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1 Show that the optimization problem to

maximize −2x21 − x22 + x1x2 + 8x1 + 3x2

subject to 3x1 + x2 = 10

has an optimal solution at (x1, x2) = (69/28, 73/28).

2 Find an optimal solution of the problem to

maximize 2 tan−1 x1 + x2

subject to x1 + x2 ≤ b1
− log x2 ≤ b2
x1, x2 ≥ 0 ,

where b1 and b2 are constants such that b1 − e−b2 ≥ 0. You may want to distinguish the cases
in which the Lagrange multiplier for the second constraint is equal to 0 and greater than 0.

3 Show, as claimed in lectures, that the dual of the dual of a linear program is equivalent to
the primal.

4 Let A ∈ Rm×n and b ∈ Rm, and consider the linear programs

max { 0Tx : Ax = b, x ≥ 0 } and (1)

min { yT b : yTA ≥ 0T }. (2)

(a) Show that (2) is the dual of (1).

(b) Show that (1) is feasible if and only if (2) is bounded.

(c) Prove Farkas' Lemma, which states that exactly one of the following is true:

1. There exists x ∈ Rn such that Ax = b and x ≥ 0.

2. There exists y ∈ Rm such that yTA ≥ 0 and yT b < 0.

5 Consider the problem to

maximize x1 + x2

subject to 2x1 + x2 ≤ 4

x1 + 2x2 ≤ 4

x1 − x2 ≤ 1

x1, x2 ≥ 0.

(a) Solve the problem graphically in the plane.

(b) Introduce slack variables x3, x4, and x5 and write the problem in equality form. How many
basic solutions are there? Determine the value of x = (x1, . . . , x5)

T and of the objective
function at each of the basic solutions. Which of the basic solutions are feasible? Are all
basic solutions non-degenerate?



(c) Write down the dual problem in equality form using slack variables λ4 and λ5, and deter-
mine the value of λ = (λ1, λ2, λ3, λ4, λ5) and of the objective function at each of the basic
solutions of the dual. Which of these basic solutions are feasible?

(d) Write down the complementary slackness conditions for the problem, and show that for
each basic solution of the primal there is exactly one basic solution of the dual such that
the two have the same value and satisfy complementary slackness. How many of these
pairs are feasible for both primal and dual?

(e) Solve the problem using the simplex method. Start from the basic feasible solution where
x1 = x2 = 0, and try both choices for a variable to enter into the basis. How are the
entries in the last row of the various tableaus related to the appropriate basic solutions of
the dual?

6 Consider the simplex algorithm applied to a linear programming problem with feasible set
{x : Ax = b, x ≥ 0}. Suppose the rows of A are linearly independent. For each of these
statements give a proof or counterexample.

(a) A variable that has just left the basis cannot reenter at the very next step.

(b) A variable that has just entered the basis cannot leave at the very next step.

7 Use the two-phase simplex method to show that the linear program

minimize 4x1 + 4x2 + x3

subject to x1 + x2 + x3 ≤ 2

2x1 + x2 ≤ 3

2x1 + x2 + 3x3 ≥ 3

x1, x2, x3 ≥ 0

has an optimal solution at x = (0, 0, 1).

8 Show that in Phase I of the two-phase simplex method, if an arti�cial variable becomes
nonbasic it need never become basic again. Thus, as soon as an arti�cial variable becomes
nonbasic its column can be eliminated from the tableau. [Hint. Suppose the arti�cial variables
are y1, . . . , y` and y1 is the �rst of these to become nonbasic. Imagine re-setting the Phase I
objective function to M1y1 + y2 + · · ·+ y`, where M1 is chosen su�ciently large.]

9 Consider the integer program (IP)

maximize x1 + 2x2

subject to −3x1 + 4x2 ≤ 4

3x1 + 2x2 ≤ 11

2x1 − x2 ≤ 5

x1, x2 ≥ 0, x1, x2 ∈ Z.

(a) Use the simplex method to solve the LP relaxation of the IP and verify that the �nal
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tableau looks as follows:

x1 x2 z1 z2 z3

0 1 1
6

1
6 0 5

2

1 0 −1
9

2
9 0 2

0 0 7
18 − 5

18 1 7
2

0 0 −2
9 −5

9 0 −7

(b) Explain why the optimal solution of the IP must satisfy x2 ≤ 2.

(c) Use the cutting plane method to solve the IP.

10 Let A be a m × n matrix, m > n. Suppose the system Ax ≤ b is infeasible. Show that
there exists y ≥ 0, with no more than n + 1 components strictly positive, such that y>A = 0
and y>b = −1. Hence prove that if every choice of n + 1 rows of Ax ≤ b de�nes a nonempty
region, then Ax ≤ b de�nes a nonempty region. Deduce Helly's Theorem: that given a set of
halfspaces in Rn, if every n+ 1 of them intersect then they all intersect.

11 A special case of the Boolean satis�ability problem (SAT) is 3SAT. This is the same problem
as SAT except that each clause contains no more than 3 literals. Given that SAT is NP-complete,
show that 3SAT is also NP-complete.

12 A Hamiltonian cycle of a graph is a cycle that visits every node. The directed Hamiltonian
cycle problem asks whether a given directed graph has a Hamiltonian cycle.

(a) Show that this problem is in NP.

(b) Give a reduction from the Boolean satis�ability problem to show that the problem is also
NP-hard. For each variable of a given Boolean formula, arrange an appropriate number of
nodes from left to right, and connect them in such a way that there are exactly two paths
that visit all of them, one from left to right and one from right to left, corresponding to
setting the variable to true or false. Now represent each clause by one node, and connect
this node to the chain of nodes of every variable contained in the clause, in such a way
that the node can be visited while traversing the nodes for a particular variable if and only
if the variable has been set in a way that satis�es the clause.

(c) Show that the traveling salesman problem is NP-hard, by observing that the undirected
Hamiltonian cycle problem is a special case of it and reducing the directed Hamiltonian
cycle problem to the undirected one. The key element of the reduction is to replace every
node in a directed graph by three nodes in an undirected one, such that there is a direct
correspondence between paths in the two graphs.
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