
Mathematics for Operations Research

Examples 1

1. Consider the following constrained optimization problem.

maximize −2x2
1 − x2

2 + x1x2 + 8x1 + 3x2

subject to 3x1 + x2 = 10 .

Show that the optimal solution is at (x1, x2) = (69/28, 73/28).

2. Use the two-phase simplex method to solve the problem

minimize 4x1 + 4x2 + x3

subject to x1 + x2 + x3 ≤ 2
2x1 + x2 ≤ 3

2x1 + x2 + 3x3 ≥ 3
x1, x2, x3 ≥ 0 .

You should find that the optimum occurs at x = (0, 0, 1).

3. Consider the simplex algorithm applied to a linear programming problem with
feasible set {x : Ax = b, x ≥ 0}. Suppose the rows of A are linearly indepen-
dent. For each of these statements give a proof or counterexample.

(a) A variable that has just left the basis cannot reenter at the very next step.

(b) A variable that has just entered the basis cannot leave at the very next
step.

4. Show that in Phase I of the two-phase simplex method, if an artificial variable
becomes nonbasic it need never become basic again. So as soon as an artificial
variable is nonbasic its column can be eliminated from the tableau.

5. Consider the pair of linear programs: P = maximize {0⊤x : Ax = b, x ≥ 0}
and D = minimize {y⊤b : y⊤A ≥ 0⊤}. Show from first principles that D is
the dual of P .

Show that P is feasible if and only if D is bounded.

Prove Farkas’ lemma, that exactly one of the following must hold:

(a) There exists some vector x ≥ 0 such that Ax = b.

(b) There exists some y such that y⊤A ≥ 0, y⊤b < 0.

1

6. Consider the following integer linear programming problem (ILP)

maximize x1 + 2x2

subject to −3x1 + 4x2 ≤ 4
3x1 + 2x2 ≤ 11
2x1 − x2 ≤ 5

x1, x2 ≥ 0, x1, x2 integer.

Use the simplex method to solve the LP relaxation (i.e., when x1, x2 need not
be integers), showing that the final tableau is

x1 x2 z1 z2 z3

0 1 1/6 1/6 0 5/2
1 0 −1/9 2/9 0 2
0 0 7/18 −5/18 1 7/2
0 0 −2/9 −5/9 0 −7

Argue that in the optimal solution to the ILP we must have x2 ≤ 2.

Use Gomory’s method (with the dual simplex algorithm) to solve the ILP.

7. Show that any instance of the Satisfiability decision problem can be reduced
to an instance of 0–1 linear programming (i.e., a linear program in which every
decision variable must be 0 or 1). Show how this reduction could be made for
the satifiability instance: Is there an assignment of the values ‘true’ and ‘false’
to the boolean variables X1, X2, X3, X4, X5, X6 which makes the following true?

(X1 ∨ X̄2 ∨ X6) ∧ (X̄2 ∨ X̄4) ∧ (X3 ∨ X5 ∨ X6) ,

where ∧ means AND, ∨ means OR, and X̄i means ‘not Xi’. Given that Sat-

isfiability is NP-complete, show that 0-1 integer programming is also NP-
complete.

8. Let G be a graph with n nodes. Consider two problems. Clique: is there a
subset of k nodes with an edge between every two nodes in the subset? Vertex

Cover: is there a vertex cover of size k (i.e., as set of k nodes such that every
edge in G has an endpoint in this subset)? Let G′ be the complement of G,
i.e., G′ has an edge between two nodes if and only if G does not. Show G has
a clique of size k if and only if G′ has a vertex cover of size n − k. Given that
Clique is NP-complete, prove that Vertex Cover is NP-complete.

9. 2-SAT is the decision problem of whether or not it is possible to assign values
of true (T) and false (F) to a set of variables x1, . . . , xk so the following is true

(x11 ∨ x12) ∧ (x21 ∨ x22) ∧ · · · ∧ (xm1 ∨ xm2) (1)
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where ∧ means AND, ∨ means OR, each xij is one of x1, . . . , xk, with or
without a NOT in front of it, and each variable can appear multiple times in
the expression.

Let x̄ denote ‘NOT x’. Suppose we create a graph with vertex set V =
{x1, . . . , xk} ∪ {x̄1, . . . , x̄k}. We put a directed edge (x, y) in the graph iff
(x̄, y) is equivalent to one of the clauses (xi1 ∨ xi2). Show the following.

(a) If (z1, z2) is an edge, so is (z̄2, z̄1).

(b) If x1, . . . , xk take values such that (1) is true then z1 =T must imply
z2 = · · · = zj =T, if there is path in the graph (z1, z2, . . . , zj).

(c) Consider the statement (2) : ‘there exists a variable z such that there is
a path from z to z̄ and a path from z̄ to z’.

(i) Show that if (2) is true then (1) is not satisfiable.

(ii) Show that if (2) is not true then (1) can be made satisfiable by the
following polynomial time algorithm:
Pick an unassigned variable x in some clause. Assign x =T (making
that clause true), and also assign T to all vertices that can be reached
along paths from x. Assign F to the negations of all variables that
are so assigned. Repeat this until all variables have been assigned.
(You must show that the algorithm never sets both y =T and ȳ =T.)

(d) Deduce that 2-SAT∈ P .

10. 3-SAT is like 2-SAT in the previous question, except that the m clauses are
of the form (xi1 ∨ xi2 ∨ xi3). Suppose we construct a graph G with vertex set
{< x, i > : x is in the ith clause}. We place an undirected edge {< z1, i >, <
z2, j >} iff z1 6= z̄2, and i 6= j.

Show that

(a) The 3-SAT instance is satisfiable iff G has a clique of size m.

(b) Consider the Clique decision problem (CDP); Does there exist a clique
of size m in graph G? (i.e., m vertices such that there is an edge between
every pair). Show that if 3-SAT is NP-complete then CDP is NP-
complete.

11. The remaining (optional) questions are for students interested in thinking
about the Hirsch conjecture. Its relevance is to the question of how fast the
simplex algorithm could move from an initial basic feasible solution to an op-
timal one if pivots are luckily chosen so that this happens as fast as possible.

The Hirsch conjecture (1957) concerns polytopes, i.e., convex bodies defined
as P = {x : Ax ≤ b}. Let ∆(d, n) be the maximum diameter of any polytope
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with n facets (sides) in dimension d. The conjecture is that ∆(d, n) ≤ n − d.
It is known to be false for unbounded polytopes. So we restrict attention to
bounded ones. The Hirsch conjecture is known to be equivalent to the d-step
conjecture that ∆(d, 2d) = d. Note that n = 2d is what happens in the cube
{x ∈ R

d : 0 ≤ xi ≤ 1 , i = 1, . . . , d }. It is also equivalent to the conjecture
that if all vertices are the intersection of just d faces then any two vertices can
be joined by a path of length ≤ n−d that does not revisit any face. The Hirsch
conjecture has been proved (for bounded polytopes) for d ≤ 6.

Can you prove the Hirsch conjecture for d = 2?

12. In the assignment problem, we are given m2 numbers {cij}, and are to

maximize

m
∑

i=1

m
∑

j=1

cijxij , such that

m
∑

j=1

xij = 1 , for all i ;

m
∑

i=1

xij = 1 , for all j ; xij ∈ {0, 1} , for all i, j.

Explain why the problem is unchanged if the constraint is changed to xij ∈
[0, 1] for all i, j. (Hint: Lecture 12).

We claim the following facts. You need not prove them; but may think about
why they are true. (i) The extreme points of the feasible set are in 1–1 cor-
respondance with permutations of the set S = {1, . . . , m}. (ii) Two extreme
points are neighbours if and only if the permutations to which they correspond
differ by a cyclic permutation of some one subset of S. E.g. with m = 4,
(1, 2, 3, 4) and (2, 3, 1, 4) are neighbours since (2, 3, 1, 4) = {(1, 2, 3), (4)}, but
(1, 2, 3, 4) and (2, 1, 4, 3) are not neighbours since (2, 1, 4, 3) = {(1, 2), (3, 4)}.

In the assignment problem, n = m2 +2m−1 and d = m2, so the Hirsch conjec-
ture would suggest the diameter is no more than 2m− 1. In fact, the diameter
of the assignment problem polytope is only 2. This remarkable fact was proved
by Balinski and Russakoff (1974). Prove it yourself (more simply than B&R)
by using the following facts. (iii) Every permutation is the product of disjoint
cycles: e.g., p = {(j1, . . . , jn1

), (jn1+1, . . . , jn2
), · · · , (jnk−1+1, . . . , jnk

)}. (iv)
Every permutation is the product of the two cycles: e.g., p is the product of
(jnk

, jnk−1
, . . . , jn1

) and (j1, j2, . . . , jnk
).

Suppose m = 4. Prove that starting at any extreme point it is possible to
reach the optimum extreme point (where

∑

ij cijxij is maximized) in no more
than 2 steps, at each step moving to a neighbouring extreme point at which the
value of the objective function is not less (so the so-called ‘monotone Hirsch
conjecture’ is true for this problem). Is the same true for m = 5?

R R Weber
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