality that the dictator for h is voter 2, and let e : L(A)2 →
A be given by

e(�1,�2) = f(�1,�2,�∗3, . . . ,�∗n+1)

for arbitrary �∗3, . . . ,�∗n+1 ∈ L(A). Then e is strategyproof and surjective, and hence
dictatorial. In fact, the dictator for e must be voter 2, because voter 1 is not a dictator
for g and thus cannot be a dictator for e. Since �∗i for i = 1, 3, . . . , n + 1 was chosen
arbitrarily, it follows that voter 2 is a dictator for f .
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21 Auctions

21.1 Types of auctions

Flowers, wines, art, U.S. treasury bonds, government contracts, and real estate are sold
in auctions (and indeed the Roman empire was auctioned by the Praetorian Guards in
A.D. 193). In recent years auctions have been important in selling natural resources,
such as oil drilling rights and mobile telephone spectrum.

An auction is a type of multi-player game. The rules specify the way bidding occurs,
what information the bidders have about the state of bidding, how the winner is
determined and how much he must pay. It is a partial information game because
each bidder’s valuation of an item is hidden from the auctioneer and other bidders.
The equilibrium is a function of the auction’s rules. These rules can affect the revenue
obtained by the seller, as well as how much this varies in successive instants of the
auction. The problem of designing the best auction is a mechanism design problem
. An auction design is said to be economically efficient, if it allocates the item to
the bidder who values it most. In practice, auction design is an art. There is no one
auction design that is efficient and can be applied in most situations.

In the private values model each bidder knows the value he places on the item, but
does not know how it is valued by other bidders. As bidding takes place, his valuation
does not change, though he gains information from the other players’ bids. In the
common value model the item’s actual value is the same for all bidders, but they
have different a priori information about that value. Think, for example, of a jar
of coins. Each player makes an estimate of the value of the coins in the jar, and as
bidding occurs he can adjust his estimate based on what other players say. In this case
the winner generally overestimates the value (since he had the highest estimate), and
so he pays more than the jar of coins is worth. This is called the winner’s curse.

Auctions can be oral (bidders hear each other’s bids and make counter-offers) or writ-
ten (bidders submit sealed-bids in writing). Some popular auction types are:

1. Dutch auction: the price decreases continuously until some bidder calls stop.

2. English auction (or ascending price auction): bids increase in small incre-
ments until only one bidder remains.

3. first price sealed-bid: the winner pays his bid.

4. second price sealed-bid (or Vickrey auction): the winner pays the second
highest bid.

5. all-pay sealed-bid auction: highest bidder wins, but all pay their bid.

Auctions 1 and 3 are equivalent (the item selling for the greatest valuation). Auctions
2 and 4 are equivalent (the item selling for the second greatest valuation).
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21.2 The revenue equivalence theorem

The symmetric independent private values model (SIPV) concerns the auction of
a single item, with risk neutral seller and bidders. Each bidder knows his own valuation
of the item, which he keeps secret, and valuations of the bidders can be modelled as
i.i.d. random variables. Important questions are

• what type of auction generates the most revenue for the seller?

• if seller or bidders are risk averse, which auction would they prefer?

• which auctions make it harder for the bidders to collude?

Let us begin with an intuitive result.

Lemma 21.1. In any SIPV auction in which the bidders bid optimally and the item
is awarded to the highest bidder, the bids are ordered the same as the valuations.

Proof. Consider an auction satisfying the terms of the lemma. Let e(p) be the minimal
expected payment that a bidder can make if he wants to win the item with probability
p. Notice that e(p) must be a convex function of p, i.e. e(αp + (1 − α)p′) ≤ αe(p) +
(1−α)e(p′). This is because one strategy for winning with probability αp+ (1−α)p′ is
to bid so as to either win with probability p or p′, doing these with probabilities α and
1−α respectively. Since e(p) is convex it is differentiable at all but a countable number
of points. A bidder who has valuation θ and bids so as to win with probability p has
expected profit π(θ) = pθ − e(p). Assuming that p is chosen optimally, the relation
between p and θ is determined by

∂π

∂p
= θ − e′(p) = 0. (21.1)

Since e′(p) is nondecreasing in p, it follows that p(θ) must be nondecreasing in θ. As
the item goes to the highest bidder, the probability of winning increases with the the
bid, and so the optimal bid must be nondecreasing in the valuation θ.

We say that two auctions have the same bidder participation if any bidder who finds
it profitable to participate in one auction also finds it profitable to participate in the
other. The following result is remarkable, as different auctions can have completely
different rules and the bidders’ optimal bidding strategies will differ.

Theorem 21.2 (Revenue equivalence theorem). The expected revenue obtained by the
seller is the same for any two SIPV auctions that (a) award the item to the highest
bidder, and (b) have the same bidder participation.

Proof. Suppose there are n bidders. From (21.1) we have

d

dθ
e(p(θ)) = e′(p)p′(θ) = θp′(θ).

100



Suppose a bidder finds it profitable to participate iff θi ≥ θ∗. By assumption (b) this
is the same for any auction being considered. Integrating this gives

e(p(θi))− e(p(θ∗)) =

∫ θi

θ∗
wp′(w) dw = θip(θi)− θ∗p(θ∗)−

∫ θi

θ∗
p(w) dw , (21.2)

where e(p(θ∗)) = θ∗p(θ∗) and so

e(p(θi)) = θip(θi)−
∫ θi

θ∗
p(w) dw.

Thus e(p(θi)) depends only on the function p(w) and the value of θ∗. We know
from Lemma 21.1 that if bidders bid optimally then bids will be in the same order
as the valuations, so if F is the distribution function of the valuations, then p(w) =
F (w)n−1, independently of the precise auction mechanism. Assume for simplicity that
limx→∞ x(1 − F (x)) = 0. The expected revenue is

∑n
i=1Eθie(p(θi)) = nEθ1(p(θ1)).

This is

nEθ1(p(θ1)) = n

∫ ∞
θ1=θ∗

[
θ1p(θ1)−

∫ θ1

θ∗
p(w)dw

]
f(θ1)dθ1

= n

∫ ∞
θ1=θ∗

θ1p(θ1)f(θ1)dθ1 + n(1− F (θ1))

∫ θ1

θ∗
p(w)dw

∣∣∣∣∞
θ1=θ∗

− n
∫ ∞
θ∗

(1− F (θ1))p(θ1)dθ1 (21.3)

= n

∫ ∞
θ1=θ∗

(
θ1 −

1− F (θ1)

f(θ1)

)
F (θ1)n−1f(θ1)dθ1 (21.4)

where (21.3) is a step of integration by parts.

Example 21.3. Assume valuations are i.i.d. with distribution function F .

(a) We might simply offer the item at price p and see if any player values it above p.
The probability of making a sale is is x(p) = 1− F (p)n and px(p) is maximized where

p− 1− F (p)n

nF (p)n−1f(p)
= 0 .

For the distribution U [0, 1], F (u) = u, and the optimal price is p∗ = n
√

1/(n+ 1), and

the resulting (expected) revenue is [n/(n+ 1)] n
√

1/(n+ 1). For n = 2, p∗ =
√

1/3, and

the expected revenue is (2/3)
√

1/3 = 0.3849.

(b) If n = 2 and the item is auctioned by any of the five mechanisms above and
all bidders bid optimally then the probabilty that a bidder with valuation θ wins is
F (θ) = θ, i.e. p(θ) = θ. From (21.2) we see that e(p(θ)) = θ2/2. So in all these
auctions the seller’s expected revenue is 2E[θ2/2] = 1/3 = 0.3333.
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The optimal bids differ in the different auctions. Clearly, in the all-pay sealed-bid
auction the optimal bid is e(p(θ)) = θ2/2. In the Dutch or first price sealed-bid auctions,
a bidder’s expected payment is p(θ) times his bid. Since this must equal θ2/2 the
optimal bid must be θ/2. In the second price sealed-bid (Vickrey) auction, the winner
pays the bid of the second highest bidder. If bidder 1 bids u, then his profit is (θ1 −
θ2)1{u>θ2}. For every possible value of θ2, this is maximized by bidding u = θ1.

The seller’s expected revenue is greater with (a) than (b). However, in (a) he assumes
information about the distribution of the valuations. In (b) no assumption is made.

Example 21.4. Consider a 3-person game in which player 0, the government, solicits
tenders from two contractors to do a piece of work. The contractors’ costs, C1, C2, are
private and independently distributed U [0, 1]. If the government could know the low
bidder’s cost and pay just a bit above that then its expected payment would be a bit over
Emin(C1, C2) = 1/3, which we call first best. However, not knowing this information,
the government takes written bids and awards the contract to the lowest bidder. By a
similar analysis we find that a contractor with cost Ci will bid (1 +Ci)/2. This results
in expected payment of 2/3. We say that the price of anarchy is (2/3)/(1/3) = 2.

We might also in Example 21.3 consider risk sensitivity. Suppose bidders are risk-
neutral but the seller is risk sensitive, meaning that he cares not just about expected
revenue, but also about its variance. Again, consider (a). In a first price sealed-bid
auction each bids half his valuation, so the seller’s revenue is (1/2) max{θ1, θ2}. In
an all-pay sealed-bid auction each pays half the square of his valuation and revenue is
1
2θ

2
1 + 1

2θ
2
2. In the Vickrey auction each bids his valuation and revenue is min{θ1, θ2}.

All these have expectation 1/3, but the variances are 1/72, 2/45 and 1/18 respectively.
Thus a risk adverse seller prefers the first price auction to the all-pay auction, which is
preferred to the Vickrey auction.

21.3 Mechanism design

The design of a social choice function and design of an auction are both examples of
mechanism design problems. We are given a set of agents N = {1, . . . , n}. Agent
i has private knowledge of his type, say θi ∈ Θi, where Θi is the set of his possible
types. As a function of θi, agent i sends a message from his message space Σi.

The idea is that the agents send messages to the mechanism, providing information
about their types, and as a function of these messages the mechanism selects an alter-
native f(θ) from a set A.

If Σi = Θi for each agent i, i.e. the content of a message is a declaration of a type,
then the mechanism is said to be direct. A direct mechanism with payments, (f, p),
receives the agents’ type declarations θ = (θ1, . . . , θn) and selects f(θ) ∈ A, where A
is a set of alternatives. It is convenient to write θ = (θi, θ−i), where θ−i is the vector
of types declared by agents other than i. Agent i wishes to make a declaration that
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maximizes his received quasilinear utility

ui(f(θ′i, θ−i), θi) = vi(f(θ′i, θ−i), θi)− pi(θ′i, θ−i), (21.5)

where vi : A × Θi → R is a valuation function over alternatives, agent i has true type
θi, declares θ′i, and pays pi(θ

′
i, θ−i) = (p(θ′i, θ−i))i.

A mechanism is manipulable if there exist situations in which an agent can do better
by declaring a type that differs from his true type. A direct mechanism is called
incentive compatible, or strategyproof if it is a not manipulable. In this case it is
a Nash equilibrium for each agent to truthfully report his true type. That is,

ui(f(θi, θ−i), θi) ≥ ui(f(θ′i, θ−i), θi), for all θ′i ∈ Θi.

Our aim is to design the mechanism to force the Nash equilibrium of the resulting
game to satisfy desirable properties or optimize some objective function. One natural
objective is to maximize social welfare. The social welfare of alternative a ∈ A is∑
i∈N vi(a, θi), i.e. the sum of all agents’ valuations for this alternative.

For example, in a sealed-bid auction an agent’s type corresponds to his valuation θi
and in a direct mechanism he bids a valuation. Since he must submit his bid before
hearing other agents’ bids it is appropriate for the agent to maximize his ex-ante ex-
pected utility. The equilibrium condition is that Eθ−iui(f(θ′i, θ−i), θi) is maximized by
making the truthful declaration θ′i = θi, where the expectation is taken using a prior
distribution over θ−i, which denotes the vector of the other agents’ types and assumes
they are all declaring truthfully. This is called a Bayes-Nash equilibrium, but we
shall often just say Nash-equilibrium, or equilibrium. In an auction, maximizing social
welfare means maximizing the expected valuation of the bidder who wins the item.
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22 Optimal Auctions

22.1 Revelation principle

One might think that arbitrarily complicated mechanisms would be needed to imple-
ment certain desired results. However, it is sufficient to restrict attention to mecha-
nisms that incentivize truthful revelation of type. These are called direct revelation
mechanisms. The following result implies that we can restrict our attention to these.

Theorem 22.1 (Revelation principle). A direct revelation mechanism can generally be
designed to achieve the same result as any other mechanism.

Proof. Consider some mechanism, f , which implements some result (an equilibrium)
via agents making untruthful revelations about their types. Consider now a mecha-
nism f ′ which receives truthful information from the agents, and then inputs to f the
information that agents would have themselves submitted to f and then outputs the
alternative that f would choose. Then it is an equilibrium of f ′ for players to truthfully
report to f ′. So f ′ is a direct mechanism that achieves the same result as f .

This is important because it means that if we wish to design an optimal mechanism
(e.g. maximizing the seller’s expected revenue), we may restrict attention to mechanism
that incentivize truthtelling. This is called an incentive compatibility condition.

22.2 Vickrey-Clark-Groves mechanisms

One way to construct a direct revelation mechanism that maximizes social welfare is
the Vickrey-Clark-Groves mechanism in which (f, p) is such that

f(θ) ∈ arg max
a∈A

∑
i∈N

vi(a, θi) and

pi(θ) = hi(θ−i)−
∑

j∈N\{i}

vj(f(θ), θj) for all i ∈ N ,

where hi : Θ−i → R is some function that depends on the types of all agents but i.
The crucial component is the term

∑
j∈N\{i} vj(f(θ), θj), which is equal to the social

welfare for all agents but i. The utility of agent i adds its own valuation vi(f(θ), θi)
and thus becomes equal to the social welfare of alternative f(θ) minus the term hi(θ−i).
The latter does not depend on θi and therefore has no strategic implications.

Theorem 22.2. VCG mechanisms are strategyproof.

Proof. Let i ∈ N , θ ∈ Θ, and θ′i ∈ Θi. Then,

ui(θ, θi) = vi(f(θ), θi)− pi(θ)
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=
∑
j∈N

vj(f(θ), θj)− hi(θ−i)

≥
∑
j∈N

vj(f(θ′i, θ−i), θj)− hi(θ−i)

= ui(f(θ′i, θ−i), θi),

where the inequality holds because f(θ) maximizes social welfare with respect to θ.

In the case that a Bayes-Nash equilibrium is the appropriate concept the above proof
adapts to show that Eθ−iui((θi, θ−i), θi) ≥ Eθ−iui((θ′i, θ−i), θi).

Strategyproofness holds for any choice of the functions hi, so it is natural to ask for a
good way to define these functions. In many cases it makes sense that agents are charged
rather than paid, but not more than their gain from participating in the mechanism.
Formally, mechanism (f, p) makes no positive transfers if pi(θ) ≥ 0 for all i ∈ N and
θ ∈ Θ, and is ex-post individually rational if it always yields non-negative utility
for all agents, i.e. if vi(f(θ), θi) − pi(θ) ≥ 0 for all i ∈ N and θ ∈ Θ. It turns out
that these two properties can indeed be achieved simultaneously. The so-called Clark
pivot rule sets hi(θ−i) = maxa∈A

∑
j∈N\{i} vj(a, θj), such that the payment of agent

i becomes pi(θ) = maxa∈A
∑
j∈N\{i} vj(a, θj)−

∑
j∈N\{i} vj(f(θ), θj). Intuitively, this

latter amount is equal to the externality agent i imposes on the other agents, i.e. the
difference between their social welfare with and without i’s participation. The payment
makes the agent internalize this externality.

It is easy to check that in the auction a single item, the above prescription provides that
bidders bid their true valuations. The one with highest valuation wins and pays the
second highest valuation. Others pay 0. This is the second-price, or Vickrey, auction.
Similarly, if one is auctioning k identical bottles a direct revelation mechanism is to
award the bottles to the k highest bidders, who all then pay the value of the (k + 1)th
highest bid.

22.3 Optimal auctions

Recall that in the SIPV model a single item is being auctioned, with risk neutral seller
and bidders. Each bidder’s valuation is private information, and valuations of the
bidders can be modelled as i.i.d. random variables, with known distribution function
F , and probability density function f .

We ask the bidders to declare their valuations, say θ1, . . . , θn. As a function of these
declarations, θ = (θ1, . . . , θn), we make bidder i pay pi(θ), and award the item to bidder
i with probability vi(θ). Suppose that we are designing a direct revelation mechanism
such that it is optimal for all bidders to declare their valuations truthfully.
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Assuming that all other bidders are declaring their valuations truthfully, a bidder i who
has valuation θi will declare it to be θ′i, where

θ′i = arg max
θ′i

{
θiEθ−ivi(θ1, . . . , θ

′
i, . . . , θn)− Eθ−ip(θ1, . . . , θ′i, . . . , θn)

}
= arg max

θ′i

{
θiVi(θ

′
i)− Pi(θ′i)

}
, (22.1)

where Eθ−i denotes expectation with respect to the other bidders’ valuations, and Vi
and Pi are defined implicitly in (22.1). They are the probability of winning the item,
and the expected payment of agent i, when he declares θ′i. We know that it is sufficient
to look for an optimal auction amongst those that are direct revelation mechanisms,
so we apply the incentive compatibility condition, that bidder i is to be incentivized to
be truthful. Supposing his true valuation is θi, that derivatives exist and agent i has
maximum profit at a stationary point, we require

d

dθ′i
[θiVi(θ

′
i)− Pi(θ′i)]

∣∣∣
θ′i=θi

= θiV
′
i (θi)− P ′i (θi) = 0, (22.2)

for all θi such that it is optimal to participate. Suppose there is some θ∗i such that
θiVi(θi)− Pi(θi) ≥ 0 iff θi ≥ θ∗i , and θ∗i Vi(θ

∗
i )− Pi(θ∗i ) = 0. Integrating (22.2) we have

Pi(θi) = Pi(θ
∗
i ) +

∫ θi

θ∗i

wV ′i (w) dw = Pi(θ
∗
i ) + wVi(w)

∣∣∣θi
θ∗i

−
∫ θi

θ∗i

Vi(w) dw.

= θiVi(θi)−
∫ θi

θ∗i

Vi(w) dw. (22.3)

EPi(θi) =

∫ ∞
θ∗i

[
θiVi(θi)−

∫ θi

θ∗i

Vi(w) dw

]
f(θi) dθi

=

∫ ∞
θ∗i

(
θi −

1− F (θi)

f(θi)

)
Vi(θi)f(θi) dθi, (22.4)

where (22.4) is via integration by parts, as in (21.3). Compare this to (21.4), which
was derived by supposing a bidder bids optimally; here we find the same thing, but
the derivation is via the incentive compatibility condition (22.2) that the bidder is
incentivized to made a truthful declaration of her valuation when bidding optimally.

Let

g(θi) = θi −
1− F (θi)

f(θi)
.

and suppose it is nondecreasing in θi. The auctioneer’s expected revenue is

∑
i

EPi(θi) =
∑
i

∫ ∞
θ∗i

g(θi)Vi(θi)f(θi) dθi = E

[∑
i

φi(θi)g(θi)vi(θ1, . . . , θn)

]
,
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where φi(θi) is 1 or 0 as θi ≥ θ∗i or θi < θ∗i , and he maximizes this by setting vi = 1 for
bidder i with greatest value of g(θi), but awarding it to no bidder if this is negative for
all declared θi.

Consider, for example, the case that θ1, . . . , θn are uniformly distributed on [0, 1]. Then
g(θi) = 2θi − 1, θ∗i = 1/2, Vi(θi) = θn−1i , and then from (22.3)

Pi(θi) = θiθ
n−1
i −

∫ θi

1/2

wn−1dw =
n− 1

n
θni +

1

n2n
.

For instance, if n = 2 we might take pi(θi) = Pi(θi) = θ2i /2 + 1/8. This could be the
payment in an all-pay auction in which a participant who wishes to bid θi must commit
to paying θ2i /2 + 1/8 (whether or not he wins). Thus a player with valuation θi will
declare θi = u so as to maximize

θiu− (u2/2 + 1/8).

This is maximized by u = θi and has a positive maximum if θi > 1/2. The expected
sum of the payments is

2EP1(θ1) = 2

∫ 1

1/2

(1/8 + θ2i /2) dθi = 5/12,

which exceeds the 1/3 we have seen in other auctions. The revenue equivalent theorem
does not apply because the bidder participation is not always the same.

There are other ways to create an optimal auction (i.e. one that maximizes seller’s
revenue). We could conduct an English auction with reservation price, p0. Bidder
1 in this auction pays p0 if bidder 2 has valuation less than p0, and otherwise pays

Bidder 2’s valuation if θ1 > θ2 > p0. This makes his expected payment p20 +
∫ θ1
p0
u du =

(1/2)(θ21+p20) provided θ1 > p0. The seller’s expected revenue is maximized by p0 = 1/2.

Or we might make each bidder pay a participation fee c (which must be paid by a
player if he wishes to submit a bid). Now bidder 1 will participate only if θ1 > θ∗, and
in that case if he bids u then his expected payment is

c+

∫ u

θ∗
θ2 dθ2 = c+ (u− θ∗)θ

∗ + u

2
.

The fact that θ1 = θ∗ has expected profit 0 means that (θ∗)2 − c = 0. One can check
that the seller’s expected revenue is maximized by c = 1/4, θ∗ = 1/2.

Note that if θ1, . . . , θn are i.i.d. U [0, 1] then all optimal auctions have the property that
a bidder will participate only if his valuation exceeds 1/2, and this is true for any n, as
this critical value is determined solely by g(θ∗i ) = 2θ∗i − 1 = 0.
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22.4 Heterogenous bidders

The working the previous section can be generalized to the case of heterogenous bidders,
having data Fi, fi. For example, (22.3) becomes

Pi(θi) = θi
∏
j 6=i Fj(θi)−

∫ θi
θ∗i

∏
j 6=i Fj(w) dw.

The auctioneer’s expected revenue is

E [
∑
i φi(θi)gi(θi)vi(θ1, . . . , θn)] .

So the optimal auction mechanism awards the item to the bidder i for whom gi(θi) is
both maximal and nonnegative.

One way to construct payments in an optimal auction is require the winner to pay
the smallest value of θi for which he would still be the winner. To prove that it this
payment scheme works we should do a calculation to check that the expected payment
of bidder i, when she has valuation θi, is indeed Pi(θi) as given in (22.3).

Example 22.3. An interesting property of optimal auctions with heterogeneous bid-
ders is that the winner is not necessarily the highest bidder.

(a) Consider first the case of homogeneous bidders with valuations uniformly distributed
on [0, 1]. In this case gi(θi) = θi− (1−θi)/1 = 2θi−1. The object is sold to the highest
bidder, but only if 2θi − 1 > 0, i.e., if his valuation exceeds 1/2. The winner pays
either 1/2 or the second greatest bid, whichever is greatest. In the case of two bidders
with the identical uniformly distributed valuations the seller’s expected revenue is 5/12.
This agrees with what we have found above.

(b) Now consider the case of two heterogeneous bidders, say 1 and 2, whose valuations
are uniformly distributed on [0, 1] and [0, 2] respectively. So g1(θ1) = 2θ1−1, θ∗1 = 1/2,
and g2(θ2) = 2θ2 − 2, θ∗2 = 1. Under the bidding rules described above, bidder 2 wins
only if 2θ2 − 2 > 2θ1 − 1 and 2θ2 − 2 > 0, i.e., if and only if θ2 − θ1 > 1/2 and
θ2 > 1; so the lower bidder can sometimes win. For example, if θ1 = 0.8 and θ2 = 1.2,
then 1 should be declared the winner and pay 0.7 (which is the smallest u such that
g1(u) = 2u− 1 ≥ 2θ2 − 2 = 0.4).
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23 Mechanism Design for a Shared Facility

23.1 Paying for a club good

Suppose we propose to provide a new web service that allows its users to share digital
content in the cloud. We ask potential users to declare their private values for the
service, and on that basis we decide whether or not to provide it, and if so, how large
to build it. If we do build it, some persons are told the login password, while others
can be excluded.

There are n agents who will potentially share the facility. Agent i will obtain utility
θiv(Q), where Q is the size of the facility, which is built at cost c(Q). The value of θi
is private information. However, it is public knowledge a priori that θi is distributed
with distribution function Fi. For simplicity we take Fi = F .

Our problem is to design a mechanism in which (i) agents declare values of θi, (ii) as
a function of declared θ1, . . . , θn a facility is built of optimal size Q, and (iii) budget
balance is achieved, in the sense that the agents’ payments cover the cost c(Q).

The analysis follows the same lines in Lecture 22. The revelation principle means that
we can restrict attention to direct revelation mechanisms. Fix a mechanism and suppose
that under this mechanism if agent i declares θi, then the expected value of v(Q) is
Vi(θi) = Eθ−i [v(Q(θ)) | θi], and his expected payment is P (θi). Knowing this, agent i
will declare θi to be θ′i so as to maximize his expected net benefit of

θiVi(θ
′
i)− Pi(θ′i).

If this is to be made maximal (and stationary) by the truthful declaration θ′i = θi then
we need θiV

′
i (θi)− P ′i (θi) = 0. Integrating this gives,

Pi(θi)− Pi(θ∗i ) =

∫ θi

θ∗i

wV ′i (w)dw = θiVi(θi)− θ∗i Vi(θ∗i )−
∫ θi

θ∗i

Vi(w)dw,

where θ∗i is the least value of θi for which it would be ex-ante individually rational for
agent i to participate, and so θ∗i Vi(θ

∗
i ) − Pi(θ∗i ) = 0. As before, let g(θi) = θi − [1 −

F (θi)]/f(θi). The expected payment of agent i is∫
θi≥θ∗i

Pi(θi)f(θi)dθi =

∫
θi≥θ∗i

[
θiVi(θi)−

∫ θi

θ∗i

Vi(w)dw

]
f(θi)dθi

=

∫
θ1

· · ·
∫
θn

φ(θi)

(
θi −

1− F (θi)

f(θi)

)
v(Q(θ1, . . . , θn))f(θ1) · · · f(θn) dθ1 . . . dθn

=

∫
θ1

· · ·
∫
θn

φ(θi)g(θi)v(Q(θ1, . . . , θn))f(θ1) · · · f(θn) dθ1 . . . dθn

= E[φ(θi)g(θi)v(Q(θ1, . . . , θn))]
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where φ(θi) is 1 or 0 as θi ≥ θ∗i or θi < θ∗i . Notice that an important aspect of the
mechanism design is that with φ = 0, it can exclude an agent from using the facility.
This threat is part of the incentive for agents not to understate their types.

Our aim is to maximize expected social welfare of

E
[∑
i

φ(θi)θiv(Q(θ1, . . . , θn))− c(Q)
]

(23.1)

subject to a constraint that the payments cover the cost. This constraint is difficult
to handle, so let us instead consider a weaker constraint, that the expected payments
cover expected cost, i.e.∑

i

E[φ(θi)g(θi)v(Q(θ1, . . . , θn))] ≥ E[c(Q(θ1, . . . , θn))]. (23.2)

This leads us to the Lagrangian, combining (23.1) and (23.2),

L =

∫
θ1

· · ·
∫
θn

[∑
i

φ(θi)(θi + λg(θi))v(Q(θ1, . . . , θn))

− (1 + λ)c(Q(θ1, . . . , θn))

]
f(θ1) · · · f(θn) dθ1 . . . dθn.

which is to be maximized pointwise in the integrand with respect to φis and Q. If
one assume v is concave and c is convex, it can be shown that the problem strong-
Lagrangian.

To illustrate ideas, let us suppose that θi ∼ U [0, 1], so g(θi) = 2θi − 1. Then the
maximum of L is achieved by taking φ(θi) = 1 if θi+λg(θi) ≥ 0, i.e. if θi ≥ λ/(2λ+1) =
θ∗i . Otherwise φi(θi) = 0. Note that θ∗i increases from 0 to 1/2 as λ increases from 0
to infinity. For a given λ ≥ 0 we know how to find the φi. We also know that Q should
be chosen to maximize the integrand, so

Q(θ) = arg max
Q

{
v(Q)

∑
i

(θi + λg(θi))
+ − (1 + λ)c(Q)

}
.

The solution is completed by finding the value of λ such that the expected payments
taken from the agents match expected cost.

The calculation of the optimal mechanism for given data is complicated. However, as
n becomes large, one can prove that nearly the same welfare can be achieved by a
simple scheme that announces that the facility will be of size Q∗ and charges a fixed
subscription fee p∗ to any agent who then chooses to participate, which will be agents
for whom θiv(Q∗) − p∗ ≥ 0. The values of parameters Q∗ and p∗ are chosen so that
nP (θiv(Q∗) ≥ p∗) = c(Q∗) and nE[θi | θiv(Q∗) ≥ p∗]v(Q∗)− c(Q∗) is maximized.
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Example 23.1. Suppose a facility may or may not be built. If it is built, the cost
is 1. There are two agents, whose utility for the facilty are θ1, θ2, which are a priori
distributed independently U [0, 1].

If it were possible to know θ1, θ2 then social welfare would be maximized by building
the facility iff θ1 + θ2 ≥ 1. The expected social welfare would be E[(θ1 + θ2 − 1)+] =
1/6 = 0.1666. This solution is called first best.

Applying the analysis above, we find that the second-best solution is to build the
facility iff θ1 + θ2 ≥ 1.25. The expected social welfare is E[(θ1 + θ2 − 1.25)+] = 9/64 =
0.104625. The payments can be

P (θi) =

{
1
2θ

2
i − 1

32 , θi >
1
4 ,

0, otherwise.

However, this is unsatisfactory because it is only ex-ante budget balanced, but not
ex-post budget balanced.

P (θ1) + P (θ2) 6= 1{θ1+θ2≥1.25}.

Also, payments are taken even when the facility is not built.

23.2 Ex-post budget balance

It is possible, to take the above mechanism, in which there is ex-ante budget balance,
and strengthen it to a mechanism in which is ex-post budget balanced, i.e. where
payments cover cost exactly. Suppose the ex-post budget imbalance is

x(θ) = c(Q(θ))−
∑
i P (θi).

Pick two agents, say 1 and 2. Let new payments be

p1(θ) = P (θ1) + x(θ)− E[x(θ) | θ1]

p2(θ) = P (θ2) + E[x(θ) | θ1]

pi(θ) = P (θi), i 6= 1, 2.

Now there is ex-post budget balance because∑
i pi(θ) =

∑
i P (θi) + x(θ) = c(Q(θ)).

Also, each agent’s incentive to be truthful remains the same because

E[p1(θ) | θ1] = P (θ1)

E[p2(θ) | θ2] = P (θ2) + Ex(θ) = P (θ2).
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Applying this to Example 23.1 we obtain a mechanism design in which agent 1 pays

p1(θ) = 1
21{θ1+θ2≥1.25} +

(
3
32 −

1
2θ1(1− θ1)

)
1{θ1≥.25}

−
(

3
32 −

1
2θ2(1− θ2)

)
1{θ2≥.25}

and p2(θ) is symmetrical. However, this is still unsatisfactory because agents are being
made to pay even when the facility is not built. An even better scheme is

p∗1(θ) =
(

1
3 (θ1 − θ2) + 1

2

)
1{θ1+θ2≥1.25} .

This design has the advantages that (i) it is incentive compatible, (ii) p1(θ) ≥ 0, (iii)
p1(θ) + p2(θ) = 1{θ1+θ2≥1.25} (ex-post budget balance), (iv) pi(θ) = 0 when the facility
is not built; θ1−p1(θ) > 0 when it is built (ex-post individual rationality). However, we
cannot have everything ex-post. For instance, this mechanism is not ex-post incentive
compatible, because θ1 − p1(θ′1) is not maximized by θ′1 = θ1.

23.3 Refining a mechanism design

Here is an alternative way to change a scheme that is not ex-post budget balanced to
create one that is. We will take a discretized model in which θ takes values t1, t2 <
· · · < tm with equal probability. So there are mn different, equally likely, θ. Start with
a mechanism that is ex-ante budget balanced but not ex-post budget balanced. There
must be some θ = (θ1, . . . , θn) for which

p1(θ) + · · ·+ pn(θ) > c(Q(θ)).

Ex-ante budget balance says that Ec(Q(θ)) = E
∑
i pi(θ), so there must exist some

other profile of types φ for which

p1(φ) + · · ·+ pn(φ) < c(Q(φ)).

Case I. There may be some i such that θi = φi. Suppose i = 1. Then adjust payments
in two situations

p∗1(θ1, θ2, . . . , θn) = p1(θ1, θ2, . . . , θn)− ε
p∗1(θ1, φ2, . . . , φn) = p1(θ1, φ2, . . . , φn) + ε

with p∗j = pj elsewhere. Increase ε until there is exact budget balance with either θ, φ (or
both). The two vectors of types, θ and φ, are equally likely. So incentives do not change
because when agent 1 has type θ1 his expected payment is E

[
p∗1(θ)

∣∣ θ1] = E
[
p1(θ)

∣∣ θ1].
Case II. If θ1 6= φ1 and θ2 6= φ2. Adjust four payments:

p∗1(θ1, θ2, θ3, . . . , θn) = p1(θ1, θ2, θ3, . . . , θn)− ε
p∗1(θ1, φ2, θ3, . . . , θn) = p1(θ1, φ2, θ3, . . . , θn) + ε

p∗2(θ1, φ2, θ3, . . . , θn) = p2(θ1, φ2, θ3, . . . , θn)− ε
p∗2(φ1, φ2, φ3, . . . , φn) = p2(φ1, φ2, φ3, . . . , φn) + ε
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and p∗i = pi elsewhere. The effect can be appreciated in a table

p1 p2

θ1, θ2, θ3, . . . , θm −
θ1, φ2, θ3, . . . , θm + −
φ1, φ2, φ3, . . . , φm +

As before, increase ε until there is budget balance with either θ, φ (or both). The
three rows of the table are equally likely. So again, the incentives for agents 1 and 2 are
unchanged, e.g., given that his type is θ1 the expected payment agent 1 unchanged. One
can repeat this process, always preserving the same incentives, until budget balance is
obtained for every vector of types. The process is reminiscent of pivot steps in the
transportationn algorithm.

By a similar adjustment mechanism it is possible to show that there exists a mechanism
design which has ex-post budget balance, and the additional property that

φi(θ) = 0 =⇒ pi(θ) = 0.

This is desirable, since it might be difficult in practice to extract a payment towards
the cost of a facility from someone who is being excluded from using it! However,
there is a limit to ‘good properties’ that we can demand of our mechanism design. As
with Arrow’s theorem, and the Gibbart-Satterwaite theorem, we find it is impossible
to simultaneously satisfy ex-post versions of budget balance, individual rationality and
incentive compatibility.
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complementary pivoting, 80
complementary slackness, 9
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convex optimization problem, 6
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direct revelation mechanisms, 104
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economic efficiency, 83
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ex-post individually rational, 105
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extreme point, 6
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first best, 102, 111
first price sealed-bid auction, 99
Ford-Fulkerson algorithm, 45
full-dimensional, 30
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game theory, 68
games

actions, 68
Gibbard-Satterwaite theorem, 94
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walk in, 34

greedy algorithm, 53

Hall’s theorem, 46
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heuristic algorithms, 63
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incentive compatible, 103
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instance, 22
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local optimum, 65
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maximin strategy, 69
maximizing, 18
maximum flow problem, 44
mechanism, 102

design problem, 99, 102
with payments, 102
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minimax theorem, 70
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Nash bargaining solution, 89
Nash’s theorem, 73
nearest neighbor heuristic, 64
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net benefit, 109
network, 34
network simplex method, 36
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no positive transfers, 105
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non-cooperative games, 68
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NP-complete, 24
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objective function, 1
optimal auctions, 104
optimization problem, 1
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Pareto efficient, 90
Pareto optimal, 93
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perfect matching, 46
players, 68
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price of anarchy, 102
Prim’s algorithm, 53
primal problem, 3

primal-dual path following method, 54
prisoner’s dilemma, 68
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prune, 60
pure strategy, 68

quadratic programming, 78
quasilinear utility, 103

reduced cost, 36
reductions, 23
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rendezvous search game, 57
reservation price, 107
risk sensitivity, 102
row and column player, 68

savings heuristic, 64
sealed-bid auction, 103
search tree, 60
second best, 111
second price sealed-bid, 99
security level, 69
semidefinite program, 55
shadow price, 10
Shapley value, 87
simplex algorithm, 11
simplex tableau, 13
simulated annealing, 67
single transferable vote, 93
single-destination shortest path problem,

50
sink, 34
SIPV, 100
slack variable, 1, 7
social choice function, 93
social welfare, 103, 110
social welfare function, 92
source, 34
spanning path, 26
spanning tree, 34
spanning tree solution, 35
Sperner’s lemma, 82
stationary distribution, 67
strategies, 68
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strategyproof, 94, 103
strictly dominate, 69
strong duality, 3
superadditive game, 83
suppliers, 40
support, 11, 74
supporting hyperplane, 3
symmetric game, 75
symmetric independent private values, 100

temperature, 67
tour, 63
transferable utility, 83
transportation problem, 40
travelling salesman problem, 25
tree, 34
Turing machine, 23
two-phase method, 17
type, 102

unanimous, 94
uncapacitated flows, 35

value, of a game, 71
vertex cover, 47
Vickrey auction, 99
Vickrey-Clark-Groves mechanism, 104
volume of a polytope, 28
voters, 92

weak duality theorem, 3
weighted bipartite matching problem, 43
winner’s curse, 99

zero-sum game, 70

117


	Table of Contents
	Schedules
	Lagrangian Methods
	Lagrangian methods
	The Lagrange dual
	Supporting hyperplanes

	Convex and Linear Optimization
	Convexity and strong duality
	Linear programs
	Linear program duality
	Complementary slackness
	Shadow prices

	The Simplex Algorithm
	Basic solutions
	Extreme points and optimal solutions
	The simplex tableau
	The simplex method in tableau form
	Degeneracies and cycling

	Advanced Simplex Procedures
	The two-phase simplex method
	The dual simplex method
	Gomory's cutting plane method

	Complexity of Algorithms
	Theory of algorithmic complexity
	P, NP, and polynomial-time reductions
	Some NP-complete problems

	Computational Complexity of LP
	A lower bound for the simplex method
	The idea for a new method

	Ellipsoid Method
	Ellipsoid method
	Proof of correctness
	The running time of the ellipsoid method

	Optimization in Networks
	Graph terminology
	Minimum cost flow problem
	Spanning tree solutions
	The network simplex method
	Integrality of optimal solutions
	Longest path problem

	Transportation and Assignment Problems
	Transportation problem
	Network simplex method in tableau form
	Assignment problem

	Maximum Flows and Perfect Matchings
	Maximum flow problem
	Max-flow min-cut theorem
	The Ford-Fulkerson algorithm
	Applications of the max-flow min-cut theorem
	A polynomial-time algorithm for the assignment problem

	Shortest Paths and Minimum Spanning Trees
	Bellman's equations
	Bellman-Ford algorithm
	Dijkstra's algorithm
	Minimal spanning tree problem

	Semidefinite Programming
	Primal-dual interior-point methods
	Semidefinite programming problem
	Max-cut problem
	Symmetric rendezvous search game

	Branch and Bound
	Knapsack problem
	Branch and bound technique
	Dakin's method

	Heuristic Algorithms
	The travelling salesman problem
	Heuristic algorithms
	Heuristics for the TSP
	Local search
	Simulated annealing

	Non-cooperative Games
	Games and solutions
	Minimax theorem for zero-sum games
	Equilibria of matrix games

	Solution of Two-person Games
	Nash's theorem
	The complexity of finding an equilibrium
	Symmetric games
	Lemke-Howson algorithm for a symmetric game

	Linear complimentarity problem
	Linear complementarity problem
	Quadratic programming as a LCP
	Knapsack as a LCP
	Lemke's algorithm
	Complementary pivoting
	Sperner's lemma

	Cooperative Games
	Coalitional games
	The core
	The nucleolus
	Nucleolus in terms of objections

	Bargaining problems
	The Shapley value
	Shapley value in terms of objections
	Bargaining theory
	Nash's bargaining solution

	Social Choice
	Social welfare functions
	Social choice functions
	Strategic manipulation
	Alternative proof of Gibbard-Satterthwaithe theorem

	Auctions
	Types of auctions
	The revenue equivalence theorem
	Mechanism design

	Optimal Auctions
	Revelation principle
	Vickrey-Clark-Groves mechanisms
	Optimal auctions
	Heterogenous bidders

	Mechanism Design for a Shared Facility
	Paying for a club good
	Ex-post budget balance
	Refining a mechanism design

	Index

