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Figure 1: Geometric interpretation of the dual with optimal value g(A) = 3y. In the
situation on the left strong duality holds, and 5y = ¢(b). In the situation on the right,
strong duality does not hold, and 3, < ¢(b).



General approach when using Lagrangian
methods

More generally, to
minimize f(x) subject to h(z) < b, z € X, (1.3)
we proceed as follows:
1. Introduce a vector z of slack variables to obtain the equivalent problem

minimize f(x) subject to h(z) +z =56,z X, 2 > 0.

2. Compute the Lagrangian L(z,z,A\) = f(z) — AT (h(z) + z — b).
3. Define the set

Y={AeR" iinfrex >0 L(z,z,A) > —cc}.

4. For each A € Y, minimize L(z,z, A) subject only to the regional constraints, i.e.
find 2*(\), z*(\) satistying

L(z*(A),z"(A),A) =infex .50 Lz, 2, A). (1.4)

. Find \* € Y so that (z*(A*), z*(\*)) is feasible, 1.e. so z*(\*) € X, z*(\*) = 0,
and h(z*(A*)) 4+ z*(A*) = b. By Theorem 1.2, x*(\*) is optimal for (1.3).

on



Lecture 1 homework

Homework

1. Consider P, when f(x) = —x, and in two cases
(a) h(z) =z, b=2;
(b) h(z) = z% b= 16.
What happens when you try to solve these problems using Lagrangian methods?
In each case, find ¢(b) and explain whether strong duality holds.
2. Given ay,...,a, >0,

minimize — Y1 log(a; + z;)

subject to xy,...,2, > 0and ) . z; =b.

The optimal = corresponds to one that can be found by a so-called ‘water filling
algorithm’. Tmagine placing bars of heights a; side by side in the fashion of a
histogram and then flooding above these bars so as to cover area of b. Draw a
picture to illustrate this idea.



Shadow prices

Theorem 2.5. Suppose that f and h are continuously differentiable on R™, and that
there exist unique functions x* : R™ — R"™ and \* : R™ — R™ such that for each
beR™, h(z*(b)) =b and f(z*(b)) = ¢(b) = inf{f(x) — A*(b)T (h(z) —b) : x € R"}. If

x* and \* are continuously differentiable, then

d¢
ob;

(b) = 1 (0).

Proof. We have that
¢(b) = fa*(b)) — A*(b)T (h(z*(b)) — D)
= f(z*(b)) = X*(0)" h(z* (b)) + X" (0)"D.
Taking partial derivatives
06(b) _ N~ (OF iy _ ey O 9%
B =3 (L@ o) - X0 g o)) 520

)T
ab;

j=1
- b
Ob;

(h(z™(b)) = b) + A™(b)

The first term on the right-hand side is zero, because L(z, A*(b)) is stationary with
respect to x; at 2*(b). The second term is zero as well, because x*(b) is feasible and
thus (h(z*(b)) — b) = 0. The claim follows. O



A linear programming problem

min {c¢Tu: Ae > b, >0}

minimize  —(xy + x2)

subject to 1 + 2u9 <6
L1 — L9 § 3
L1, Lo >0

r1+290=0

Ar

Figure 2: Geometric interpretation of the linear program of Example 2.3



Lecture 3

The simplex algorithm is due to George Dantzig. In his paper on the origins of the simplex
algorithm he writes:

"In the summer of 1947, when I first began to work on the simplex method for solving linear
programs, the first idea that occurred to me is one that would occur to any trained
mathematician, namely the idea of step by step descent (with respect to the objective
function) along edges of the convex polyhedral set from one vertex to an adjacent one. I
rejected this algorithm outright on intuitive grounds - it had to be inefficient because it
proposed to solve the problem by wandering along some path of outside edges until the
optimal vertex was reached. I therefore began to look for other methods which gave more
promise of being efficient, such as those that went directly through the interior."

This is interesting because Dantzig says that the simplex method is something that any
trained mathematician would think of - but that that on first sight it appears to be inefficient.

In practice these days computers solve problems with 100,000s constraints and variables.
There is a nice on line simplex method tool which you might like to use to check answers that
you obtain by hand when doing questions on Examples sheet 1. There is also a very nice
program here, which runs under Windows.

http://trin-hosts.trin.cam.ac.uk/fellows/dpkio/IB/simple2x.html
It was written by Doug Kennedy at Trinity. It takes the hard labour out of performing pivot

operations and it may be configured to prompt the choice of pivot elements, or to solve

nrohlems antomateallv



The simplex tableau

TE— 1
e

B N
m AglAp =1 At AN Ag'D
1 ch —chAZ Ap =0 ch —ebAG Ax —chAG'D
minimize  —(xq + x2)
subject to @y + 29 <6
L1 — X9 S 3
ry,rg 20
L1 L2 <1 Z2 a;0
21 1 2 1 0 6
Z9 1 —1 0 1 3
gy 1 1 0 0 0
T To Z1 Z92 a0
21 0 3 1 —1 3
T 1 —1 0 1 3
a5 0 2 0 —1 —3
I T2 21 22 a;(
o | O 1 s -1 1
1 0 3 2 4
agj | 0 0 -2 —3 |-5




Simple example with cycling

Max [ =23xr; +215xy — 13.50m; — 0.4z,
subject to Odz, + 0.2z, — LAz — 022, < 1), (1)
—T.8xry — Ldry + T.8x3 + 0.4dxy <0,

=0, i=1...4

z ry r3 Ly z ; I
0.4 0.2 -14 -0.2 1.0 = 0
78 214 T8 04 1.0 = 0 T
2.3 -215 1355 04 1.0 = 0
L0 0.5 =35 -05 25 = 0
25 -195  -35 195 1.0 = 0 TM)
1.0 55 -0.75 5.7 1.0 = 0
1.0 04 0.2 -1.4 -0.2 = 0
1.0 -7.8 14 78 04 = 0 T
2.3 -215 1355 04 1.0 = 0

The pivot rule being used is steepest descent: choose the column
with the most negative entry in the bottom row.



Beale’s
example of
cycling in
linear
programming.

We are
minimizing.
After 6
iterations the
tableau is the
same as at the
start.

The pivot
column
selection rule
is steepest
descent:
choose the
column with
the most
negative entry
in the bottom
row.

Note that
there is
degeneracy, in
that there are
Os in the right
hand column.

The value of
the objective
function stays
at 0. However,
the true
minimum is
-1/20.

x_1 x_2 x_3 x4 x_5b x_b ®_¥
i i
- 60 - 35 9 1 0 0
1 1
- -0 - 50 3 0 1 0
0 0 1 0 0 0 1
Payoff |- —- 150 - L 6 0 0 0
¥ 1 50
x_1 x_2 x_3 x_ 4 x_ b x_bB x_ 7
4
x_1 1 240 - 5 36 4 0 0
3
0 30 T -15 -2 1 0
0 0 1 0 0 0 1
7
Payoff 0 -30 - 55 33 3 0 0
x 1 x 2 x_3 x 4 x b x b x 7
8
x_1 1 0 >E -84 12 8 0
1 1 1 1
x 2 0 ! S0 2z 15 30 0
0 0 1 0 0 0 1
?
Payoff 0 0 - 35 18 1 1 0
x_1 x_2 x_3 x 4 x b x_b x_ 7
25 525 75
X_3 8 0 1 9 T T 25 0
1 i 1 1
x 2 160 1 0 a0 120 ) 0
25 525 75
8 0 0 2 2 25 !
Payoff | — 0 0 3 2 3 0
x_1 x_2 x_3 x_4 x 5 x_B x_¥
x3 |2 10500 1 0 50 150 0
1 1 2
X_4 - T 40 1] 1 T - T 1]
12 10500 0 0 50 150 1
Payoff | - % 120 0 0 - 1 0
x_1 x_2 x_3 x A4 x_ 5 x_B x_¥
5 i
*5 | g 210 50 0 1 -3 0
1 1 i
x4 3 30 - S5g ! 0 3 0
0 0 1 0 0 0 1
Payoff |- 330 £ 0 0 2 0
ayo ] 50




lp_solve.exe

lp_solve.exe [options] "<" <input_file>

list of options:

prints this message

verbose mode, gives flow through the program
debug mode, all intermediate results are printed,
and the branch-and-bound decisions

print the values of the dual wvariables

print all intermediate valid =sclutions.

Can give you useful sclutions even if the

total run time is too long

trace pivot selection

LPO is a file containing lines of:

x1l + X2
rowl: x1 + 2 x2 <= 6;
row2: xl1 - X2 <= 3;

>lp_solve -p < LPO

Value of objective function: 5
x1 4
X2 1

Dual values:
rowl 0.66667
rowz 0.33333



Mathematica

In[127]:= b={6,3}
c={1,1}
m={{1,2},{1,-1}};

AbsoluteTiming[
For[i=1,1<=100000, i++,
x=LinearProgramming|-c,-m,-b]];

]

Print [x];

Out [128]= {6,3}

Out [129]= {1,1}

Out [130]= {4.0900000,Null}
14,1}

The problem 1is solved in
about 0.000004 seconds.

The solutionis x1=4, x2=1.



Simple2x
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Industries & solutions  Services Products Support & downloads My IBM

IBM Software > Products > Business analytics > Prescriptive analytics ‘

CPLEX Optimizer

High-performance mathematical programming solver for linear programming!
mixed integer programming, and quadratic programming

IBM ILOG CPLEX Optimization Studio
s N [ 98

Community Edition -,
i

> Download the Community Edition ‘pr v

Model business issues mathematically and solve them with IBM ILOG CPLEX Optimizer's
powerful algorithms to produce precise and logical decisions.

IBM ILOG CPLEX Optimizer's mathematical programming technology enables decision
optimization for improving efficiency, reducing costs, and increasing profitability.

= Fundamental algorithms: IBM ILOG CPLEX Optimizer provides flexible, high-performance
mathematical programming solvers for linear programming, mixed integer programming,
gquadratic programming. and guadratically constrained programming problems. These
include a distributed parallel algorithm for mixed integer programming to leverage multiple

computers to solve difficult problems.

Community Edition

Problem size limited to 1000 variables and 1000 constraints. All features included.
Available on the most popular supported platforms.



maximize

subject to

minimize

subject to

n
2
<3

[

Two phase method

—bry — 30 maximize
ry+ay =1 subject to
201 —x9 = 1
3.‘132 < 2

Ty, =0,

Ity

T+ T — zZ1 + 1 =1
2x1 —x2 — 20+ Yo =1
s + 23 = 2
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Dual simplex algorithm

minimize  2x1 + 3xo + dxg

subject to x1 + 220 +x3—2z1 =3
201 — 19 — 3xq — 20 = 4
Ty, %o, T3, 21,22 = 0.

-1 —2 —1 1 0 -3
—2 1 3 0 1 —4

2 3 4 0 0
5 b 1
0 - -3 -3 |1
1 3 1
—3 3 —3 2
0 4 7 1 —4
0 1 1 —
0
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Gomory’s cutting plane method
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Markov Chains, Computer Proofs, and
Average-Case Analysis of Best Fit Bin Packing

E.G. Coffman, Jr.!, D. S. Johnson!, P. W. Shor!, R. R. Weber?

Abstract. Many complex processes can be modeled by (count-
ably) infinite, multi-dimensional Markov chains. Unfortunately,
current theoretical techniques for amalyzing infinite Markov
chains are for the most part limited to three or fewer dimensions.
In this paper we propose a computer-aided approach to the analy-
sis of higher-dimensional domains, using several open problems
about the average-case behavior of the Best Fit bin packing algo-
rithm as case studies. We show how to use dynamic and linear
programming to construct potential functions that, when applied
to suitably modified multi-step versions of our original Markov
chain, yield drifts that are bounded away from 0. This enables us
to completely classify the expected behavior of Best Fit under dis-
crete uniform distributions U{J,K} when K is small. (Under
U{J,K}, the allowed item sizes are i/K, 1 <€ i < J, with all J pos-
sibilities equally likely.) In addition, we can answer yes to the
long-standing open question of whether there exist distributions
of this form for which Best Fit yields linearly-growing waste.
The proof of the latter theorem relies on a 24-hour computation,
and although its validity does not depend on the linear program-
ming package we used, it does rely on the correctness of our dy-
namic programming code and of our computer’s implementation
of the IEEE floating point standard.



Markov Chains, Computer Proofs, and
Average-Case Analysis of Best Fit Bin Packing

E.G. Coffman, Jr.!, D. S. Johnson!, P. W. Shor!, R. R. Weber?

Many complex processes can be modelled by (countably)
infinite, multidimensional Markov chains. Unfortunately,
theoretical techniques for analysing infinite Markov chains are
for the most part limited to three or fewer dimensions. In this
paper we propose a computer-aided approach to the analysis
of higher-dimensional domains, using several open problems
about the average-case behavior of the Best Fit bin packing
algorithm as case studies. We show how to use dynamic and
lienar programming to construct potential functions that when
applied to suitably modified multi-step versions of our original
Markov chain, yield drifts that are bounded away from 0. This
enables us to completely classify the expected behavior of Best
Fit under discrete uniform distributions U{J, K) when K is small.
In addition, we can answer yes to the long-standing open
guestion of whether there exist distributions of this form for
which Best Fit yields linearly-growing waste. The proof of the
latter theorem relies on a 24-hour computation, and although
its validity does not depend on the linear programming
package we used, it does rely on the correctness of our
dynamic programming code and of our computer’s
implementation of the IEEE floating point standard.



These results are based on the use of a particular kind of
potential function (called a Lyapunov function in the litera-
ture). Once one goes beyond three dimensions, there are no
longer simple constructions for the needed functions.
There are, however, algorithmic approaches to determining
whether Lyapunov functions of certain standard types exist,
and the remainder of Section 2 describes them. We show
how linear programming can be used to test for the exis-
tence of both linear and quadratic Lyapunov functions,
using an old lemma of Hajek [9] and a new one of our own.

Maximize v, subject to

d
zgiﬁ;(s) < =Y, forall s € Sk.
i=l

a;20,1<i<d, and

d
ZH,’ <1
i=1



Example: On-line bin packing

An infinite sequence of items are to be packed into
bins of size 5. Each successive item is equally likely
to be of sizes 1.2 or 3. One possible packing algo-
rithm is Best Fit (BF), which puts each item into
the smallest gap into which 1t will it amongst the
existing gaps in partially full bins, or if there is no
gap large enough, the item goes into an empty bin.
The state at time ¢ is written @ = (21, z9, x3, 14)
where x; is the number of partially full bins with a
gap of size 7. Then, for example,

|

(1,3,0,0) 1 T

(0,4,0,0) — (0,3.,0.0) on arrival of a 2 w.p. %
(0.5,0,0) 3 5

Let d(x) = Elx(t + 1) — x(t) | «(t) = x|, be the
expected drift, e.g.. d(0,4,0,0) = (3, —3.0, 0)

Problem: Let F|x(t)| = x| +xo+x3+ x4 be the
number of partially full bins. Does E|x(t)| — oo or
is F|x(t)] bounded as t — co?

Practical considerations suggest that it is better if
E|xz(t)| is bounded than if Elxz(t)| — oo.




Theorem FE|xz(t)| es bounded as t — oo <= 3
0 < 0 and potential function ¢(x) = 0 such that

Eld(x(t+1)—dlz) | x(t) =2 <0 <0 for all x.

This theorem malkes sense because it says that tfrom
every possible starting state the value of the potential
function is drifting (on average) towards 0.

Suppose we try ¢(z) = Z%l:l a;r; and hunt for a;
that will work by considering the LP

minimize o
subject to d(:ﬁ:)Tﬂ: <o, forall »
ay. a9, ds. ay = 0.

If the optimal solution is & < 0 this proves that
E|x(t)] is bounded as t — oo.

This i1s what happens for our example. The LP has

only 6 constraints.

For packing items of sizes 1,....8 into bins of size
14 a version of this method gives a LP with 415,953
constraints and takes 24 hours to construct and solve!

For packing 1, ... .8 into bins of size 11 the answer
can be shown to be Elz(t)] — oo .



K 5 6 7 8 9 10 11 12 13 14
3 {BL2 B-L2 B-L2 B-Q1 B-Th B-Th B-Th B-Th B-Th B-Th
4 B-L4 B-L3 B-Q1 B-Q1 B-Ql B-Q1 B-Q1 B-Q1 B-Th
5 B-L23 B-Q1 B-Q1 B-Ql B-Q1 B-Q1 B-Q1 B-Ql
6 B-Q2 B-Q5 B-Ql B-Q1 B-Q1 B-Q1 B-QIl
7 B-Q7 B-QI5 B-Q2 B-Q2 B-Q1 B-Ql
8 B-Q13 Ln-P Bx B-x B-Q7
9 B-x Ln-P Ln-x Bx
10 B-x Ln-x Ln-x
11 B-x Ln-x
12 B-x

TABLE 2. Results proved for E[wpgp(Ly s x)]-

Section 3 then uses this technology to prove bounded
expected waste for many of the entries in Table 1. A proof
in this case starts with the construction by computer of a
linear program that, although it has few variables, may
sometimes have more than 100,000 constraints. The linear
program is then solved using a standard LP package. The
package we use is CPLEX™ (CPLEX is a trademark of
CPLEX Optimization, Inc.), but the validity of our proofs
is independent of the correctness of CPLEX, since after
CPLEX generates a solution, we verify the validity of that
solution using our own code. The correctness of our proofs
does, however, depend on the correctness of our generation
and checking programs (for which we shall present listings
of key routines in the final paper), and on the fact that our
computer runs properly and correctly implements the IEEE
floating point standard [1].




The running time of algorithms

by
40 1 2 A2

fn)

30 - P
20 "

n

Suppose instances of size 1000 can be solved in one
second.

Technology increases computing speed by a factor
of 16.

What size of problem can we now solve in one
second?

If T(n) = n? we can now solve problems of size
4000.

If T(n) = 2" we can now solve problems of size
1004.



Relationship between complexity classes

MNP-hard




/ 1 l
NP-Hard \ NP-Hard

P=NP=

NP-Complete

Complexity

Pz NP P = NP

Euler diagram for P, NP, NP-complete, and NP- =
hard set of problems



Dedicated to increasing and disseminating mathematical knowledge

m Clay Mathematics Institute
CMI

ABOUT PROGRAMS MILLENNIUM PROBLEMS PEOPLE PUBLICATIONS

P V N P Suppose that you are organizing housing accommodations for

a group of four hundred university students. Space is limited and only one
hundred of the students will receive places in the dormitory. To
complicate matters, the Dean has provided you with a list of pairs of
incompatible students, and requested that no pair from this list appear in
your final choice. This is an example of what computer scientists call an
NP-problem, since it is easy to check if a given choice of one hundred
students proposed by a coworker is satisfactory (i.e., no pair taken from
your coworker's list also appears on the list from the Dean's office),
however the task of generating such a list from scratch seems to be so
hard as to be completely impractical. Indeed, the total number of ways of
choosing one hundred students from the four hundred applicants is
greater than the number of atoms in the known universe! Thus no future
civilization could ever hope to build a supercomputer capable of solving
the problem by brute force; that is, by checking every possible
combination of 100 students. However, this apparent difficulty may only
reflect the lack of ingenuity of your programmer. In fact, one of the
outstanding problems in computer science is determining whether
guestions exist whose answer can be quickly checked, but which require
an impossibly long time to solve by any direct procedure. Problems like
the one listed above certainly seem to be of this kind, but so far no one
has managed to prove that any of them really are so hard as they appear,
i.e., that there really is no feasible way to generate an answer with the
help of a computer. Stephen Cook and Leonid Levin formulated the P (i.e.,
easy to find) versus NP (i.e., easy to check) problem independently in
1971.



A Turing machine

The machine has states A and B. In each state, the machine reads
the bit under the head and executes the instructions in the
following table (where Pn prints bit n, L means “move left” and R
means “move right, and A and B mean “switch to that state”).

A B

O[PL.R.B|P2.L.A
1|P2,LA|P2.R,B
2| P1L.LLA|PO R, A

OfO10fO{0O]0]0O[0]0]0O

O[(O[010]1]070{0]0]0

Ol[0(0f0]1

]

0(0]0[0

O{0]10f0

)
o

010070




Karp's 21 NP-complete problems

From Wikipedia, the free encyclopedia

« Satisfiability: the boolean satisfiability problem for formulas
in conjunctive normal form (SAT)
 0-1integer programming (A variation in which only
the restrictions must be satisfied, with no optimization)
» Clique (independent set problem)
o Set packing
* \Vertex cover
» Set covering
 Feedback node set
 Feedback arc set
o Directed Hamilton circuit
* Undirected Hamilton circuit
o Satisfiability with at most 3 literals per
clause (equivalent to 3-SAT)
 Chromatic number (also called the Graph
Coloring Problem)
e Clique cover
 Exact cover
o Hitting set
o Steiner tree
e 3-dimensional matching
 Knapsack (Karp's definition of
Knapsack is closer to Subset sum)
* Job sequencing
o Partition
« Max cut

https://en.wikipedia.org/wiki/Karp’'s_21 NP-complete_problems



Firing squad problem

Firing Squad Synchronization,
Computer Science's Most
Macabre-Sounding Problem

writezn by BEN RICHMOND

July 14, 2015 // 12:00 PM EST

The name of the problem comes from an analogy with real-world firing
squads: the goal is to design a system of rules according to which an officer
can so command an execution detail to fire that its members fire their rifles
simultaneously.

More formally, the problem concerns cellular automata, arrays of finite state
machines called "cells" arranged in a line, such that at each time step each
machine transitions to a new state as a function of its previous state and the
states of its two neighbors in the line. For the firing squad problem, the line
consists of a finite number of cells, and the rule according to which each
machine transitions to the next state should be the same for all of the cells
interior to the line, but the transition functions of the two endpoints of the
line are allowed to differ, as these two cells are each missing a neighbor on
one of their two sides.

The states of each cell include three distinguished states: "active",
"quiescent"”, and "firing", and the transition function must be such that a cell
that is quiescent and whose neighbors are quiescent remains quiescent.
Initially, at time t = 0, all states are quiescent except for the cell at the far
left (the general), which is active. The goal is to design a set of states and a
transition function such that, no matter how long the line of cells is, there
exists a time t such that every cell transitions to the firing state at time t,
and such that no cell belongs to the firing state prior to time t.



Klee and Minty polytope
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The Hirsch conjecture

n=3 m=~06

[

|

=2, 1T =

A(n,m) = maximum distance between two vertices of a polytope in
R™ that is defined by m inequalites.

Hirsch Conjecture: A(n,m) < m —n.

A counterexample to the Hirsch Conjecture was discovered by
Francisco Santos in 2010. However, it remains an open question
whether or not A(n,m) = is bounded by some polynomial function
of m and n.



A counterexample to the Hirsch conjecture

Francisco Santos*

To Victor L. Klee (1925-2007), in memoriam!

A bhstract

The Hirsch Conjecture (1957) stated that the graph of a d-dimensional
polyvtope with n facets cannot have (combinatorial) diameter greater than
72 — . That is. that any two vertices of the polyvtope can be connected to
each other by a path of at most n — d edges.

This paper presents the first counterexample to the conjecture. Our
polvtope has dimension 43 and 86 facets. It is obtained from a 5-dimensional
polvtope with 48 facets which violates a certain generalization of the d-
step conjecture of Klee and Walkup.

1 Introduction

The Hirsch conjecture is the following verv fundamental statement about the
combinatorics of polvtopes. It was stated by Warren M. Hirsch in 1957 in
the context of the simplexr method, and publicized by G. Dantzig in his 1963
monograph on linear programming [10]:

The (combinatorial) diameter of a polytope of dimension d with n
facets cannot be greater than n — d.

Here we call combinatorial diameter of a polytope the maximum munber of
steps needed to go from one vertex to another, where a step consists in traversing
an edge. Since we never refer to any other diameter in this paper, we will often
omit the word “combinatorial”.

Our main result is the construction of a 43-dimensional polyvtope with 86
tacets and diameter (at least) 44. Via products and glueing copies of it we can
also construct an infinite family of polytopes in fixed dimension d with increasing
number n of facets and of diameter (1 4+ €)(n — d), for a positive constant e.



The ellipsoid method

Figure 6: A step of the ellipsoid method where x; ¢ P but z;,.1 € P. The polytope P
and the half-ellipsoid that contains it are shaded.

Theorem 6.2. Let E = E(z, D) be an ellipsoid in R" and a € R" non-zero. Consider
the half-space H = {x € R" : Tz > a” z}, and let
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Then D' is symmetric and positive definite, and therefore E' = E(z', D") is an ellipsoid.
Moreover, ENH C E' and Vol(E') < e~ V/2n+1Vl(E).



Proof sketch of Theorem 6.2. We prove the theorem for E = {z € R™ : xle < 1} and
H = {z € R" : 1 > 0}. Since every pair of an ellipsoid and a hyperplane as in the
statement of the theorem can be obtained from E and H via some affine transformation,
the general case then follows by observing that affine transformations preserve inclusion
and, by Lemma 6.3, relative volume of sets.

Let e; = (1,0,....0)T. Then,
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Consider an arbitrary @ € £ M H, and observe that 0 < z; < 1 and Z?:l :cf < 1. Itis
easily verified that z € E’ and thus ENH C E’.

Now consider the affine transformation F': R™ — R"™ given by
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It is not hard to show that E' = F(FE). Therefore, by Lemma 6.3,
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where the strict inequality follows by using twice that 1 + a < e for all a # 0. L]




Ellipsoid method

7.1 Ellipsoid method

Consider a polytope P = {x € R" : Ax > b}, given by a matrix A € Z™*" and a vector
h e Z™. Assume for now that P is bounded and either empty or full-dimensional. Here,
P 1s called full-dimensional if Vol(F?) > 0. The ellipsoid method takes the following
steps to decide whether [P 1s non-empty:

1. Let U be the largest absolute value among the entries of A and b, and define
2o =0, Dg=nnl*"I. Ey=E(xp.Dy).
V= (2\/?_3)"(':3[-’)”2. v = n_”(n.(.-‘r)_”%”-l'lj.
t* =[2(n+1)log(V/v)].
2, Fort=0..... t*, do the following:
1. It t = t* then stop; P 1s empty.
2. It x; € P then stop:; I’ 1s non-empty.
3. Find a violated constraint, 1.e. a row j such that fa’?_<f'f < b;.
4. Let Eyy1 = E(x¢41. Diyq) with
1 Dya;
n—+1 ,\/;(;?thj .

n? 2 Dfaj-uf Dy
Dt—|—1 - 9 Dﬁ - T N
n“—1 n+1 ajDia;

Li41 = Tt T+




Karmarkar's algorithm

From Wikipedia, the free encyclopedia

Karmarkar's algorithm is an algorithm introduced by Narendra
Karmarkar in 1984 for solving linear programming problems. It was the
first reasonably efficient algorithm that solves these problems in
polynomial time. The ellipsoid method is also polynomial time but

proved to be inefficient in practice.

Where 11 is the number of variables and [, is the number of bits of input
to the algorithm, Karmarkar's algorithm requires O{RSEL) operations
on O( L) digit numbers, as compared to O(?EEL) such operations for

the ellipsoid algorithm. The runtime of Karmarkar's algorithm is thus
O(n*°L* -log L - log log L)
using FFT-based multiplication (see Big O notation).

Karmarkar's algorithm falls within the class of interior point methods: the
current guess for the solution does not follow the boundary of the
feasible set as in the simplex method, but it moves through the interior
of the feasible region, improving the approximation of the optimal
solution by a definite fraction with every iteration, and converging to an
optimal solution with rational data.[]



Patent controversy - Can Mathematics be patented? |edi]

At the time he invented the algorithm, Narendra Karmarkar was employed by AT&T. After
applying the algorithm to optimizing AT&T 's telephone network,['#] they realized that his
invention could be of practical importance. In April 1985, AT&T promptly applied for a patent
on Karmarkar's algorithm and that became more fuel for the ongoing controversy over the
issue of software patents.l'] This left many mathematicians uneasy, such as Ronald Rivest
(himself one of the holders of the patent on the RSA algorithm), who expressed the opinion
that research proceeded on the basis that algorithms should be free. Even before the patent
was actually granted, some claimed that there might have been prior art that was
applicable.["®]

Mathematicians who specialize in numerical analysis such as Philip Gill and others claimed
that Karmarkar's algorithm is equivalent to a projected Newton barrier method with a
logarithmic barrier function, if the parameters are chosen suitably.['”l However, Gill's
argument is flawed, insofar as the method they describe does not even qualify as an
"algorithm”, since it requires choices of parameters that don't follow from the internal logic of
the method, but rely on external guidance, essentially from Karmarkar's algorithm.['8!
Furthermore, Karmarkar's contributions are considered far from obvious in light of all prior
work, including Fiacco-McCormick, Gill and others cited by Saltzman.!'8Il'91[20] The patent
was debated in the U.S. Senate and granted in recognition of the essential originality of
Karmarkar's work, as U.S. Patent 4,744,026 &: "Methods and apparatus for efficient
resource allocation" in May 1988. AT&T supplied the KORBX system[?11 [22] based on this
patent to the Pentagon,[?31[24] which enabled them to solve mathematical programming
problems which were previously considered unsolvable.

Opponents of software patents have further alleged that the patents ruined the positive
interaction cycles that previously characterized the relationship between researchers in
linear programming and industry, and specifically it isolated Karmarkar himself from the
network of mathematical researchers in his field. [2°]

The patent itself expired in April 2006, and the algorithm is presently in the public domain.



A basic feasible flow is a spanning tree







Network simplex algorithm

Scotland
Cumbria Northeast
Northwest Yorkshire
Wales et T NS TS
. Central
London
Southwest ..
Southcoast — \9 Thames

The demand for electricity at node 7 is d;. Node ¢ has k; generators, that can generate
electricity at costs of a;1.. .. . @, up to amounts b;y, ... ,by.. There are n = 12 nodes
and 351 generators in all. The capacity for transmission from node i to j is ¢;; (= ¢;;).

Let x;; = amount of electricity carried ¢ — j and let y;; = amount of electricity
generated by generator j at node . The LP is

minimize E ;Y

ij
subject to Z Yij — Z:z:;j -+ Z rip=d;, i=1....,12,
J J J
0 S ;17;_}‘ é C‘;J‘. 0 g 'y,j_); é b;_}‘.

In addition. there are constraints on the maximum amount of power that may be
shipped across the cuts shown by the dotted lines in the diagram.
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