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1 Write an essay on bargaining. Your account should include a description of the
terms jointly dominated, Pareto optimal, bargaining (or negotiation) set, Nash arbitration
procedure and maximin bargaining solution.

2 Consider the optimization problem

min f(x)

subject to h(x) = b, x ∈ X ⊂ Rn, b ∈ Rm. Define the Lagrangian function for this problem
and then state and prove the Lagrangian Sufficiency Theorem. Define the function φ by

φ(b) =
inf f(x)

x ∈ X : h(x) = b.

Define the Strong Lagrangian property and show that the following are equivalent

(1) there exists a non-vertical supporting hyperplane to φ at b

(2) the problem is Strong Lagrangian.

A company is planning to spend £a on advertising. It costs £3,000 per minute
to advertise on television and £1,000 per minute to advertise on radio. If the company
buys x minutes of television advertising and y minutes of radio advertising, its revenue in
thousands of pounds is given by f(x, y) = −2x2−y2 +xy+8x+3y. How can the company
maximise its revenue? Compare the increase in revenue for each additional advertising
pound when a = 1,000 with the case when a = 10,000.
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3 Consider the general class of linear programmes given by

min cT x

subject to Ax = b, x ≥ 0

where x ∈ Rn, b ∈ Rm and where all the entries in A, b and c have absolute magnitudes
bounded by U <∞.

Show that such linear programmes can be reduced to the special form

min c∗T y

subject to A∗y = 0

1T y = 1
y ≥ 0

with the additional properties that

(i) y(0) = (1/n∗, . . . , 1/n∗)T is feasible (where y ∈ Rn∗)

(ii) the optimal value of the objective is zero.

Why is this a useful result?
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4 Consider a network with n nodes and set of arcs A. Let cij > 0 for (i, j) ∈ A be
the length of arc (i, j) and set cij =∞ if (i, j) 6∈ A. Regarding n as the root node, define
the all-to-one shortest path problem. Define the Bellman-Ford algorithm for solving this
problem. Discuss why this is referred to as a label-correcting algorithm.

Define vi to be the shortest path length from node i to node n. Suppose that j 6= n
is a node such that cjn = min

i 6=ncin. Show that vj = cjn and vj ≤ vk for all nodes k 6= n.
Define Dijkstra’s algorithm for the all-to-one shortest path problem. Discuss why this
is referred to as a label-setting algorithm. Apply Dijkstra’s algorithm to the following
network with root node n = 4,

where the numbers beside the arcs denote the arc’s length.

5 The payoff matrix for a two-person non-zero sum game is

II1 II2

I1

I2

(
(3, 8) (4, 4)
(2, 0) (0, 6)

)
Find all equilibrium pairs when considered as a non-cooperative game. Then find

the maximin bargaining solution when the game is considered as a cooperative game.
Which game would II prefer to play?
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6 Consider the game with characteristic function v(1) = 1, v(2) = 2, v(3) =
3, v(1, 2) = 3, v(1, 3) = 10, v(2, 3) = 6 and v(1, 2, 3) = 12.

Define

(a) the set of imputations

(b) the core

(c) the nucleolus

and find them for the game defined above.
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1 Consider the ILP
minimize 3x1 + 4x2

subject to
3x1 + x2 > 4
x1 + 2x2 > 4

x1, x2 > 0
x1, x2 integer

Ignoring the integer constraints, the following tableau gives the optimal solution.

x1 x2 z1 z2

1 0 − 2
5 − 1

5
4
5

0 1 1
5 − 3

5
8
5

0 0 − 2
5 − 9

5
44
5

Explain Gomory’s cutting plane method, illustrating it by showing that from the
above tableau one can deduce that the optimal integer solution must satisfy the additional
constraint

1
5z1 + 2

5z2 > 3
5 .

Use this constraint and the dual simplex algorithm to find the optimal solution to the ILP.

2 Let A be a m × n matrix of integers and let b be a vector in Rm. Let U be the
largest absolute value of the entries of A and b. By using Cramer’s rule or otherwise, prove
that every extreme point of the polyhedron P = {x ∈ Rn : Ax > b} satisfies

−n!Un 6 xj 6 n!Un, j = 1, . . . , n.

Give an account of the ellipsoidal algorithm for the problem of deciding whether or not P
is empty. Describe the inputs to the algorithm and its main steps. You need not derive
any detailed formulae, but you should explain enough so that the role of the above result
is clear.
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3 Define the uncapacitated minimum cost network flow problem.

Define the Lagrangian for this problem. Derive dual feasibility and complementary
slackness conditions that can be used to identify an optimal flow. Decribe how a spanning
tree can be used to calculate a feasible choice of dual variables.

In the network below, the label next to each arc is the cost per unit flow on that
arc, cij . A flow of bi enters at node i, where b1 = 3, b2 = −1, b9 = −2 and bi = 0,
i 6= 1, 2, 9. Find the arc flows, fij , for the basic solution corresponding to the spanning
tree indicated by the dashed lines.

Starting from this basic solution, explain the network simplex algorithm and show
that it finds the optimal flow in one step.

1

4

3

6

4

5

2

8

9

7

3

1

3 1

24

1

1

2

2

2

2

3

2

1

4 Define the terms characteristic function, imputation, core and Shapley value payoffs
as they apply to n-person coalitional games.

Consider a market in which there four participants. Player 1 values his car at 0
and wishes to sell it. Each of Players 2, 3 and 4 wishes to buy the car, and each values it
at 1. Find the characteristic function, core and Shapley value payoffs.

Consider now a market in which there are 4k participants, of which each of k
participants has a car to sell and each of the other 3k participants is a potential buyer of
one car. All cars are identical, of value 0 to sellers and value 1 to buyers. Show that as
k → ∞ the Shapley value payoff of a seller tends to 1 and the Shapley value payoff of a
buyer tends to 0.
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5 An instance of the ∆TSP decision problem is an undirected graph (with all possible
edges present), a nonnegative integer cost cij = cji for each edge {i, j} and a nonnegative
integer L. Edge costs are required to satisfy the triangle inequality. The question is
whether there is a tour whose cost is no greater than L. Show that this problem is in the
complexity class NP.

The ∆TSP evaluation problem is defined on the same instances (but omitting L),
and the problem is to find the length of the shortest tour. Show that there exists a
polynomial time algorithm for this problem if and only if there exists a polynomial time
algorithm for the decision problem.

An instance of HCP is a graph G (with only some of the possible edges present). The
question is whether there exists a tour that visits each vertex exactly once (a Hamiltonian
circuit). Show that if HCP is NP-complete then the ∆TSP decision problem is also
NP-complete.

Given the same data as a ∆TSP evaluation problem, the ∆TSP optimization
problem is to find a minimum length tour; the MST optimization problem is to find
a minimum spanning tree. Show that if there exists a polynomial time algorithm for
the MST optimization problem then there also exists a polynomial time 1-approximation
algorithm for the ∆TSP optimization problem, such that it produces a tour no more than
twice the length of the minimal length tour.

6 Define what is meant by an equilibrium pair for a non-zero-sum two-person game.

State conditions under which at least one equilibrium pair is guaranteed to exist.

Two friends have different preferences for composers. Without consulting one
another, they must each book for one of three possible concerts. They are pleased if
they happen to book for the same concert. This is modelled by a game with the following
payoff matrix.

Bach Mozart Schubert

Bach

Mozart

Schubert


(4, 2)

(0, 0)

(0, 0)

(1, 1)

(2, 4)

(0, 0)

(0, 0)

(0, 0)

(3, 3)


Find all the equilibrium pairs.
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1 Explain the meanings of NP and NP-complete.

A boolean formula in 3-conjunctive normal form is a conjunction (and) of several
clauses, each of which is the disjunction (or) of exactly 3 literals, each of which is either a
variable or its negation. An example is ‘(a or b or c̄) and (ā or b or c)’, where ā denotes
the negation of a. In 3-SAT we are given such a formula and asked to say whether there
exists an assignment of the variables (to ‘true’ or ‘false’) such that the formula is true.
Show that 3-SAT is in NP.

In 3-COLOURABILITY we are given a graph as input and asked to decide whether
it has a 3-colouring. That is, can we colour the nodes with 3 different colours so that every
two nodes that have an edge between them are of different colours? Consider the following
statement: there exists a 3-colouring of the following graph if and only if at least one of
the nodes a, b or c̄ is coloured the same colour as node T . Prove the ‘only if’ part.

X

a

c

b

a

x2

x1

F

x3

x5

x4

T

Given that the ‘if’ part is also true and that 3-SAT is NP-complete, show that
3-COLOURABILITY is NP-complete.

2 Explain what is meant by saying that a polyhedron P is full-dimensional.

Let P = {x ∈ Rn : Ax > b} and assume that A and b have integer entries which
are bounded in absolute value by U . Let

ε =
1

2(n + 1)
[(n + 1)U ]−(n+1)

, Pε = {x ∈ Rn : Ax > b− εe}

where e> = (1, 1, . . . , 1). Show that if P is non-empty, then Pε is full-dimensional.

Give a brief account of the ellipsoidal algorithm for the problem of deciding whether
or not P is empty. Describe the inputs to the algorithm and its main steps. You need not
derive any detailed formulae, but you should explain enough so that the role of the above
result is clear.
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3 Employees 1, 2, 3, 4, are to be assigned to the jobs 1, 2, 3, 4, one person per job.
The cost of assigning person i to job j is aij , where these are elements of the matrix

11 12 18 40
14 15 13 22
11 17 19 23
17 14 20 28


Use the branch and bound method to solve this problem. You should take as a

partial solution an assignment of persons 1, . . . , k to k different jobs, k 6 3, and use as a
lower bound for this partial solution the cost of all the assignments made so far, plus the
sum of the least costs with which each of the remaining unassigned jobs could be assigned
to one of the persons k + 1, . . . , 4 (without requiring each of these jobs to be assigned to
a distinct person). Start with the four partial solutions in which person 1 is assigned to
job 1, 2, 3 or 4.

Explain how assignment problems can be used with a branch and bound approach
to solve the travelling salesman problem.

4 Give an account of Nash’s bargaining game, bargaining axioms and arbitration
procedure.

Consider the two person non-zero sum game with payoffs

II1 II2

I1

I2

(
(2, 4)
(4, 5)

(8, 2)
(2, 3)

)

Find the Nash bargaining solution when the status quo point is taken as the
maximin point.

5 Consider an n-person game in which players have strategies p1, . . . , pn, each of which
may be a mixed strategy. A strategy p∗i for player i is said to be dominant if regardless of
what his opponents do it gives him at least as good a payoff as any other strategy he might
adopt. Show that if p∗1, . . . , p

∗
n are dominant strategies for players 1, . . . , n respectively,

then p∗1, . . . , p
∗
n is a Nash equilibrium.

Consider a sealed-bid auction in which the bidders have symmetric independent
private values. The winner is the highest bidder and he pays the amount of the second
highest bid. Show that a dominant strategy for bidder i is to bid his true valuation.

Suppose, instead, that the winner pays the amount of his own bid. State, or prove
the nonexistence of: (a) a dominant strategy for bidder i; (b) a Nash equilibrium.
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6 Define the notion of an evolutionary stable strategy (ESS) and derive necessary
and sufficient conditions for a strategy x∗ to be evolutionary stable. Use the notation
that e(x,y) is the payoff to a player who uses strategy x against an opponent who uses
strategy y.

Consider the Hawk vs Dove game with payoffs (to the row player) of

Hawk Dove
Hawk
Dove

(
−1
0

2
1

)

Show that the mixed strategy (1
2 , 1

2 ) is evolutionary stable.
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1 Consider the linear program

P : maximizec>x , Ax 6 b and x > 0.

Here c, x ∈ Rn, b ∈ Rm and A is m× n. Derive the dual problem, D.

Prove or provide a counterexample to each of the following.

(a) If P is unbounded then D is infeasible.

(b) If P is infeasible then D is unbounded.

The following is the final simplex algorithm tableau for a linear programming
problem P , in which n = m = 2. Find all the optimal solutions to both the primal
and the dual problems.

What was the original primal problem?

x1 x2 z1 z2

0 1 1
10

1
10 1

1 0 1
20

3
20 2

0 0 0 − 1
2 −3

2 Given a graph (N,A) with flow capacities on the arcs, and nodes s, s′ ∈ N it is
desired to maximize the flow from s to s′. Assuming the theorem that min-cut equals
max-flow, prove that the Ford-Fulkerson algorithm solves this problem.

A total of n teams play in a football league. Thus far in the season team i has won
wi games. Teams i and j are still to play one another in gij games. We want to know if
it is possible for team n to end the season having won more games than any other team.
Explain how this problem can be addressed via a maximum flow problem in which, for
each i 6= j, i, j < n, a node s is connected to a node rij with an arc of capacity gij , each
node rij is also connected to nodes ti and tj with arcs of infinite capacity, and each node
ti is connected to a node s′ with an arc of capacity w∗ −wi − 1 and w∗ = wn +

∑
i<n gin.

Suppose that, regardless of the size of n, every parameter of the problem can be
represented in no more than k bits. Is the problem in P?

3 Write an essay on the minimum spanning tree problem. Carefully explain what
is meant by complexity classes P and NP and prove that the minimum spanning tree
problem belongs to both of these.
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4 Define the terms characteristic function and core of a cooperative game.

In the network below the five directed links between pairs of nodes A, B, C, D are
owned by three communications companies i, j and k, as marked. The maximum number
of units of data flow that can be carried on each link is shown by an integer beside the
link. Customers will pay £6000 per unit of data flow from A to D (irrespective of the path
it takes) and £4000 per unit of data flow from B to C. By formulating an appropriate
minimum cost network flow problem, show that the maximum possible revenue is £22000.

A

B

C

D

i
3

j
1

1

j

2

i

k 2

The companies are trying to reach an agreement about how much data traffic should
be carried and how the resulting revenue should be shared. Specify by a set of constraints
all the ways that they could share the revenue of £22000 such that no subset of companies
would have any incentive to prefer operating without the others.

Viewing the above as a cooperative game, find the nucleolus.

5 40 jobs are to be processed sequentially on a single machine in some order. The
processing time of job i is ti. If job i is the first job to be processed on the machine then
a time si will be required to set up the machine. If job j immediately follows job i then a
time sij will be required to change tools on the machine. Show how the problem of finding
the schedule that minimizes the time to complete all the jobs can be formulated as a 0–1
linear programming problem.

Describe how you could address this problem by

(a) a branch and bound algorithm, and the solution of a sequence of assignment
problems;

(b) a simulated annealing algorithm, using a 2-opt heuristic.

Suppose now that three machines are available to work on the jobs in parallel.
Suggest a strategy for tackling this problem.
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6 Consider a n-person game in which each player has a finite number of pure
strategies. Define what is meant by a Nash equilibrium.

Show that a Nash equilibrium in pure strategies may not exist.

50000 students are applying to 50 universities. The students can be ranked
1, . . . , 50000 and each student knows his own rank. Each student is permitted to apply
to exactly one university. Once all applications are in, each university accepts up to 1000
students, choosing those with the greatest ranks amongst all those who apply. An accepted
student obtains a benefit equal to the average rank of those students who are accepted
at his university. A student who is not accepted obtains benefit 0. Show that there are
exactly 50! different Nash equilibria in pure strategies.

Suppose now that we allow mixed strategies. Does this lead to 0, 1, or more than
1, further Nash equilibrium?
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1 Use the dual simplex algorithm to solve the problem:

minimize 2x1 + 15x2 + 18x3

subject to

−x1 + 2x2 − 6x3 6 −10
x2 + 2x3 6 6

2x1 + 10x3 6 19
−x1 + x2 6 −2

x1, x2, x3 > 0 .

Now use Gomory’s cutting plane method to solve the problem when x1, x2, x3 must be
integers.

2 Let FP denote the feasibility problem: ‘Is the set P = {x : Ax > b, x ∈ Rn}
nonempty?’ Here A is a m × n matrix, where m > n, and the components of A and b
are integers with absolute values no more than U . How many bits are needed to state an
instance of FP?

Show that if P is nonempty then there exists x ∈ P such that each component of x
can be written as the quotient of two integers, each of which is in absolute value no more
than (nU)n.

Deduce that FP is in complexity class NP.

Assuming that the ellipsoid algorithm can solve FP in polynomial time, prove that
there exists a polynomial-time algorithm for the problem: minimize c>x, Ax > b.

3 State and prove Nash’s theorem concerning the existence of an equilibrium in a
two-person non-zero-sum game. You may assume the Brouwer Fixed Point Theorem.
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4 State a formula for the Shapley values of a coalitional game. What axioms do they
satisfy?

Show that if each player receives a payoff equal to his Shapley value then it is true
to say: ‘The payoff I lose if you leave the game is equal to the payoff you lose if I leave
the game.’

Suppose agent i knows about a set of books Bi. If a set of agents S pool what they
know then their payoff is the number of books about which they collectively know, i.e.,∣∣⋃

i∈S Bi

∣∣. Show that the game is superadditive and the core is nonempty only if the sets
B1, . . . , Bn are disjoint.

Show that agent i has Shapley value xi =
∑

b∈Bi
|{k : b ∈ Bk}|−1.

5 Consider the undirected graph below, with integer-valued capacities marked on its
edges. It is desired to find the maximum flow between s and t. Show that, depending on
choices made, the Ford-Fulkerson algorithm might take as few as 2 or as many as M + 1
steps to terminate.

M

M

M

M

ts

1

2

1

Suppose that in a certain undirected graph G with integer-valued edge capacities
(cij) the maximum possible flow between nodes s and t is f∗. Let (xij) be a feasible flow
that sends flow of f from s to t, where xij is the flow from i to j along edge {i, j}. Let the
‘residual graph’ be obtained by supposing edges are directed and the capacities are set to
c′ij = cij − xij + xji. By using the fact that the minimum cut equals maximum flow show
that the maximal flow possible between s and t in the residual graph is f ′ = f∗ − f .

Let m be the number of edges of G. Let U be the set of nodes in the residual graph
that can be connected to s by a path of capacity of at least f ′/m. Show that t ∈ U .

A modified Ford-Fulkerson algorithm adds the rule that whenever flow might be
increased on more than one path from s to t then we choose a path on which the greatest
increase can be made. Show that after k steps of this algorithm the maximal flow possible
from s to t in the residual graph is no more than (1− 1/m)kf∗.

Hence prove that this algorithm terminates in O
(
m log(f∗)

)
steps.
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6 In a certain a sealed-bid auction bidders compete for a single item. The winner is
the highest bidder and he pays the second highest bid. Show that it is a Nash equilibrium
for each bidder to bid his valuation.

Explain what is meant by an auction with symmetric independent private values
(SIPV).

Suppose a SIPV auction has n bidders whose valuations are uniformly distributed
on [0, 1]. Show that if the winner must pay his own bid then it is not a Nash equilibrium for
bidders to bid their valuations, but that it is a Nash equilibrium for them to bid (n−1)/n
times their valuations.

END OF PAPER

Paper 40



MATHEMATICAL TRIPOS Part III

Thursday 1 June 2006 1.30 to 4.30

PAPER 38

MATHEMATICS OF OPERATIONAL RESEARCH

Attempt FOUR questions.

There are SIX questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury Tag
Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1 Consider the linear programming problem:

maximize 4x1 + 2x2 + x3

subject to
x1 6 5
4 x1 + x2 6 25
8 x1 + 4 x2 + x3 6 125

and x1, x2, x3 > 0. Solve this with the simplex algorithm, starting from x = (0, 0, 0),
and using the rule that whenever there is a choice as to which variable should next enter
the basis it should selected as the one that produces the greatest increase in the objective
function per unit increase in that variable.

Is there a pivot selection rule under which the problem would have been solved
more quickly?

Discuss the worst-case running time of the simplex algorithm.

2 Explain what is meant by the minimum-cost flow problem.

A project of n tasks is to be completed as quickly as possible. We may work
on more than one task at the same time, but we are subject to precedence constraints
expressed in the matrix a = (aij), such that if aij = 1 we may not start task j until task i
is complete; otherwise aij = 0 and there is no precedent constraint between i and j. Task
i has processing time τi, i = 1, . . . , n. Let ti be the earliest time at which task i can be
started. Formulate as a linear program the problem of minimizing tn+1− t0, where t0 and
tn+1 are the times at which the project starts and finishes.

Show that the dual LP can be expressed as an uncapacitated minimum cost flow
problem on a graph (N,A) where (i, j) ∈ A if and only if aij = 1 and the cost on arc (i, j)
is cij = −τi.

Illustrate an algorithm that can be used to solve any minimum cost flow problem by
applying it to the project of 6 tasks defined by the following data. Start your explanation at
a basic feasible solution corresponding to the tree with arcs {(0, 1), (2, 4), (4, 5), (5, 7), (4, 6),
(1, 3), (3, 5)}.

a =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 , τ = (3, 4, 5, 6, 4, 3).
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3 Explain in terms of the theory of computational complexity what it means to say
that a problem Π is no harder than another problem Π′.

Let A be the m×n payoff matrix for a two-person zero-sum game in which players
1 and 2 have m and n pure strategies respectively. Given A and a number V , let Π be the
problem of determining whether the value of the game equals V . Sketch an argument to
show that if P 6= NP then Π is not NP-hard.

In an instance of the Subset Cover Problem, SCP, we are given subsets S1, . . . , Sm

of S = {1, . . . , n}, and a number k < m, and ask ‘Are there k of these subsets whose
union is S?’ Consider the non-zero-sum game in which if player 1 plays pure strategy
i ∈ {1, . . . ,m} and player 2 plays pure strategy j ∈ {0, 1, . . . , n}, the payoff is

((e1(i, j), e2(i, j)) =


(1, 1) j = 0,
(1, 0) j > 1 and j ∈ Si,
(0, k

k−1 ) j > 1 and j 6∈ Si.

Show that if and only if the answer to the SCP instance is ‘Yes’ does there exist an
equilibrium in which player 1 randomizes with positive probabilities over just k of his pure
strategies.

Comment on the difficulty of computing all equilibria of a two-person non-zero-sum
game.

4 List the assumptions of a symmetric independent private values (SIPV) auction.

State the revenue equivalence theorem.

Let e(p) denote the minimal expected payment that a bidder can make if he wishes
to win an SIPV auction with probability p. Suppose that when a bidder with valuation
v seeks to maximize his expected profit he does so by choosing p = p(v) as a stationary
point of his expected profit function. Show that

de(p)
dp

∣∣∣
p=p(v)

= v,
de(p(v))

dv
= v

dp

dv
, and e(p(v)) = vp(v)−

∫ v

0

p(w) dw .

Consider a ‘lowest-price auction’ amongst n bidders in which the highest bidder
wins but he pays only the lowest bid. Assume that bidders’ valuations are independent
and uniformly distributed on [0, 1]. Show that, at the equilibrium, the seller’s expected
revenue is (n− 1)/(n + 1).

Suppose that when n = 3 there exists a contant A such that it is optimal in
equilibrium for a bidder with valuation v to bid Av. Find A.
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5 Define the meaning of an equilibrium in a multi-person game.

In a small town there are just 3 residents. A proposition regarding taxes is favoured
by residents B and C, but opposed by A. It will be passed in a ballot if and only if it
receives more votes in favour than against. Each resident has a cost of going to the polls
to vote of 3c. If the proposition passes, each of B and C will gain by 4c and A will lose
8c. Suppose A decides to go to the polls with probability α and each of B and C go
independently with probability β.

Find a condition that must be satisfied by β if there is to be an equilibrium with
0 < α < 1.

Show that there is an equilibrium of α = 1, β = 3/4.

Is this the only equilibrium?

6 Describe the methodology of branch and bound algorithms.

Consider an assignment problem in which four machines, a, b, c, d are to be assigned
to four tasks 1, 2, 3, 4 at minimal cost. The costs of assigning machines to tasks are given
in the matrix below. At the first stage of a branch and bound algorithm there are four
branches, in which machine a is assigned to either task 1, 2, 3 or 4. If machine a is assigned
to task 2, then a lower bound is computed by adding this cost (12) to the minimum costs
with which each of the unassigned jobs, 1, 3, 4, can be assigned to some unassigned
machine, e.g., 11, 13, and 22, respectively, for a total lower bound of 58. Branches from
this node, are those for which machine b is assigned to jobs 1, 3, or 4. In the branch in
which machine b is assigned to task 1 we would have a lower bound of 12+14+19+23 = 68.
Using a branching rule that branches on the node with least lower bound, complete the
branch and bound algorithm that is begun in the figure below, and find the optimal
assignment.

1 2 3 4
a 11 12 18 40
b 14 15 13 22
c 11 17 19 23
d 17 14 20 28

a=1 a=2 a=3 a=4

60

b=1 b=3 b=4

58

65 7858

5968 64

c=1 c=4

64 65

END OF PAPER

Paper 38



MATHEMATICAL TRIPOS Part III

Monday 4 June 2007 9.00 to 12.00

PAPER 40

MATHEMATICS OF OPERATIONAL RESEARCH

Attempt FOUR questions.

There are SIX questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Cover sheet None
Treasury Tag
Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1

Use the simplex algorithm to solve the problem

maximize x1 + x2 subject to

x1 − x2 > -- 2
x1 + 2 x2 6 8

2 x1 + x2 6 8
x1, x2 > 0

Suppose we now add to this problem the constraint that x1 and x2 must be integers.
Use Gomory’s cutting plane method and the dual simplex algorithm to find all the optimal
solutions. Carefully explain the rationale for any new constraints that you introduce.

2

Discuss the representation of the travelling salesman problem as an integer linear
programming problem. Show that if there are n cities and all intercity distances are
integers that are at most 2n, then the travelling salesman problem can be expressed as an
integer linear program with size of O(n3) bits.

Define the class of decision problems NP-complete.

Show that if travelling salesman decision problems are NP-complete then integer
linear programming decision problems are also NP-complete.

3

Consider the problem ‘Is the polyhedron P = {x ∈ Rn : Ax > b} nonempty?’
Suppose it is known that if P is nonempty then it is contained within the ellipsoid
E = E(z,D) = {x : (x − z)>D−1(x − z) 6 1} . Show that if z 6∈ P and P is non-
empty then P must be contained in the intersection of E and some half space H .

Suppose D is the n×n identity matrix, H = {x : x1 > 0} , and e1 = (1, 0, . . . , 0)} .
Given that

E′ = E

(
e1

n + 1
,

n2

n2 − 1

(
I − 2

n + 1
e1 e>1

))
is an ellipsoid containing E ∩ H , show that the volume of E′ is less than e−1/(2(n+1))

times the volume of E . You may use the fact that the volume of E (z,D) is proportional
to

√
det(D).

Briefly discuss the importance of the above result in constructing a polynomial time
algorithm for linear programming.
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4

Explain what is meant by the characteristic function of a coalitional game. Why is
the characteristic function always a superadditive function?

A company is bankrupt and owes three creditors amounts of money c1 = 4 , c2 = 6 ,
c3 = 9 (in 10000 s of pounds). Unfortunately it has assets of only a = 15 . A liquidator
proposes to divide these assets so that creditors 1, 2 and 3 receive x1 = 8/3 , x2 = 14/3
and x3 = 23/3 , respectively.

For the characteristic function defined by

v(S) = max

 0 , a−
∑
i 6∈S

ci

 , S ⊆ {1, 2, 3} ,

and x = (x1, x2, x3) , determine which of the following are true. Your answer should
include definitions of ‘Pareto optimal’, ‘Shapley value’, ‘nucleolus’ and ‘core’.

(a) x is Pareto optimal.

(b) x1, x2, x3 are Shapley values.

(c) x is the nucleolus.

(d) x is in the core.

Paper 40 [TURN OVER



4

5

A seller is preparing to sell a used car. He knows that there are just 2 potential
buyers. He considers 3 methods of selling.

(a) He offers the car at price p and waits to see if anyone buys it.

(b) He conducts an oral ascending price auction, selling the car to the highest bidder,
who must pay his bid.

(c) He modifies (b) by accepting no bid less than his reserve price r . A buyer can win
only if he is the highest bidder and bids more than r . The winner (if any) pays his
bid.

Suppose that the buyers have independent private valuations of v1 and v2 , where a
priori these can be modelled as independent uniform random variables on [0, 1] (measuring,
perhaps, fractions of 2000 pounds). Assuming that the seller chooses p and r optimally,
determine his expected revenue under each selling method. Which is best?

Explain why the fact that the expected revenue differs under (b) and (c) does not
contradict the revenue equivalence theorem for SIPV auctions.

6

Given a set of n items, with positive weights {w1, w2, . . . , wn}, we wish to find the
least y such that the items can be placed in 2 bins and the total weight in each bin is no
more than y .

(a) Formulate the problem as an integer linear programming problem.

(b) Define the notion of an ε–approximation algorithm for a minimization problem.

Let s =
∑

i wi and wmax = maxi wi . Consider an algorithm in which we place
the items in the bins in the order 1, 2, . . . , n , always placing an item in a bin
that presently contains the least total weight. Show that just before it receives
item j , the bin which receives item j contains total weight that is no more than
(1/2)(s− wj) (for any j). Deduce that the algorithm achieves y 6 s/2 + wmax/2 .
Hence determine the least ε for which this algorithm can be claimed to be an
ε–approximation algorithm.

Hint: consider an example of 3 items, with weights 1, 1 and 2.

(c) Using the bin-packing problem above to illustrate your ideas, discuss other means
of obtaining approximate solutions to combinatorial optimization problems.

END OF PAPER
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2

1 Let P be the linear programming problem: maximize {c>x : Ax 6 b, x > 0},
where x, c ∈ Rn, b ∈ Rm and A is m× n. What is its dual, D?

Explain why the following are true.

(a) If P is feasible then D is bounded.

(b) If P is feasible and bounded then D is feasible and bounded.

Suppose that the polytope Π = {x : Ax 6 b, x > 0} is empty. Show that there
exists some λ > 0 such that λ>A > 0> and λ>b = −1.

Let Π(ε) = {x : Ax 6 b + εe, x > 0}, where e> = (1, . . . , 1) and ε > 0. Given
that Π = Π(0) is empty, and λ is as above, show that Π(ε) is empty for all ε such that
0 6 ε < 1/

∑
i λi.

Explain the relevance of this result to the theory of the ellipsoid algorithm.

2 The Klee-Minty polytope in R3 is the intersection of the six halfspaces on which
x = (x1, x2, x3) satisfies the following constraints, for given ε, 0 < ε < 1/2:

x1 > 0 ,
x1 6 1 ,
x2 > εx1 ,

x2 6 1− εx1 ,

x3 > εx2 ,

x3 6 1− εx2 .

This polytope, P , has six facets, which are respectively indexed as 1, 2, . . . , 6, as they lie on
a boundary of each of the above six halfspaces. The vertex at the intersection of the first,
third and fifth facets is v0 = (0, 0, 0). Bland’s pivot rule says that at each successive step
of the simplex algorithm the solution should move from the current vertex of the feasible
set to an adjacent vertex; the objective function value should increase, and if there is
more than one adjacent vertex at which that value increases then we should pick the one
that we move to along the edge that is leaving the facet of smallest index. It is desired
to maximize x3 over P . Show, using a picture, the steps taken by the simplex algorithm
under Bland’s rule, starting from v0.

Discuss the worst-case running time of the simplex algorithm under Bland’s rule.

Show that there are examples of linear programs, in decision variables x ∈ Rn, and
with 2n constraints, in which it takes at least n pivots to move from an initial solution to
the optimum, no matter how the pivots are chosen.

An alternative to Bland’s pivot rule is Dantzig’s rule, in which we are to move to
an adjacent vertex along an edge for which the rate of increase in the objective function
is greatest. Describe how to modify P to show that there is a similar example for which
Dantzig’s rule is inefficient.
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3 Describe the minimum cost flow problem.

Explain how one can use the Lagrangian sufficiency theorem to identify an optimal
solution by means of node numbers.

A network has nodes N = {1, 2, 3, 4} and directed arcs A = {(1, 2), (2, 3), (3, 4),
(4, 1)}. Nodes 1, 3 and 4 are sources, for flow amounts 1 each. Node 2 is a sink, for flow of
amount 3. The minimum permitted flows on arcs (1, 2), (2, 3), (3, 4), (4, 1) are 3, 2, 2, 0,
respectively; the maximum permitted flows are 8, 5, 5, 8, respectively. The costs per unit
flow on these arcs are c12, c23, c34, c41, respectively. Show that there is a feasible solution
in which arc (2, 3) carries flow of 2.

Derive a condition in terms of c12, c23, c34, c41 under which this is the minimum
cost flow.

Use the network simplex algorithm to find the minimum cost flow for all possible
values of the four cost variables {cij}, cij ∈ (−∞,∞).

Determine the numbers of (i) basic solutions, and (ii) basic feasible solutions to
this problem.

4 Let G = (V,E) be an undirected graph. Edge e has weight we and the edge weights
are distinct, say w1 < · · · < w|E|. Let S be a nonempty proper subset of V , and let edge
e = (u, v) be a edge of least weight that has one end in S and the other end in V \ S.
Prove that every minimum spanning tree must contain the edge e.

Use the above result to prove that a minimum spanning tree can be found both
by Prim’s algorithm (which you should state), and by Kruskal’s algorithm (in which we
build a spanning tree by successively considering edges in order of increasing edge weight,
inserting an edge if this does not create a cycle).

Is the minimum spanning tree unique?

Let C be a cycle in G, and let the edge e = (v, w) be the edge in C of maximum
weight. Prove that no minimum spanning tree can contain e. Use this to prove that the
minimum spanning tree problem can also be solved by a ‘reverse Kruskal’s algorithm’, in
which we start with the full graph (V,E) and then successively consider edges in order of
decreasing weight, deleting an edge if this does not disconnect the graph.
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5 Describe how to formulate the decision travelling salesman problem (TSP) as a 0–1
integer linear programming problem.

Carefully explain what it means to say that decision TSP is NP-complete.

In ‘decision Max-TSP’ the aim is to decide where there is a tour of length greater
than some given L. Given that TSP is NP-complete, show that Max-TSP is also NP-
complete.

Find a polynomial time 1/2-approximation algorithm for a Max-TSP optimization
problem, that is, an algorithm that produces a tour with length no less than 1/2 the
optimum. Hint: obtain an upper bound for the Max-TSP problem from the solution to
an assignment problem, and then modify this solution so that a single tour is obtained.

6 Define the notion of a Nash equilibrium in a n-person, nonzero-sum game.

A ‘symmetric game’ is one in which the same strategies are available to all players
and the payoff that a player obtains when playing a particular pure strategy depends only
that strategy and the strategies that other players employ, not on the identities of who
plays them. A symmetric equilibrium is one in which all players use the same strategy,
possibly mixed. Let e(i, p) be the expected payoff to a player who plays pure strategy i
against opponents who independently each use the same mixed strategy, which randomizes
over k pure strategies with probabilities p = (p1, . . . , pk). Let e(p) =

∑k
i=1 pie(i, p). Prove

that at least one symmetric equilibrium is guaranteed to exist. You may assume the
Brouwer fixed point theorem.

In a ‘least unique bid auction’ bidders are required to make their bids from a set
of values, say {1, 2, . . . , k} and the winner is the one who makes the least unique bid. The
winner pays his bid and obtains the object, which is worth V . If there is no unique bid
then there is no winner. Consider such an auction, with 3 bidders, k = 2 and V = 3. Find
all the symmetric equilibria.

What is the number of nonsymmetric equilibria?

END OF PAPER
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1 Mathematics of Operational Research
Given vectors b, c and m× n matrix A = (aij), and S ⊆ {1, . . . ,m} define P (S) as

the linear program

maximize c⊤x ,

such that x > 0, and
n∑

j=1

aijxj 6 bi , for all i ∈ S .

It is desired to find the optimal value of P ({1, . . . , k}) for all k ∈ {1, 2, . . . ,m} for which
there exists a feasible solution. Starting with P ({1}), and then proceeding from its
solution, use the dual simplex algorithm to solve this problem for the data

c⊤ = (1, 1, 1, 1) , A =


1 2 3 4
2 1 2 3

−1 −1 −4 −5
0 1 2 2
4 2 0 6

 , b =


5

11
−6

1
20

 .

Consider the problem, having input data of arbitrary b, c, A and k, as follows:

Does there there exist a set S of size k such that P (S) is feasible?

Explain why this problem is likely to beNP-complete.
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2 Mathematics of Operational Research
Suppose we are given a graph G = (V,E), having n vertices and m edges. We are

also given a set of edge weights {ce, e ∈ E}, and a number k, all of these being integers
in the range 1 to 100. For fixed vertices s and t, let Π be the set of all paths from vertex
s to vertex t. A set of edge numbers {xe, e ∈ E} is said to be feasible if∑

e∈E

cexe 6 k,∑
e∈p

xe > 1 , for all p ∈ Π,

0 6 xe 6 1 , for all e ∈ E.

It is desired to determine whether or not the feasible set, P , is not empty.

Show that the number of constraints in a general instance of this problem is not
bounded by any polynomial function of n and m.

Show that if P is not empty, then it must be contained in a m dimensional sphere
of volume no more than O(200m).

Explain how you could use the ellipsoid algorithm to solve this problem, so that the
worst-case running time is bounded by a polynomial in n. You may state without proof
facts about the algorithm.

Explain how you will solve the problem of checking (in polynomial time) whether or
not the point zt at the centre of an ellipsoid E(zt,Dt) satisfies the constraints.
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3 Mathematics of Operational Research
Suppose that n facilities are to be placed at n locations, with one facility per location.

A feasible solution can be associated with π, a permutation of I = {1, . . . , n}, which
dictates that facility i be assigned to location π(i). In the quadratic assignment problem
(QAP) the data are matrices A = (ai,j) and B = (bi,j), and we wish to find

OPT = min
π

f(π) ,

where

f(π) =
∑

i

∑
j : j 6=i

ai,jbπ(i),π(j) .

Assuming that the travelling salesman problem is NP-complete, show that QAP is NP-
complete.

Define
ℓi,k = min

π

∑
j : j 6=i

ai,jbk,π(j)

where π is a one-to-one mapping of I−{i} to I−{k}. Let Πk be the subset of permutations
of I in which π(1) = k. Define

g(Πk) = min
π∈Πk

∑
i

ℓi,π(i) .

Explain why g(Πk) is a lower bound on minπ∈Πk
f(π).

What algorithm could you use to find g(Πk)?

In a QAP with n = 3, suppose A, B, and L = (ℓi,j) are

A =

 · 2 7
2 · 4
7 4 ·

 , B =

 · 5 3
5 · 4
3 4 ·

 , L =

 31 38 29
22 26 20
41 48 37

 .

Use a branch and bound algorithm to find OPT. You should initially partition the solution
space into three sets, Π1, Π2 and Π3.
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4 Mathematics of Operational Research
(a) Describe three heuristic methods for finding good solutions to NP-hard prob-

lems. Say how these might be applied to the following problem.

‘Winner Determination Problem’ (WDP): A set of bidders, M = {1, . . . ,m}, is
bidding for a set of items, N = {1, . . . , n}. For each subset S ⊆ N , bidder i makes a
nonnegative bid, say vi(S). Having received all bids, the auctioneer wishes to partition the
items into disjoint subsets, S1, . . . , Sm, which he can assign to bidders 1, . . . ,m respectively,
to obtain

Opt(v) = max
S1,...,Sm

∑
i∈M

vi(Si) .

(b) Now suppose that all vi are increasing and submodular. This means that for all
j, S and T with j 6∈ S and S ⊆ T ⊆ N ,

0 6 vi(T + {j}) − vi(T ) 6 vi(S + {j}) − vi(S) .

The following heuristic algorithm is proposed for WDP.

0. Set Si = ∅ for all i ∈ M, and S0 = N.

1. Find i ∈ M and j ∈ S0 such that vi(Si + {j}) − vi(Si) is maximal. Let
Si := Si + {j} and S0 := S0 − {j}.

2. Repeat step 1 until S0 = ∅.
3. Return the solution S1, . . . , Sm, and A(v) =

∑
i vi(Si).

Use induction on n to prove that this is a polynomial time approximation algorithm
such that A(v) > 1

2 Opt(v).

Hint. Without loss of generality, suppose that the algorithm begins by allocating
item n to player m. Consider a new problem in which items {1, . . . , n − 1} are to be
allocated, with bids

v′i(S) = vi(S) , i ∈ {1, . . . ,m− 1}
v′m(S) = vm(S + {n})− vm({n})

You may assume that vi submodular implies v′i submodular. Start by showing that A(v) =
vn({m}) + A(v′). Then, by considering an allocation that achieves Opt(v) and modifying
it by reallocating item n to bidder m (if it is not already so allocated), show that Opt(v′) >
Opt(v)−2vm({n}).
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5 Mathematics of Operational Research
Explain what is meant by a Nash equilibrium in a n person non-zero sum game.

State conditions under which a Nash equilibrium is guaranteed to exist.

In the road network below each of n players wishes to choose a route from A to D.
Each player experiences a delay that is the sum of the delays on the links of his route.
There is a delay of 1 + x/100 on link AB when x players use that link, and a delay of
1 + y/100 on link CD when y players use that link. The delays on links AC, BD and BC
are 2, 2, and 1/4.

A

B

C

D

2

2

1
4

1 +
x

100

1 +
y

100

Give, in its simplest form, a set of necessary and sufficient conditions for there
to be a Nash equilibrium in which n1, n2 and n3 players travel on routes ABD, ACD
and ABCD respectively. Hence show that when n = 100 there is an equilibrium at
n1 = n2 = 25, n3 = 50.

Is this the only equilibrium in pure strategies?

Show that it would be possible for the players to follow routes that make them all
better off, but that this is not a Nash equilibrium.

Find a symmetric equilibrium, i.e., one in which all players use the same strategy.
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6 Mathematics of Operational Research
Explain what is meant by the characteristic function, v, of a coalitional game with

a set of players N = {1, . . . , n}.
Describe the Shapley value and say what makes it an attractive solution concept.

A game is said to be convex if its characteristic function satisfies

v(S + {i}) − v(S) 6 v(T + {i}) − v(T ) , for all S ⊂ T ⊆ N and i 6∈ T .

Suppose (v,N) is convex and let φ(v,N) = (φ1(v,N), . . . , φn(v,N)) be the vector of its
Shapley values. Consider the game (v, T ) where T ⊂ N . This is the game in which only
players in subset T participate. Show that φi(v,N) > φi(v, T ) for all i.

Hence show that φ(v,N) lies in the core of the game (v,N).

A firm consists of an entrepreneur and his workers. The firm cannot operate without
the entrepreneur. For any nonnegative integer k, the entrepreneur and k workers can
produces profit p(k) that can be shared amongst them. Assuming the firm has n workers,
use the Shapley value to calculate an expression for the ‘fair’ wage of a worker.

What is this fair wage when p(k) = αk?

Prove that if p(k) is a convex nondecreasing function of k then the Shapley value
lies within the core of this game.

END OF PAPER
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2

1 Consider the optimization problem

Minimize f(x)

subject to h(x) = b

over x ∈ X ,

where X ⊂ R
n and b ∈ R

m. Define the Lagrangian function for this problem and then
state and prove the Lagrangian Sufficiency Theorem. Define the function φ by

φ(b) = inf
x∈X

{f(x) : h(x) = b} .

Define the Strong Lagrangian property and show that the following are equivalent:

(a) there exists a non-vertical supporting hyperplane to φ at b;

(b) the problem is Strong Lagrangian.

Minimize f =
∑

vi x
−1

i
in x > 0 subject to

∑
ai xi 6 b where ai, vi > 0 for all

i and b > 0 . [In this example f is the variance of an estimate derived from a stratified
sample survey subject to a cost constraint: xi is the size of the sample for the ith stratum,
the ai and vi are measures of sampling cost and of variability for this stratum.]

Check that the change in the minimal variance f for a small change δb in available
resources is λδb where λ is the Lagrange multiplier.
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2

(a) A Company wishes to maximize its profit by solving the optimization problem

Maximize 3x1 + 4x2

subject to x1 + 2x2 6 6
2x1 + x2 6 6

over x1 > 0 , x2 > 0 .

Use the simplex algorithm in tableau form to solve this linear problem.

(b) Subsequently the Company realises it has forgotten to include an additional
constraint

4x1 + 4x2 6 15 (1)

Use the dual simplex algorithm on the simplex tableau derived from part (a) to solve the
linear program

Maximize 3x1 + 4x2

subject to x1 + 2x2 6 6
2x1 + x2 6 6
4x1 + 4x2 6 15

over x1 > 0 , x2 > 0 .

(c) Later the Company forms an agreement to sell slack in the constraint (1).
Justifying any alteration made, alter the simplex tableau derived from part (b) and use
the simplex algorithm to solve linear program

Maximize 3x1 + 4x2 + y

subject to x1 + 2x2 6 6
2x1 + x2 6 6
4x1 + 4x2 + y = 15

over x1 > 0 , x2 > 0 , y > 0 .
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3

(a) State and prove the Max-Flow Min-Cut Theorem.

(b) Use the Ford-Fulkerson Algorithm to calculate a maximum flow between a source
at node 1 and a destination at node 8 in the following network.

Here the number by each arc represents the capacity of that arc. What is the min-cut of
this network?

(c) Starting from the given feasible solution, minimize the cost of flows in the
transportation problem given by the following tableau.

[Note: In this tableau the circled numbers indicate an initial feasible set of non-zero flows,
the numbers in the squares are the costs, the numbers to the right of the tableau are
supplies and the numbers below are demands.]

Part III, Paper 35



5

4

Consider the Boolean formula with N clauses

(x11 ∨ x12 ∨ . . . ∨ x1M1
) ∧ (x21 ∨ x22 ∨ . . . ∨ x2M2

) ∧ . . . ∧ (xN1 ∨ . . . V xNMN
) (1)

where xij ∈ {X1, . . . , XK} ∪ {X̄1, . . . , X̄K} . Here ∧ means “AND” and ∨ means “OR”
and X̄ means “NOT X”.

The SAT problem considers the assignment of variables, Xi ∈ {true, false} ,
i = 1, 2, . . . , K such that (1) is true.

The MAX-SAT problem considers the assignment of variables such that the maxi-
mum number of clauses in (1) are true.

Express the SAT problem as an integer linear program.

Express the MAX-SAT problem as an integer linear program.

Consider the following approximation algorithm for MAX-SAT.

Greedy : Pick the variable z ∈ {X1, . . . , XK} ∪ {X̄1, . . . , X̄K} that occurs in the
largest number of clauses in (1). Set z true and z̄ false. This reduces formula (1) to an
expression on K − 1 variables. Repeat until no variables remain.

Show that Greedy is a 1

2
-approximation of MAX-SAT.

[Recall: Algorithm H with solution αH is an ǫ-approximation to a maximization
problem with optimal solution α∗ if for all problem instances,

αH > (1 − ǫ)α∗. ]
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For a coalitional game, explain what is meant by the characteristic function, an
imputation and the core.

(a) A group of n miners have discovered large and equal sized lumps of gold. Two
miners can carry one lump, so that the payoff of a coalition S is

v(S) =

{
|S|/2 if |S| is even

(|S| − 1)/2 if |S| is odd .

Determine the core in the cases where n is even and where n is odd.

Determine the core if it require three miners to carry one lump.

(b) A pair of shoes consists of a left shoe and a right shoe, and can be sold for £10.
Consider a coalitional game with a + b players: a of the players have one left shoe each,
and b of the players have one right shoe each. Determine the core for each pair of positive
integers (a, b).
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Let X be a convex set of strategies. Recall that a strategy x∗ ∈ X is an evolutionary
stable strategy (ESS) if for every y ∈ X, y 6= x∗ then

e(x∗, x̄) > e(y, x̄)

where x̄ = (1− ǫ)x∗ + ǫy for sufficiently small ǫ > 0 . Briefly discuss the interpretation of
e(. , .), x∗ and y in this definition.

Show that a strategy x∗ is an ESS if and only if for every y ∈ X, y 6= x∗

e(x∗, x∗) > e(y, x∗)

and if e(x∗, x∗) = e(y, x∗) then
e(x∗, y) > e(y, y) .

Suppose that a strategy x ∈ X is a mixture (p, 1 − p) of the two pure strategies
“Hawk” = (1, 0) and “Dove” = (0, 1) and that for the pure strategies the pay off matrix is

(
Hawk Dove

Hawk 1

2
(V − D) V

Dove 0 1

2
V

)

Find an ESS when

(i) V > D ,

(ii) V = D ,

(iii) V < D ,

justifying your answer in each case.

END OF PAPER
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1

(a) Define, for mixed strategies, the upper value and lower value of a two-person zero-sum
game.

(b) Explain how to find the upper and lower values by solving linear programs.

By quoting from the theory of linear programming, explain why they are equal.

(c) Suppose that b ∈ R
m, c ∈ R

n, A is a m× n real matrix, and all components of A, b,
and c are positive. Consider the two-person zero-sum game in which each player has
m+ n+ 1 pure strategies and the payoff matrix is

M =



















0 A −b

−A⊤ 0 c

b⊤ −c⊤ 0



















.

The first (second) diagonal block is a m×m (n× n) square matrix of zeros.
What are the upper and lower values of this game?

(d) Suppose that (for both players) an optimal mixed strategy in the zero-sum game with
payoff matix M is π⊤ = (p1, . . . , pm, q1, . . . , qn, r). Prove that r 6= 0.

(e) Explain how to find from π an optimal solution to the linear program
LP = {maximize c⊤y : Ay 6 b, y > 0}.
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(a) Suppose X ⊆ R
n, f : Rn → R, h : Rn → R

m and b ∈ R
m. Consider the problem

P : minimize f(x) s.t. h(x) = b, x ∈ X.

Formulate the Lagrangian dual problem, P∗.

Show that the optimal value of P∗ provides a lower bound on the optimal value of P.

(b) Suppose that A is a m× n real matrix and b ∈ R
m. Consider problems:

QP :minimize
x,y

1

2
x⊤x

s.t. x > 0, y > 0

Ax− y = b

QP∗ :maximize
λ, µ, x

b⊤λ− 1

2
x⊤x

s.t. λ > 0, µ > 0,

x = A⊤λ+ µ

Show that QP∗ is the Lagrangian dual problem of QP.

(c) Suppose that x, y, λ, µ are feasible for QP and QP∗ and such that λ⊤y = 0 and
x⊤µ = 0. Show that these variables provide optimal solutions to QP and QP∗.

(d) Find a matrix M (involving A) and vector q (involving b) such that solutions to QP
and QP∗ can be found by solving the linear complementarity problem:

LCP : Find w > 0, z > 0 s.t. w −Mz = q and w⊤z = 0.
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(a) Suppose that A is a n× n real matrix in which all components are non-negative and
q⊤ = (1, . . . , 1) ∈ R

n. Let

S = {(w, z) : w, z ∈ R
n, w > 0, z > 0, w +Az = q}.

Explain how Nash equilibria of the two-person bimatrix game in which the payoff
matrices for the row and column players are A and B = A⊤, respectively, are related
to solutions to the linear complementary problem:

LCP: Find (w, z) ∈ S such that w⊤z = 0.

(b) Starting from the solution at (w, z) = (q, 0), we wish to find a second solution of LCP
by using Lemke’s algorithm to follow a path through a sequence of points in S, each of
which has the property that i = 1 is the only index (amongst {1, 2, . . . , n}) for which
ziwi might be non-zero. Arranging your calculations in a tableau, show that with data

A =







3 3 0

4 0 1

0 4 5







the path terminates with tableau

w1 w2 w3 z1 z2 z3
1/3 −1/4 0 0 1 −1/4 1/12

0 1/4 0 1 0 1/4 1/4

−4/3 1 1 0 0 6 2/3

(c) What happens when the choice i = 1 is replaced with i = 3?

(d) Suppose that for all (w, z) ∈ S the total number of non-zero components in w and z
is at least n. Prove that the number of solutions of LCP is even.

(e) Show that there are solutions to this LCP that cannot be found by following some
Lemke-algorithm path that starts at (w, z) = (q, 0).

Part III, Paper 39



5

4

(a) Given a graph G = (V,E) and a partition of vertices into nonempty sets S and
S̄ = V \S, define the cut value C(S, S̄) as the number of edges having one vertex in S
and one vertex in S̄. In the MIN-CUT decision problem we are given a graph G and
integer k and asked if there exists a cut with C(S, S̄) 6 k. By using what you know
about the Ford-Fulkerson algorithm prove that MIN-CUT is in complexity class P.

(b) Let MAX-CUT be the problem of finding OPT(G) := maxS⊂V C(S, S̄). Explain how
to formulate MAX-CUT as a quadratic programming problem in variables confined
to the values 1 and −1.

(c) Consider a Boolean expression, B, that is the conjunction of m clauses, each of which
is the disjunction of 3 literals. For example, with m = 3 clauses, and x̄i = ‘not xi’,

(x3 or x1 or x̄2) and (x̄3 or x̄1 or x̄2) and (x̄3 or x1 or x4).

The NAE-3SAT decision problem asks if it is possible to assign values to the variables
(true or false) so that the Boolean expression is true, and also so that the 3 literals in
each clause are not all equal (i.e. not all true). In the example above, the answer is
yes, by taking x1 = x2 = x̄3 = x̄4 =true.

Let us construct a graph, H(B), in which 3m vertices represent the 3m literals. Place
an edge between any two vertices that represent literals that cannot be equal (such
as xi and x̄i). Suppose this creates K edges. Also place edges between vertices that
represent literals in the same clause (giving another 3m edges). For the example above,
we would have the graph

x1x1

x3 x4

x̄1

x̄2x̄2 x̄3x̄3

Use this construction to show that if NAE-3SAT is NP-complete then MAX-CUT is
NP-hard. Hint: consider the question: is OPT(H(B)) > K + 2m?

(d) Consider the following approximation algorithm for MAX-CUT.

Step 1. Arbitrarily partition the vertices into two nonempty sets S and S̄.

Step 2. Look for a vertex which if moved from its set to the other set will
increase the value of the cut. If no such vertex exists then stop.
Otherwise, move this vertex to the other set, and then repeat Step 2.

Let A(G) denote the value of the cut created by this algorithm.
Show that A(G) > (1/2)OPT(G). Hint: OPT(G) 6 |E|.
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(a) Let G = (V,E) be a graph with vertex set V = {0, . . . , n}. Suppose there is an edge
between every pair of vertices, and each edge e has an associated cost ℓ(e). Given an
edge e, suppose that V can be partitioned into disjoint sets, U and V \U , so that e is
an edge of least cost between them. Prove that there exists a minimum cost spanning
tree that includes e.

(b) Prove that a minimum cost spanning tree can be found by the algorithm which starts
with all edges of G coloured white, and at each of n successive steps recolours one edge
black, choosing this edge as one of least cost amongst those white edges that could be
made black without creating a black cycle.

(c) Suppose that every ℓ(e) is a non-negative integer no greater than k. Let S be a
nonempty subset of N = {1, . . . , n}. As a function of ℓ, let c(S, ℓ) denote the least
cost of subtree of G which has |S| edges and connects all vertices in S to vertex 0.

For each j = 1, . . . k, define ℓj : E → {0, 1} by

ℓj(e) =

{

0 if ℓ(e) < j,

1 if ℓ(e) > j.

Show that c(S, ℓ) = c(S, ℓ1) + · · ·+ c(S, ℓk).

(d) In the minimum cost spanning tree game the set of players is N = {1, . . . , n} and the
characteristic function is defined as v(S) = c(S, ℓ), S ⊆ N . It is desired to specify a
cost sharing, {xS,i, i ∈ S}, for each subset S, having the desirable properties that

∑

i∈S

xS,i = v(S) for all S ⊆ N, S 6= ∅ , (1)

xS,i > xT,i for all i ∈ S ⊂ T ⊆ N. (2)

Explain why these properties are desirable.

Show that if such numbers exist then (xN,1, . . . , xN,n) is in the core of the game.

(e) Consider a simple case of the above, in which ℓ(e) ∈ {0, 1} for all e. Let S ⊆ N . For
each i ∈ S, set xS,i = 0 if, for some j ∈ S∪{0} and j < i, vertex i can be connected to
j by a path of cost 0 passing through only vertices in S ∪{0}. Otherwise set xS,i = 1.
Prove that with this definition (1) and (2) hold.

How could you solve (1)–(2) in a case that ℓ(e) ∈ {0, . . . , k} for all e ∈ E?
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(a) A item is to be auctioned between two identical risk-neutral bidders, who have private
valuations for winning the item that are independently distributed uniformly on [0, 1].
The auction design specifies that the item is won by the highest bidder, and, as
functions of their bids, the bidders shall make certain non-negative payments to the
auctioneer. All the above (apart from the private valuations) is public knowledge.

Suppose that in equilibrium the optimal strategy of bidder i, when having private
valuation vi, is to participate in the auction and bid b(vi) if vi > v̄i, but to not
participate if vi < v̄i, where v̄i is some number in [0, 1]. Conditional on vi, let π(vi)
and e(vi) denote, respectively, bidder i’s expected profit and expected payment.

Explain why π(vi) = v2i − e(vi) for vi > v̄i, and π(0) = 0 for vi < v̄i. Show that

π(vi) = (1/2)(v2i − v̄2i ), vi > v̄i.

(b) Consider three auctions designs in which: (i) the winner pays his bid, (ii) the loser
pays his bid, (iii) both winner and loser pay their bids. Why in these designs is v̄i = 0?

Find b(vi) in each case. Verify that in (ii) b(vi) → ∞ as vi → 1.

Verify that (i) and (iii) guarantee the same expected revenue for the auctioneer.

(c) Show that if we add to auction (iii) the rule that the minimum permitted bid is 1/4
then v̄1 = v̄2 = 1/2.

Show that the expected revenue obtained by the auctioneer in this auction exceeds
that in any of (i), (ii) and (iii).

END OF PAPER
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1

(a) Define, for mixed strategies, the upper value and lower value of a two-person zero-sum
game.

(b) Explain how to find the upper and lower values by solving linear programs.

By quoting from the theory of linear programming, explain why they are equal.

(c) Suppose that b ∈ R
m, c ∈ R

n, A is a m× n real matrix, and all components of A, b,
and c are positive. Consider the two-person zero-sum game in which each player has
m+ n+ 1 pure strategies and the payoff matrix is

M =



















0 A −b

−A⊤ 0 c

b⊤ −c⊤ 0



















.

The first (second) diagonal block is a m×m (n× n) square matrix of zeros.
What are the upper and lower values of this game?

(d) Suppose that (for both players) an optimal mixed strategy in the zero-sum game with
payoff matix M is π⊤ = (p1, . . . , pm, q1, . . . , qn, r). Prove that r 6= 0.

(e) Explain how to find from π an optimal solution to the linear program
LP = {maximize c⊤y : Ay 6 b, y > 0}.
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(a) Suppose X ⊆ R
n, f : Rn → R, h : Rn → R

m and b ∈ R
m. Consider the problem

P : minimize f(x) s.t. h(x) = b, x ∈ X.

Formulate the Lagrangian dual problem, P∗.

Show that the optimal value of P∗ provides a lower bound on the optimal value of P.

(b) Suppose that A is a m× n real matrix and b ∈ R
m. Consider problems:

QP :minimize
x,y

1

2
x⊤x

s.t. x > 0, y > 0

Ax− y = b

QP∗ :maximize
λ, µ, x

b⊤λ− 1

2
x⊤x

s.t. λ > 0, µ > 0,

x = A⊤λ+ µ

Show that QP∗ is the Lagrangian dual problem of QP.

(c) Suppose that x, y, λ, µ are feasible for QP and QP∗ and such that λ⊤y = 0 and
x⊤µ = 0. Show that these variables provide optimal solutions to QP and QP∗.

(d) Find a matrix M (involving A) and vector q (involving b) such that solutions to QP
and QP∗ can be found by solving the linear complementarity problem:

LCP : Find w > 0, z > 0 s.t. w −Mz = q and w⊤z = 0.
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(a) Suppose that A is a n× n real matrix in which all components are non-negative and
q⊤ = (1, . . . , 1) ∈ R

n. Let

S = {(w, z) : w, z ∈ R
n, w > 0, z > 0, w +Az = q}.

Explain how Nash equilibria of the two-person bimatrix game in which the payoff
matrices for the row and column players are A and B = A⊤, respectively, are related
to solutions to the linear complementary problem:

LCP: Find (w, z) ∈ S such that w⊤z = 0.

(b) Starting from the solution at (w, z) = (q, 0), we wish to find a second solution of LCP
by using Lemke’s algorithm to follow a path through a sequence of points in S, each of
which has the property that i = 1 is the only index (amongst {1, 2, . . . , n}) for which
ziwi might be non-zero. Arranging your calculations in a tableau, show that with data

A =







3 3 0

4 0 1

0 4 5







the path terminates with tableau

w1 w2 w3 z1 z2 z3
1/3 −1/4 0 0 1 −1/4 1/12

0 1/4 0 1 0 1/4 1/4

−4/3 1 1 0 0 6 2/3

(c) What happens when the choice i = 1 is replaced with i = 3?

(d) Suppose that for all (w, z) ∈ S the total number of non-zero components in w and z
is at least n. Prove that the number of solutions of LCP is even.

(e) Show that there are solutions to this LCP that cannot be found by following some
Lemke-algorithm path that starts at (w, z) = (q, 0).
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(a) Given a graph G = (V,E) and a partition of vertices into nonempty sets S and
S̄ = V \S, define the cut value C(S, S̄) as the number of edges having one vertex in S
and one vertex in S̄. In the MIN-CUT decision problem we are given a graph G and
integer k and asked if there exists a cut with C(S, S̄) 6 k. By using what you know
about the Ford-Fulkerson algorithm prove that MIN-CUT is in complexity class P.

(b) Let MAX-CUT be the problem of finding OPT(G) := maxS⊂V C(S, S̄). Explain how
to formulate MAX-CUT as a quadratic programming problem in variables confined
to the values 1 and −1.

(c) Consider a Boolean expression, B, that is the conjunction of m clauses, each of which
is the disjunction of 3 literals. For example, with m = 3 clauses, and x̄i = ‘not xi’,

(x3 or x1 or x̄2) and (x̄3 or x̄1 or x̄2) and (x̄3 or x1 or x4).

The NAE-3SAT decision problem asks if it is possible to assign values to the variables
(true or false) so that the Boolean expression is true, and also so that the 3 literals in
each clause are not all equal (i.e. not all true). In the example above, the answer is
yes, by taking x1 = x2 = x̄3 = x̄4 =true.

Let us construct a graph, H(B), in which 3m vertices represent the 3m literals. Place
an edge between any two vertices that represent literals that cannot be equal (such
as xi and x̄i). Suppose this creates K edges. Also place edges between vertices that
represent literals in the same clause (giving another 3m edges). For the example above,
we would have the graph

x1x1

x3 x4

x̄1

x̄2x̄2 x̄3x̄3

Use this construction to show that if NAE-3SAT is NP-complete then MAX-CUT is
NP-hard. Hint: consider the question: is OPT(H(B)) > K + 2m?

(d) Consider the following approximation algorithm for MAX-CUT.

Step 1. Arbitrarily partition the vertices into two nonempty sets S and S̄.

Step 2. Look for a vertex which if moved from its set to the other set will
increase the value of the cut. If no such vertex exists then stop.
Otherwise, move this vertex to the other set, and then repeat Step 2.

Let A(G) denote the value of the cut created by this algorithm.
Show that A(G) > (1/2)OPT(G). Hint: OPT(G) 6 |E|.
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(a) Let G = (V,E) be a graph with vertex set V = {0, . . . , n}. Suppose there is an edge
between every pair of vertices, and each edge e has an associated cost ℓ(e). Given an
edge e, suppose that V can be partitioned into disjoint sets, U and V \U , so that e is
an edge of least cost between them. Prove that there exists a minimum cost spanning
tree that includes e.

(b) Prove that a minimum cost spanning tree can be found by the algorithm which starts
with all edges of G coloured white, and at each of n successive steps recolours one edge
black, choosing this edge as one of least cost amongst those white edges that could be
made black without creating a black cycle.

(c) Suppose that every ℓ(e) is a non-negative integer no greater than k. Let S be a
nonempty subset of N = {1, . . . , n}. As a function of ℓ, let c(S, ℓ) denote the least
cost of subtree of G which has |S| edges and connects all vertices in S to vertex 0.

For each j = 1, . . . k, define ℓj : E → {0, 1} by

ℓj(e) =

{

0 if ℓ(e) < j,

1 if ℓ(e) > j.

Show that c(S, ℓ) = c(S, ℓ1) + · · ·+ c(S, ℓk).

(d) In the minimum cost spanning tree game the set of players is N = {1, . . . , n} and the
characteristic function is defined as v(S) = c(S, ℓ), S ⊆ N . It is desired to specify a
cost sharing, {xS,i, i ∈ S}, for each subset S, having the desirable properties that

∑

i∈S

xS,i = v(S) for all S ⊆ N, S 6= ∅ , (1)

xS,i > xT,i for all i ∈ S ⊂ T ⊆ N. (2)

Explain why these properties are desirable.

Show that if such numbers exist then (xN,1, . . . , xN,n) is in the core of the game.

(e) Consider a simple case of the above, in which ℓ(e) ∈ {0, 1} for all e. Let S ⊆ N . For
each i ∈ S, set xS,i = 0 if, for some j ∈ S∪{0} and j < i, vertex i can be connected to
j by a path of cost 0 passing through only vertices in S ∪{0}. Otherwise set xS,i = 1.
Prove that with this definition (1) and (2) hold.

How could you solve (1)–(2) in a case that ℓ(e) ∈ {0, . . . , k} for all e ∈ E?
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(a) A item is to be auctioned between two identical risk-neutral bidders, who have private
valuations for winning the item that are independently distributed uniformly on [0, 1].
The auction design specifies that the item is won by the highest bidder, and, as
functions of their bids, the bidders shall make certain non-negative payments to the
auctioneer. All the above (apart from the private valuations) is public knowledge.

Suppose that in equilibrium the optimal strategy of bidder i, when having private
valuation vi, is to participate in the auction and bid b(vi) if vi > v̄i, but to not
participate if vi < v̄i, where v̄i is some number in [0, 1]. Conditional on vi, let π(vi)
and e(vi) denote, respectively, bidder i’s expected profit and expected payment.

Explain why π(vi) = v2i − e(vi) for vi > v̄i, and π(0) = 0 for vi < v̄i. Show that

π(vi) = (1/2)(v2i − v̄2i ), vi > v̄i.

(b) Consider three auctions designs in which: (i) the winner pays his bid, (ii) the loser
pays his bid, (iii) both winner and loser pay their bids. Why in these designs is v̄i = 0?

Find b(vi) in each case. Verify that in (ii) b(vi) → ∞ as vi → 1.

Verify that (i) and (iii) guarantee the same expected revenue for the auctioneer.

(c) Show that if we add to auction (iii) the rule that the minimum permitted bid is 1/4
then v̄1 = v̄2 = 1/2.

Show that the expected revenue obtained by the auctioneer in this auction exceeds
that in any of (i), (ii) and (iii).

END OF PAPER
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