
Mathematics for OR - Examples 1

1. Consider the following constrained optimization problem.

maximize −2x2

1
− x2

2
+ x1x2 + 8x1 + 3x2

subject to 3x1 + x2 = 10 .

Show that the optimal solution is at (x1, x2) = (69/28, 73/28).

2. Use the two-phase simplex method to solve the problem

minimize 4x1 + 4x2 + x3

subject to x1 + x2 + x3 ≤ 2
2x1 + x2 ≤ 3

2x1 + x2 + 3x3 ≥ 3
x1, x2, x3 ≥ 0 .

You should find that the optimum occurs at x = (0, 0, 1).

3. Consider the simplex algorithm applied to a linear programming problem
{maximize c⊤x : Ax = b, x ≥ 0}. Suppose the rows of A are linearly independent.

For each of these statements give a proof or counterexample.

(a) A variable that has just left the basis cannot reenter at the very next step.

(b) A variable that has just entered the basis cannot leave at the very next step.

4. Show that in Phase I of the two-phase simplex method, if an artificial variable
becomes nonbasic it need never become basic again. So as soon as an artificial
variable is nonbasic its column can be eliminated from the tableau.

5. Consider the pair of linear programs: P = maximize {0⊤x : Ax = b, x ≥ 0}
and D = minimize {y⊤b : y⊤A ≥ 0⊤}. Show that D is the dual of P .

Show that P is feasible if and only if D is bounded.

Prove Farkas’ lemma, which states that exactly one of the following must hold:

(a) There exists some vector x ≥ 0 such that Ax = b.

(b) There exists some y such that y⊤A ≥ 0, y⊤b < 0.

6. Consider the linear program

P : maximize c⊤x , Ax ≤ b and x ≥ 0.

Here c, x ∈ R
n, b ∈ R

m and A is m× n. Derive the dual problem, D.

Prove or provide a counterexample to each of the following.
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(a) If P is unbounded then D is infeasible.

(b) If P is infeasible then D is unbounded.

The following is the final simplex algorithm tableau for a linear programming
problem P , in which n = m = 2. Find the all optimal solutions to both the primal
and the dual problems.

What was the original primal problem?

x1 x2 z1 z2

0 1 1

10

1

10
1

1 0 1

20

3

10
2

0 0 0 − 1

2
−3

7. Consider the following integer linear programming problem (ILP)

maximize x1 + 2x2

subject to −3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

x1, x2 ≥ 0, x1, x2 integer.

Use the simplex method to solve the LP relaxation (i.e. when x1, x2 need not be
integers), verifying that the final tableau is

x1 x2 z1 z2 z3

0 1 1/6 1/6 0 5/2

1 0 −1/9 2/9 0 2

0 0 7/18 −5/18 1 7/2

0 0 −2/9 −5/9 0 −7

Argue that in the optimal solution to the ILP we must have x2 ≤ 2.

Use Gomory’s method (with the dual simplex algorithm) to solve the ILP.

8. Show that any instance of the Satisfiability decision problem can be reduced
to an instance of 0–1 linear programming (i.e. a linear program in which every
decision variable must be 0 or 1). Show how this reduction could be made for the
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satifiability instance: Is there an assignment of the values ‘true’ and ‘false’ to the

boolean variables X1, X2, X3, X4, X5, X6 which makes the following true?

(X1 ∨ X̄2 ∨X6) ∧ (X̄2 ∨ X̄4) ∧ (X3 ∨X5 ∨X6) ,

where ∧ means AND, ∨ means OR, and X̄i means ‘not Xi’.

Given that Satisfiability isNP-complete, show that 0-1 integer programming
is also NP-complete.

9. Let G be a graph with n nodes. Consider two decision problems.

Clique: does there exist a clique of size k in G? (i.e. k vertices such that
there is an edge between every pair).

Vertex Cover: is there a vertex cover of size k? (i.e. as set of k nodes such
that every edge in G has an endpoint in this subset).

Let G′ be the complement of G, i.e. G′ has an edge between two nodes if and
only if G does not. Show G has a clique of size k if and only if G′ has a vertex
cover of size n− k.

Given thatClique isNP-complete, prove thatVertex Cover isNP-complete.

10. 2-SAT is the decision problem of whether or not it is possible to assign values
of true (T) and false (F) to k variables x1, . . . , xk so that a given conjuction of m
clauses is true. I.e. so that a given

(x11 ∨ x12) ∧ (x21 ∨ x22) ∧ · · · ∧ (xm1 ∨ xm2) (1)

is true, where ∧ means AND, ∨ means OR, each xij is one of x1, . . . , xk, with or
without a NOT in front of it, and each variable can appear multiple times in the
expression. Show that 2-SAT ∈ NP .

Let x̄ denote ‘NOT x’. Suppose we create an implication graph with vertex
set V = {x1, . . . , xk} ∪ {x̄1, . . . , x̄k}. We put a directed edge (x, y) in the graph
iff (x̄, y) is equivalent to one of the clauses (xi1 ∨ xi2). Show the following.

(a) If (z1, z2) is an edge, so is (z̄2, z̄1).

(b) If x1, . . . , xk take values such that (1) is true and there is directed path in the
graph (z1, z2, . . . , zj), then z1 =T implies z2 = · · · = zj =T.

(c) Consider the statement (2) ‘there exists a variable z such that there is a path
from z to z̄ and a path from z̄ to z’.

(i) Show that if (2) is true then (1) is not satisfiable.

3

(ii) Show that if (2) is not true then (1) can be made satisfiable by the
following polynomial time algorithm:

Pick an unassigned variable x, in some clause, for which there is no
directed path from x to x̄. Assign x =T (making that clause true), and
also assign T to all vertices that can be reached along paths from x.
Assign F to the negations of all variables that are so assigned. Repeat
this until all variables have been assigned.

(You must show that the algorithm never sets both y =T and ȳ =T, and
that if (x, y) is clause the algorithm cannot set both x = F and y = F .)

(d) Deduce that 2-SAT∈ P .

11. 3-SAT is like 2-SAT except that the clauses are of the form (xi1∨xi2∨xi3).
Suppose we construct a graphG with vertex set {< x, i > : x is in the ith clause}.
We place an undirected edge {< z1, i >,< z2, j >} iff z1 6= z̄2, and i 6= j.

Show that

(a) The 3-SAT instance is satisfiable iff G has a clique of size m.

(b) Consider the Clique decision problem (CDP); Does there exist a clique of

size m in graph G? (i.e. m vertices such that there is an edge between every
pair). Show that if 3-SAT is NP-complete then CDP is NP-complete.

12. Consider the uncapacitated network flow problem below. The label next to
each arc is its cost, cij . Use the network simplex algorithm to find the minimum
cost flow. Start with the tree indicated by the dashed lines in the figure.
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