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1
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0 0 0 0 0 1
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0 0 0 0 0 0 1





Andrei Andreevich Markov (1856–1922)



In Example 1.1

P (n) =



0 1 0 0 0 0 0

0 1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0 0

0 0 1
4

1
2

1
4 0 0

0 0 0 0 0 1
2

1
2

0 0 0 1 0 0 0

0 0 0 0 0 0 1



n

→



1
5

2
5

2
5 0 0 0 0

1
5

2
5

2
5 0 0 0 0

1
5

2
5

2
5 0 0 0 0

2
15

4
15

4
15 0 0 0 1

3
1
15

2
15

2
15 0 0 0 2

3
2
15

4
15

4
15 0 0 0 1

3

0 0 0 0 0 0 1





Find the classes in P and say whether they are open

or closed.

P =



1
2

1
2 0 0 0 0

0 0 1 0 0 0
1
3 0 0 1

3
1
3 0

0 0 0 1
2

1
2 0

0 0 0 0 0 1

0 0 0 0 1 0


1

2

3

4

5 6



Engel’s probabilistic abacus

Consider an absorbing Markov chain with rational

transition probabilites, as in

P =


1
2

1
4

1
4 0 0

1
3 0 1

3
1
3 0

0 0 1
3 0 2

3

0 0 0 1 0

0 0 0 0 1


Clearly {1, 2, 3} are transient and {4, 5} are absorbing.

Suppose we want to find h1 (= α14), the probability

that starting in state 1 absorption takes place in state

4. The usual method is to solve the RHE:

h1 = 1
2h1 + 1

4h2 + 1
4h3

h2 = 1
3h1 + 1

3h3 + 1
3h4

h3 = 1
3h3 + 2

3h5

h4 = 1

h5 = 0

Alternatively, we can use Engel’s algorithm, or

playing a so-called chip firing game.



We create one node for each state and put some

chips (or tokens) at the nodes corresponding to the

non-absorbing states, {1, 2, 3}. Suppose that there are

integers ri, ri1, . . . , rin such that pij = rij/ri for all j.

If there were ri chips at node i we could ‘fire’ or ‘make a

move’ in node i. This means taking ri chips from node

i and moving rij of them to node j, for each j.

1/2

1/4

1/4

1/3

1/3

1/3

1/3

2/3

The critical loading is one in which each node has one

less chip that it needs to fire, i.e. ci = ri− 1. So c1 = 3

and c2 = c3 = 2. We start with a critical loading by

placing tokens at nodes 1, 2, 3, 4, 5 in numbers:

(3, 2, 2, 0, 0),

and add a large number of tokens to another node 0.



‘Firing’ node 0 means moving one token from node

0 to node 1. Engel’s algorithm also imposes the rule

that node 0 may be fired only if no other node can fire.

Starting from the critical loading we fire node 0 and

then node 1:

(3, 2, 2, 0, 0)
0→ (4, 2, 2, 0, 0)

1→ (2, 3, 3, 0, 0)

1/2

1/4

1/4

1/3

1/3

1/3

1/3

2/3

1/2

1/4

1/4

1/3

1/3

1/3

1/3

2/3

1/2

1/4

1/4

1/3

1/3

1/3

1/3

2/3

Now nodes 2 or 3 could fire. Suppose we fire 3, then 2:

(2, 3, 3, 0, 0)
3→ (2, 3, 1, 0, 2)

2→ (3, 0, 2, 1, 2)
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1/4

1/4

1/3

1/3

1/3

1/3

2/3



The same loading would be reached if we had fired

2 and then 3. This fact is important! Now we fire the

sequence 0, 1, 3, 0, 0, 1, 0:

(3, 0, 2, 1, 2)
0→ (4, 0, 2, 1, 2)

1→ (2, 1, 3, 1, 2)
3→ (2, 1, 1, 1, 4)

0→ (3, 1, 1, 1, 4)
0→ (4, 1, 1, 1, 4)

1→ (2, 2, 2, 1, 4)
0→ (3, 2, 2, 1, 4)

which leaves us at

1/2

1/4

1/4

1/3

1/3

1/3

1/3

2/3

At this point we stop, because nodes 1, 2 and 3 now

have exactly the same loading as at the start. We are at

(3, 2, 2, 0, 0) + (0, 0, 0, 1, 4). We have fired 0 five times

and ended up back at the critical loading, but with 1

token in node 4 and 4 tokens in node 5. Thus h1 = 1/5.



Why does this algorithm work? It is fairly obvious

that if the initially critically loaded configuration of the

transient states reoccurs then the numbers of tokens

that have appeared in the nodes that correspond to the

absorbing states must be in quantities that are in pro-

portion to the absorptions probabilities, α1j. But why

is the initial critically loaded configuration guaranteed

to eventually reappear?

This puzzled Engel in 1976, and was proved circa

1979 by Peter Doyle, whose proof is in Appendix C.

The proof is interesting.

There is, in fact, a rich literature on the properties

of chip firing games and this proof generalises to show

that many chip firing games have the property that

the termination state does not depend on the order in

which moves are made.



X

Y

Z



Feasibility of wind instruments

Lord Rayleigh in “On the theory of resonance” (1899)

proposed a model for wind instruments in which the

creation of resonance through a vibrating column of

air requires repeated expansion and contraction of a

mass of air at the mouth of the instrument, air being

modelled as an incompressible fluid.

Think instead about an infinite rectangular lattice

of cities. City (0,0) wishes to expand its tax base and

does this by inducing a business from a neighboring city

to rellocate to it. The impoverished city does the same

(choosing to “beggar-its-neighbour” randomly amongst

its 4 neighbours since “beggars can’t be choosers”), and

this continues, just like a 2-D random walk. Unfortu-

nately, this means that with probability 1 the walk re-

turns to the origin city who eventually finds that one of

its own businesses is induced away by one of its neigh-

bours, leaving it no better off than at the start. We

might say that it is “infinitely-hard to expand the tax

base by a beggar-your-neighbour policy”. However, in

3-D there is a positive probability (about 0.66) that

the city (0, 0) will never be beggared by one of its 6

neighbours.



By analogy, we see that in 2-D it will be “infinitely

hard” to expand the air at the mouth of the wind in-

strument, but in 3-D the energy required is finite. That

is why Doyle and Snell say wind instruments are possi-

ble in our 3-dimensional world, but not in Flatland.

We will learn in Lecture 12 something more about

the method that Rayleigh used to show that the energy

required to create a vibrating column of air in 3-D is

finite.



Invariant distribution of a two-state chain

1 2

a

1-a 1-b

b

P =

(
1− α α

β 1− β

)

P n =

(
β

α+β + α
α+β (1− α− β)n α

α+β −
α

α+β (1− α− β)n

β
α+β −

β
α+β (1− α− β)n α

α+β + β
α+β (1− α− β)n

)

→

(
β

α+β
α

α+β

β
α+β

α
α+β

)

=

(
π1 π2
π1 π2

)



P = (0.85)



0 1
2

1
2

0 0 0 0 0

0 0 0 1 0 0 0 0

0 1
2

0 0 1
2

0 0 0

0 1
3

0 0 1
3

1
3

0 0

0 0 0 0 0 1
3

1
3

1
3

0 0 0 0 0 0 0 1
1
3

0 0 0 1
3

0 0 1
3

0 0 0 0 0 1
2

1
2

0



+ (0.15)1

8



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1





P 10 =



0.065 0.092 0.045 0.098 0.11 0.18 0.15 0.26
0.060 0.094 0.047 0.095 0.11 0.19 0.17 0.24
0.064 0.092 0.045 0.098 0.11 0.18 0.15 0.26
0.066 0.091 0.044 0.099 0.11 0.18 0.15 0.26
0.065 0.092 0.045 0.098 0.11 0.18 0.15 0.26
0.057 0.095 0.049 0.095 0.10 0.20 0.17 0.23
0.060 0.094 0.047 0.096 0.11 0.19 0.16 0.24
0.068 0.090 0.043 0.10 0.12 0.17 0.14 0.27



P 20 =



0.063 0.093 0.046 0.097 0.11 0.18 0.16 0.25
0.063 0.093 0.046 0.097 0.11 0.18 0.16 0.25
0.063 0.093 0.046 0.097 0.11 0.18 0.16 0.25
0.063 0.093 0.046 0.097 0.11 0.18 0.16 0.25
0.063 0.093 0.046 0.097 0.11 0.18 0.16 0.25
0.063 0.093 0.046 0.097 0.11 0.18 0.16 0.25
0.063 0.093 0.046 0.097 0.11 0.18 0.16 0.25
0.063 0.093 0.046 0.097 0.11 0.18 0.16 0.25





Theorem 5.8. Suppose P is irreducible and recurrent.
Then for all j ∈ I we have P (Tj <∞) = 1.

Theorem 8.3. Suppose P is irreducible and λ ≥ 0 and
λ = λP . Then λ ≡ 0 or (0 < λi < ∞ for all i) or
λ ≡ ∞.

Theorem 8.4 (Existence of an invariant measure). Let
P be irreducible and recurrent. Then

(i) γkk = 1.

(ii) γk = (γki : i ∈ I) satisfies γkP = γk.

(iii) 0 < γki < 1 for all i.

Theorem 8.5 (Uniqueness of an invariant measure).
Let P be irreducible and let λ be an invariant measure
for P with λk = 1. Then λ ≥ γk. If in addition P is
recurrent, then λ = γk.

Theorem 9.1. Let P be irreducible. Then the following
are equivalent:

(i) every state is positive recurrent;

(ii) some state i is positive recurrent;

(iii) P has an invariant distribution, π say.

Moreover, when (iii) holds we have mi = 1/πi for all i.



A quotation from J. Michael Steele

Coupling is one of the most powerful

of the “genuinely probabilistic” techniques.

Here by “genuinely probabilistic” we mean

something that works directly with random

variables rather than with their analytical

co-travelers (like distributions, densities, or

characteristic functions).



Theorem 10.1 (Strong law of large numbers). Let
Y1, Y2 . . . be a sequence of independent and identically
distributed non-negative random variables with E(Yi) =
µ. Then

P

(
Y1 + · · ·+ Yn

n
→ µ as n→∞

)
= 1.





P =


0 1

2
1
4

1
4

1
4 0 1

2
1
4

1
4

1
4 0 1

2
1
2

1
4

1
4 0


(
p
(n)
11 ,p

(n)
12 , p

(n)
13 , p

(n)
14

)

=



1. 0. 0. 0.
0. 0.5 0.25 0.25

0.3125 0.125 0.3125 0.25
0.234375 0.296875 0.203125 0.265625
0.257813 0.234375 0.273438 0.234375
0.244141 0.255859 0.240234 0.259766
0.253906 0.24707 0.253906 0.245117
0.247803 0.251709 0.248291 0.252197
0.251099 0.249023 0.250854 0.249023
0.249481 0.250519 0.249542 0.250458



−
∑
i

p
(n)
1i log2

[
p
(n)
1i

]
=



0.
1.5

1.92379
1.98583
1.99685
1.99925
1.99982
1.99996
1.99999

2.





A random knight makes each permissible move with

equal probability. If it starts in a corner, how long on

average will it take to return?

23

34

4

46

6

68 8

88

6

44



The following chart shows {Xn}500n=300 in a simulation of an
urn with 20 balls, started at X0 = 10. Below it the data is
shown reversed. There is no apparent difference.

0 50 100 150 200

5

10

15

20

0 50 100 150 200

5

10

15

20



+

-

0



a

a

 

v(a)=1

b

b

x

x

y

y

L

L

v(b)=0

 



Probability and Measure

• Concepts such as ‘expectation’, ‘measure’, ‘strong
law of large numbers’ are developed rigorously.

• Limits are a key theme.

E.g. Pi(Xn makes infinitely many returns to i).
This can takes only values 0 or 1 (never 1/2).

• Important for many mathematicians, not
just those who are specializing in optimiza-
tion/probability/statistics.

Typical question

Let Ω = {0, 1}, F = B((0, 1)) be the Borel σ-field and
let P be Lebesgue measure on (Ω,F ). Give an example
of an ergodic measure-preserving map θ : Ω→ Ω.



Applied Probability

• Applications in queueing, communication networks,
insurance ruin, and epidemics.

• Stochastic processes in continuous time.

• Imagine our frog in Example 1.1 waits for an expo-
nentially distributed time before hopping to a new
lily pad.

What now is p57(t), t ≥ 0? As you might guess, we
find this by solving differential equations, in place
of the recurrence relations we had in discrete time.

Typical question

Consider an M/G/r/0 loss system with arrival rate λ
and service-time distribution F . Thus, arrivals form a
Poisson process of rate λ, service times are independent
with common distribution F , there are r servers and
there is no space for waiting.

Use Little’s Lemma to obtain a relation between the
long-run average occupancy L and the stationary prob-
ability π that the system is full.



Optimization and Control

• Add to Markov chains notions of cost, reward, and
optimization.

• Suppose we can pick, as a function of the current
state x, the transition matrix P , to be one of a set
of k possible matrices, say P (a), a ∈ {ak, . . . , ak}.

• Perhaps we would like to steer our frog to arrive at
some particular lily pad in the least possible time,
or with the least cost.

• Suppose three frogs are placed at different vertices
of Z2. At each step we can choose one of the frogs
to make a random hop to one of its neighbouring
vertices. We wish to minimize the expected time
until we first have a frog at the origin. This is like
‘playing golf with more than one ball’.

Typical question

In a television game show a contestant is successively
asked questions Q1, . . . , Q9. After correctly answering
Qi and hearing Qi+1 she has the option of either going
home with 2i pounds or attempting to answer Qi+1. If
she answers Qi+1 incorrectly then she goes home with
nothing. If she answers Q9 correctly then the game ends
and she takes home 29 pounds.



Stochastic Financial Models

• Random walks, Brownian motion, Poisson process,
and other stochastic models that are useful in mod-
elling financial products.

• Suppose our frog starts in state i and does a biased
random walk on {0, 1, . . . , 10}, eventually hitting
state 0 or 10, where she then wins a prize worth £0
or £10.

How much would we be willing to pay at time 0 for
the right (option) to buy her final prize for £s?

Typical question

In a standard Black-Scholes model, the price at time t
of a share is represented as St = exp(Xt). You hold a
perpetual American put option on this share, with strike
K; you may exercise at any stopping time τ , and upon
exercise you receive max{0, K−Sτ}. Let 0 < a < logK.
Suppose you plan to use the exercise policy: ‘Exercise
as soon as the price falls to ea or lower.’

Calculate what the option would be worth if you were
to follow this policy.


