Mathematics for OR - Examples 2

1. Consider a minimum cost network flow problem in which we have a constraint
on flows of m;; < fi; < M;; for every arc (i, ). Construct an equivalent network
flow problem in which constraints are 0 < f;; < M;;. Hint: Let f;; = fi; — my;

and construct a new network for the arc flows f;;. How should b; be changed?

2. Consider a transportation problem in which all shipping costs c;; are positive.
Suppose we increase the supply at some sources and increase the demands at
some sinks. To maintain feasibility we ensure that the total supply remains equal
to the total demand. Is it true that the value of the optimal cost will increase?
Prove this, or provide a counterexample.

3. Each of n teams plays against each other team k games, and so kn(n —1)/2
games are played in all. Assume that every game ends in a win or a loss (no
draws) and let x; be the total number of wins of team 7. Let X be the set of
all possible outcome vectors (x1,...,x,). Given an arbitrary vector (z1,...,2,)
we want to determine whether it belongs to X, that is, whether it is a possible
tournament outcome vector. Find a network formulation of this problem such that
the minimum cost flow attains a certain value if and only if (z1,...,2,) € X.

4. Consider the following algorithm, applied to a graph with n nodes in which
the distance between nodes ¢ and j is c;;.

1. Set k = 1. Arbitrarily choose a node, say 1, and let Ny = {1}.

2. For each j ¢ Ny, find the node ¢ € Nj, that minimizes ¢;;. Call this node v (j).
3. Let j; be the node that minimizes c;,, (j) over j & Ni. Set Npy1 = Ny U{j;}.
4. Stop if kK + 1 = n; otherwise set k = k + 1 and goto step 1.

What problem does this algorithm solve? Show its running time is O(n?).

5. Find the maximal flow from node 1 to node 7 in the following network. The
numbers by the arcs are their capacities.

6. In the multicommodity flow problem there are £ > 1 commodities, each of
which has its own source s;, sink t; and demand D;. We wish to simultaneously
route D; units of flow from s; to ¢; so that the total amount of commodities
passing through any edge is no greater than its capacity. Define the max flow,
as the maximum fraction ¢ such that we can simultaneously route flows of ¢D;.
Define the min cut as _
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where N is the set of nodes, U is a subset of the nodes, C(U,U) is the sum of
capacities passing from U to U = N \ U, and D(U,U) is the sum of demands D;
such that s; € U and t; € U. Show that max-flow is upper bounded by min-cut.
Consider the network of Question 5, with k = 2, (s1,t1,D1) = (1,7,11),
(s2,t2, D2) = (2,6,3). Does min cut equal max flow?

7. Use the Bellman-Ford algorithm to find the least cost path from every node
to node 7 in the following network. Note that some arcs have negative cost.

Use Dijkstra’s algorithm on a modified network to solve the all-pairs problem.

8. Given a graph G = (V, E) the minimum vertex cover problem is that of finding
a smallest set of vertices such that every edge is incident to at least one vertex in
this set. Show that this is the integer linear program

minimize ), i, 74, s.t. 2; € {0,1} and 2; +z; > 1 for all (i, j) € E.

Why is the linear programming relaxation in which we take z; € [0, 1] not likely
to produce a good lower bound?

Formulate a semidefinite programming relaxation of the problem. Hint: recall
the SDP relaxation for the max-cut problem in Lecture 12; take x; € {0,1} as
equilvalent to a:f = x;, and use constraints of the form z;z; = zox; for all i € V,
(xo — x;)(xo — ;) =0, for all (i,7) € E, and zozo = 1.

9. A hiker wishes to choose items to take on a journey such that the total value
of the items is at least 9, but the total weight is a minimum. Solve this problem
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using a branch and bound approach. Use as a lower bound for any node for which
the total value of included items is less than 9, the total weight of included items
plus the smallest weight amongst items not included. There are five items from
which to choose, with values v; and weights w;.
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10. Let M = {1,2,...,n} be a set of n items and let My, Ms,..., M,, be a
collection of m subsets of M. let F be a subset of {1,...,m}. We say that a F'
is a cover if U;epM; = M and say that F' is a packing if M; N M, = 0 for all
i,j € F. We are given a weight ¢; for each M;, and the weight of F is ), c;.
Let A;; =1 or 0 as M; does or does not contain item j. Let z; be 1 or 0 as ¢ is
or is not in F. Express as an integer linear programs the problems of finding: (a)
the cover of minimum weight, and (b) the packing of maximum weight.
Show that the LP relaxation of (a) has the dual problem:

n n
(¢): maximize Zyj , subject to ZAijyj < ¢, foralli, and y > 0.
j=1 j=1
Suppose all c; are integers. Consider the problem
(d): maximize |S|, subject to S C M and |SN M;| <¢; for all 7,

where | S| denotes the number of items in S. Show that the solution value to (d)
is never more than the solution value to (a). Can the inequality be strict?
Explain how (d) could be used in a branch and bound algorithm to solve (a).

11. Use Dakin’s method to solve the following ILP.

maximize z =8x1 + bxo
subject to z1 4+ x2 <6
91 + Hag < 45
x1,22 20

T2, T2 integer

Explain explain how Dakin’s method will proceed by referring to the following
plot. (You need not carry out iterations of the simplex method.)

3

12. Given these distances between 5 towns, find a minimum spanning tree.

A B C D E
A 9 7 5 7
B|9 9 9 8
cl|7 9 7 6
D{s5 9 7 6
E|7 8 6 6

By removing town B and finding a minimum spanning tree for the remaining
towns, show that a lower bound on the solution to the travelling salesman problem
for this graph is 9+ 8 4+ 17 = 34.

Compare this to what you obtain by starting at town A and using a greedy
algorithm (i.e. always visiting the closest town not yet visited).

13. Suppose A is a heuristic for the TSP. Let A(I) be the length of the tour
produced by A on an instance I and let OPT(I) be the length of the optimal
tour. Suppose A is a e-approximation algorithm, running in polynomial time, so
that A(I) < (1+¢€) OPT(I), for all I.

Suppose we have a graph G = (N, A), with n nodes, and want to decide if
it contains a Hamiltonian cycle (i.e. a tour that visits every node exactly once).
Let us construct an instance of TSP in which ¢;; = 1 or ¢;; = (1 +€)n as G
does or does not contain the edge (4,7). Show that, applied to this instance,
A(I) < (14 e)n if G has a Hamiltonian cycle, and A(I) > (n — 1) + (1 4+ e)n
if G does not. Hence show that A can be used to decide the Hamiltonian cycle
decision problem in polynomial time.

Given that the Hamiltonian cycle decision problem is NP-complete, what do
you conclude about the plausibility that there exists an algorithm like A7 Why
does this not invalidate the 1-approximation algorithm derived in Lecture 147
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