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Lecture 1 homework



Shadow prices



A linear programming problem





The simplex tableau



Simple example with cycling

The pivot rule being used is steepest descent: choose the column 
with the most negative entry in the bottom row.



Beale’s 
example of 
cycling in 
linear 
programming.  

We are 
minimizing.  
After 6 
iterations the 
tableau is the 
same as at the 
start.

The pivot 
column 
selection rule 
is steepest 
descent: 
choose the 
column with 
the most 
negative entry 
in the bottom 
row.

Note that 
there is 
degeneracy, in 
that there are 
0s in the right 
hand column.

The value of 
the objective 
function stays 
at 0. However, 
the true 
minimum is 
-1/20.











Two phase method





Dual simplex algorithm



Gomory’s cutting plane method





Many complex processes can be modelled by (countably) 
infinite, multidimensional Markov chains. Unfortunately, 
theoretical techniques for analysing infinite Markov chains are 
for the most part limited to three or fewer dimensions. In this 
paper we propose a computer-aided approach to the analysis 
of higher-dimensional domains, using several open problems 
about the average-case behavior of the Best Fit bin packing 
algorithm as case studies. We show how to use dynamic and 
lienar programming to construct potential functions that when 
applied to suitably modified multi-step versions of our original 
Markov chain, yield drifts that are bounded away from 0. This 
enables us to completely classify the expected behavior of Best 
Fit under discrete uniform distributions U{J, K) when K is small. 
In addition, we can answer yes to the long-standing open 
question of whether there exist distributions of this form for 
which Best Fit yields linearly-growing waste. The proof of the 
latter theorem relies on a 24-hour computation, and although 
its validity does not depend on the linear programming 
package we used, it does rely on the correctness of our 
dynamic programming code and of our computer’s 
implementation of the IEEE floating point standard.











The running time of algorithms



Relationship between complexity classes 





P v NP Suppose that you are organizing housing accommodations for 
a group of four hundred university students. Space is limited and only one 
hundred of the students will receive places in the dormitory. To 
complicate matters, the Dean has provided you with a list of pairs of 
incompatible students, and requested that no pair from this list appear in 
your final choice. This is an example of what computer scientists call an 
NP-problem, since it is easy to check if a given choice of one hundred 
students proposed by a coworker is satisfactory (i.e., no pair taken from 
your coworker's list also appears on the list from the Dean's office), 
however the task of generating such a list from scratch seems to be so 
hard as to be completely impractical. Indeed, the total number of ways of 
choosing one hundred students from the four hundred applicants is 
greater than the number of atoms in the known universe! Thus no future 
civilization could ever hope to build a supercomputer capable of solving 
the problem by brute force; that is, by checking every possible 
combination of 100 students. However, this apparent difficulty may only 
reflect the lack of ingenuity of your programmer. In fact, one of the 
outstanding problems in computer science is determining whether 
questions exist whose answer can be quickly checked, but which require 
an impossibly long time to solve by any direct procedure. Problems like 
the one listed above certainly seem to be of this kind, but so far no one 
has managed to prove that any of them really are so hard as they appear, 
i.e., that there really is no feasible way to generate an answer with the 
help of a computer. Stephen Cook and Leonid Levin formulated the P (i.e., 
easy to find) versus NP (i.e., easy to check) problem independently in 
1971.



The machine has states A and B. In each state, the machine reads 
the bit under the head and executes the instructions in the 
following table (where Pn prints bit n, L means “move left” and R 
means “move right, and A and B mean “switch to that state”).

A Turing machine



• Satisfiability: the boolean satisfiability problem for formulas 
in conjunctive normal form (SAT)

• 0–1 integer programming (A variation in which only 
the restrictions must be satisfied, with no optimization)
• Clique (independent set problem)

• Set packing
• Vertex cover

• Set covering
• Feedback node set
• Feedback arc set
• Directed Hamilton circuit

• Undirected Hamilton circuit
• Satisfiability with at most 3 literals per 
clause (equivalent to 3-SAT)

• Chromatic number (also called the Graph 
Coloring Problem)

• Clique cover
• Exact cover

• Hitting set
• Steiner tree
• 3-dimensional matching
• Knapsack (Karp's definition of 

Knapsack is closer to Subset sum)
• Job sequencing
• Partition

• Max cut

https://en.wikipedia.org/wiki/Karp’s_21_NP-complete_problems



Firing squad problem

The name of the problem comes from an analogy with real-world firing 
squads: the goal is to design a system of rules according to which an officer 
can so command an execution detail to fire that its members fire their rifles 
simultaneously.

More formally, the problem concerns cellular automata, arrays of finite state 
machines called "cells" arranged in a line, such that at each time step each 
machine transitions to a new state as a function of its previous state and the 
states of its two neighbors in the line. For the firing squad problem, the line 
consists of a finite number of cells, and the rule according to which each 
machine transitions to the next state should be the same for all of the cells 
interior to the line, but the transition functions of the two endpoints of the 
line are allowed to differ, as these two cells are each missing a neighbor on 
one of their two sides.

The states of each cell include three distinguished states: "active", 
"quiescent", and "firing", and the transition function must be such that a cell 
that is quiescent and whose neighbors are quiescent remains quiescent. 
Initially, at time t = 0, all states are quiescent except for the cell at the far 
left (the general), which is active. The goal is to design a set of states and a 
transition function such that, no matter how long the line of cells is, there 
exists a time t such that every cell transitions to the firing state at time t, 
and such that no cell belongs to the firing state prior to time t.



Klee and Minty polytope



The Hirsch conjecture





The ellipsoid method





Ellipsoid method







A basic feasible flow is a spanning tree





Network simplex algorithm
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