
Supporting hyperplanes

General approach when using Lagrangian
methods

Lecture 1 homework

Shadow prices

A linear programming problem

The simplex tableau

Simple example with cycling

The pivot rule being used is steepest descent: choose the column
with the most negative entry in the bottom row.

Beale’s
example of
cycling in
linear
programming.

We are
minimizing.
After 6
iterations the
tableau is the
same as at the
start.

The pivot
column
selection rule
is steepest
descent:
choose the
column with
the most
negative entry
in the bottom
row.

Note that
there is
degeneracy, in
that there are
0s in the right
hand column.

The value of
the objective
function stays
at 0. However,
the true
minimum is
-1/20.

Two phase method

Dual simplex algorithm

Gomory’s cutting plane method

Many complex processes can be modelled by (countably)
infinite, multidimensional Markov chains. Unfortunately,
theoretical techniques for analysing infinite Markov chains are
for the most part limited to three or fewer dimensions. In this
paper we propose a computer-aided approach to the analysis
of higher-dimensional domains, using several open problems
about the average-case behavior of the Best Fit bin packing
algorithm as case studies. We show how to use dynamic and
lienar programming to construct potential functions that when
applied to suitably modified multi-step versions of our original
Markov chain, yield drifts that are bounded away from 0. This
enables us to completely classify the expected behavior of Best
Fit under discrete uniform distributions U{J, K) when K is small.
In addition, we can answer yes to the long-standing open
question of whether there exist distributions of this form for
which Best Fit yields linearly-growing waste. The proof of the
latter theorem relies on a 24-hour computation, and although
its validity does not depend on the linear programming
package we used, it does rely on the correctness of our
dynamic programming code and of our computer’s
implementation of the IEEE floating point standard.

The running time of algorithms

Relationship between complexity classes

P v NP Suppose that you are organizing housing accommodations for
a group of four hundred university students. Space is limited and only one
hundred of the students will receive places in the dormitory. To
complicate matters, the Dean has provided you with a list of pairs of
incompatible students, and requested that no pair from this list appear in
your final choice. This is an example of what computer scientists call an
NP-problem, since it is easy to check if a given choice of one hundred
students proposed by a coworker is satisfactory (i.e., no pair taken from
your coworker's list also appears on the list from the Dean's office),
however the task of generating such a list from scratch seems to be so
hard as to be completely impractical. Indeed, the total number of ways of
choosing one hundred students from the four hundred applicants is
greater than the number of atoms in the known universe! Thus no future
civilization could ever hope to build a supercomputer capable of solving
the problem by brute force; that is, by checking every possible
combination of 100 students. However, this apparent difficulty may only
reflect the lack of ingenuity of your programmer. In fact, one of the
outstanding problems in computer science is determining whether
questions exist whose answer can be quickly checked, but which require
an impossibly long time to solve by any direct procedure. Problems like
the one listed above certainly seem to be of this kind, but so far no one
has managed to prove that any of them really are so hard as they appear,
i.e., that there really is no feasible way to generate an answer with the
help of a computer. Stephen Cook and Leonid Levin formulated the P (i.e.,
easy to find) versus NP (i.e., easy to check) problem independently in
1971.

The machine has states A and B. In each state, the machine reads
the bit under the head and executes the instructions in the
following table (where Pn prints bit n, L means “move left” and R
means “move right, and A and B mean “switch to that state”).

A Turing machine

• Satisfiability: the boolean satisfiability problem for formulas
in conjunctive normal form (SAT)

• 0–1 integer programming (A variation in which only
the restrictions must be satisfied, with no optimization)
• Clique (independent set problem)

• Set packing
• Vertex cover

• Set covering
• Feedback node set
• Feedback arc set
• Directed Hamilton circuit

• Undirected Hamilton circuit
• Satisfiability with at most 3 literals per
clause (equivalent to 3-SAT)

• Chromatic number (also called the Graph
Coloring Problem)

• Clique cover
• Exact cover

• Hitting set
• Steiner tree
• 3-dimensional matching
• Knapsack (Karp's definition of

Knapsack is closer to Subset sum)
• Job sequencing
• Partition

• Max cut

https://en.wikipedia.org/wiki/Karp’s_21_NP-complete_problems

Firing squad problem

The name of the problem comes from an analogy with real-world firing
squads: the goal is to design a system of rules according to which an officer
can so command an execution detail to fire that its members fire their rifles
simultaneously.

More formally, the problem concerns cellular automata, arrays of finite state
machines called "cells" arranged in a line, such that at each time step each
machine transitions to a new state as a function of its previous state and the
states of its two neighbors in the line. For the firing squad problem, the line
consists of a finite number of cells, and the rule according to which each
machine transitions to the next state should be the same for all of the cells
interior to the line, but the transition functions of the two endpoints of the
line are allowed to differ, as these two cells are each missing a neighbor on
one of their two sides.

The states of each cell include three distinguished states: "active",
"quiescent", and "firing", and the transition function must be such that a cell
that is quiescent and whose neighbors are quiescent remains quiescent.
Initially, at time t = 0, all states are quiescent except for the cell at the far
left (the general), which is active. The goal is to design a set of states and a
transition function such that, no matter how long the line of cells is, there
exists a time t such that every cell transitions to the firing state at time t,
and such that no cell belongs to the firing state prior to time t.

Klee and Minty polytope

The Hirsch conjecture

The ellipsoid method

Ellipsoid method

A basic feasible flow is a spanning tree

Network simplex algorithm

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Simple example with cycling�
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Dual simplex algorithm
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	The running time of algorithms�
	Relationship between complexity classes
	Slide Number 26
	Slide Number 27
	�A Turing machine�
	Slide Number 29
	Firing squad problem
	Slide Number 31
	The Hirsch conjecture
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Ellipsoid method�
	Slide Number 37
	Slide Number 38
	A basic feasible flow is a spanning tree�
	Slide Number 40
	Network simplex algorithm�

