
Mathematics for Operations Research -

Examples 2

1. Consider the uncapacitated network flow problem below. The label next to
each arc is its cost, cij . Use the network simplex algorithm to find the minimum
cost flow. Start with the tree indicated by the dashed lines in the figure.
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2. Consider a minimum cost network flow problem in which we impose the addi-
tional constraint fij ≥ dij for every arc (i, j). Construct an equivalent network
flow problem in which there are no nonzero lower bounds on the arc flows.
Hint: Let f̄ij = fij − dij and construct a new network for the arc flows f̄ij .
How should bi be changed?

3. Consider a transportation problem in which all shipping costs cij are positive.
Suppose we increase the supply at some sources and increase the demands at
some sinks. To maintain feasibility we ensure that the total supply remains
equal to the total demand. Is it true that the value of the optimal cost will
increase? Prove this, or provide a counterexample.

4. Each of n teams plays against each other team k games (so kn(n− 1)/2 games
are played in all). Assume that every game ends in a win or a loss (no draws)
and let xi be the total number of wins of team i. Let X be the set of all
possible outcome vectors (x1, . . . , xn). Given an arbitrary vector (x1, . . . , xn)
we want to determine whether it belongs to X , that is, whether it is a possible
tournament outcome vector. Provide a network formulation of this problem.
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5. Consider the following algorithm, applied to a graph with n nodes in which
the distance between nodes i and j is cij .

0. Set k = 1. Arbitrarily choose a node, say 1, and let N1 = {1}.

1. For each j 6∈ Nk, find the node i ∈ Nk that minimizes cij . Call this node
vk(j).

2. Let j∗k be the node that minimizes cj,vk(j) over j 6∈ Nk. Set Nk+1 = Nk ∪
{j∗k}.

3. Stop if k + 1 = n; otherwise set k = k + 1 and goto step 1.

What problem does this algorithm solve? Show that its running time is O(n2).

6. Use the Bellman-Ford algorithm to find the least cost path from every node to
node 7 in the following network. Note that some arcs have negative cost.
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Now use Dijkstra’s algorithm on a modified network to solve the all-pairs prob-
lem.

7. Find the maximal flow from node 1 to node 7 in the following network. The
numbers by the arcs are their capacities.

6

6
5

5

3 3

3

22

21 1

4

4

4

7

7

7

2

2



8. A hiker wishes to choose items to take on a journey such that the total value of
the items is at least 9, but the total weight is a minimum. Solve this problem
using a branch and bound approach.

i 1 2 3 4 5
vi 5 5 4 2 3
wi 5 6 3 1 2

9. Let M = {1, 2, . . . , n} be a set of n items and let M1, M2, . . . , Mm be a collec-
tion of m subsets of M . let F be a subset of {1, . . . , m}. We say that a F is
a cover if ∪i∈F Mi = M and say that F is a packing if Mi ∩ Mj = ∅ for all
i, j ∈ F . We are given a weight ci for each Mi, and the weight of F is

∑

i∈F ci.
Let Aij = 1 or 0 as Mi does or does not contain item j. Let xi be 1 or 0 as i is
or is not in F . Express as an integer linear programs the problems of finding:
(a) the cover of minimum weight, and (b) the packing of maximum weight.

Show that the LP relaxation of (a) has the dual problem:

(c): maximize

n
∑

j=1

yj , subject to

n
∑

j=1

Aijyj ≤ ci, for all i, and y ≥ 0.

Suppose all cj are integers. Consider the problem

(d): maximize |S| , subject to S ⊆ M and |S ∩ Mi| ≤ ci for all i ,

where |S| denotes the number of items in S. Show that the solution value to
(d) is never more than the solution value to (a). Can the inequality be strict?

Explain how you could use (d) in a branch and bound algorithm for solving
(a).

10. Use Dakin’s method to solve the following ILP.

maximize z = 8x1 + 5x2

subject to x1 + x2 ≤ 6

9x1 + 5x2 ≤ 45

x1, x2 ≥ 0

x2, x2 integer

You need not carry out iterations of the Simplex method. Rather, explain how
Dakin’s method will proceed by referring to the following plot.
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11. Given these distances between 5 towns, find a minimum spanning tree.

A B C D E
A 9 7 5 7
B 9 9 9 8
C 7 9 7 6
D 5 9 7 6
E 7 8 6 6

By removing town B and finding a minimum spanning tree for the remaining
towns, show that a lower bound on the solution to the travelling salesman
problem for this graph is 9 + 8 + 17 = 34.

Compare this to what you obtain by starting at town A and using a greedy
algorithm (i.e., always visiting the closest town not yet visited).

12. Suppose A is a heuristic for the TSP. Let A(I) be the length of the tour
produced by A on an instance I and let OPT(I) be the length of the optimal
tour. Suppose A is a ǫ-approximation algorithm, running in polynomial time,
so that A(I) ≤ (1 + ǫ)OPT(I), for all I.

Suppose we have a graph G = (N, A), with n nodes, and want to decide if it
contains a Hamiltonian cycle (i.e., a tour that visits every node exactly once).
Let us construct an instance of TSP in which cij = 1 or cij = (1 + ǫ)n as G
does or does not contain the edge (i, j). Show that, applied to this instance,
A(I) ≤ (1 + ǫ)n if G has a Hamiltonian cycle, and A(I) ≥ (n− 1) + (1 + ǫ)n if
G does not. Hence show that A can be used to decide the Hamiltonian cycle
decision problem in polynomial time.

Given that the Hamiltonian cycle decision problem is NP-complete, what do
you conclude about the plausibility that there exists an algorithm like A?
Why does this not contradict our derivation of a 1-approximation algorithm in
Lecture 16?

R R Weber

4


